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Abstract

The aim of the present work is to provide some properties of the r-Fibonacci poly-
nomial and its companion sequences. We present the Binet forms for both cases:
distinct and multiple zeros of the characteristic polynomial. Then, we define their
(p, q)-analogues and present the alternating sums of their terms using a matrix
method. In addition, we extend the definition of the r-Fibonacci polynomial to in-
clude negative r values, we focus on the behavior of the resulting sequence, which is
a solution of a recurrence relation, and establish its relationship with the generalized
Padovan and Perrin numbers.

1. Introduction

The present paper is a continuation of our recent study [1] of the r-Fibonacci

polynomial and its companion sequences. In [12], Raab introduced the r-Fibonacci

bivariate polynomial sequence (U
(r)
n (x, y))n by the following recursion:{

U
(r)
0 = 0, U

(r)
k = xk−1 (1 ≤ k ≤ r),

U
(r)
n+1 = xU

(r)
n + yU

(r)
n−r (n ≥ r),

where r is a positive integer, and x and y are two variables. Abbad et al. [1] defined

a family of companion sequences (V
(r,s)
n )n≥0 indexed by s (1 ≤ s ≤ r) as follows:
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{
V

(r,s)
0 = s+ 1, V

(r)
k = xk (1 ≤ k ≤ r),

V
(r,s)
n+1 = xV

(r,s)
n + yV

(r,s)
n−r (n ≥ r).

The sequence (V
(r,s)
n ) is called the r-Lucas polynomial of type s. The sequences

(V
(r,s)
n )n and (U

(r)
n )n are linked, for n ≥ r, by the following relation:

V (r,s)
n = U

(r)
n+1 + syU

(r)
n−r. (1)

For more details about the r-Fibonacci polynomial and its companion sequences,

see [1]. This paper is structured as follows. Section 2 presents the Binet formula

for the r-Fibonacci polynomial and its companion sequences. Section 3 introduces

(p, q)-analogues of these sequences. Section 4 employs a matrix method to evaluate

the alternating sum of the r-Fibonacci polynomial and its companion sequences.

Finally, the definition of the r-Fibonacci polynomial is extended to negative r values.

2. Binet Type Formulas

In this section, we present the Binet type formulas corresponding to the r-Fibonacci

sequence and to the companion r-Lucas sequences.

Let P (t) = tr+1 − xtr − y =
h∏

j=1

(t−αj)
rj be the characteristic polynomial of the

sequences (U
(r)
n )n≥0 and (V

(r,s)
n )n≥0, where α1, . . . , αh are the zeros of P and rj is

the multiplicity of αj for 1 ≤ j ≤ h such that
h∑

j=1

rj = r + 1. Raab [12] showed

that α = rx/(r + 1) is a real multiple zero of P and that the greatest multiplicity

of any real zero is two. DeGua’s rule for identifying imaginary roots states that if

2m consecutive terms of an equation are missing, the equation has 2m imaginary

roots. Similarly, when 2m−1 consecutive terms are missing, the equation has either

2m− 2 or 2m imaginary roots, depending on whether the two terms between which

the 2m−1 terms are missing have like or unlike signs. Consequently, we can deduce

that the polynomial P has at most three real zeros. This is due to the presence of

(r−1) consecutive missing terms in the expression of the linear recurrence relation,

which implies that at least (r − 2) of its zeros are imaginary. Additionally, α is

a multiple zero of P if and only if the discriminant of P equals zero, leading to

y = (−1/r) (rx/(r + 1))
r+1

. As a result, the characteristic polynomial P can be

split in the following way:

P (t) = (t− α1)(t− α2) · · · (t− αr+1) if y ̸= (−1/r) (rx/(r + 1))
r+1

,

or

P (t) = (t− α)2
∼
P (t) if y = (−1/r) (rx/(r + 1))

r+1
, where

∼
P (α) ̸= 0.
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Theorem 1. Let α1, α2, . . . , αr+1 be the zeros of the characteristic polynomial

P (t) = tr+1−xtr−y associated with (U
(r)
n )n≥0 and (V

(r,s)
n )n≥0. Then for 1 ≤ s ≤ r,

we have the following

(i) If y ̸= (−1/r) (rx/r + 1)
r+1

,

U
(r)
n+1 =

r+1∑
k=1

αn+1
k

(r + 1)αk − rx
and V (r,s)

n =

r+1∑
k=1

αn
k

(s+ 1)αk − sx

(r + 1)αk − rx
.

(ii) If y = (−1/r) (rx/r + 1)
r+1

,

U
(r)
n+1 =

αn+r−1

∼
P (α)

(n+ r)− α

∼
P ′(α)
∼
P (α)

+

r+1∑
k=1,αk ̸=α

αn+1
k

(r + 1)αk − rx

and

V (r,s)
n =

αn+r−1

∼
P (α)

n(
r − s

r
) + (r +

s

r
)− α(

r − s

r
)

∼
P ′(α)
∼
P (α)


+

r+1∑
k=1,αk ̸=α

αn
k

(s+ 1)αk − sx

(r + 1)αk − rx
.

Proof. (i) As noted in [8], the general term of the sequence (U
(r)
n )n≥0 can be ex-

pressed as U
(r)
n+1 =

r+1∑
k=1

bkα
n
k , where the bk are rational numbers and the αk are the

zeros of the characteristic polynomial. This system of equations can be solved using

Cramer’s rule and the Vandermonde determinant. To find the coefficients bk, we

utilize the first (r+1) terms of the sequence (U
(r)
n ) and the symmetric functions of

the zeros of the characteristic polynomial. The result is:

bk =
αr
k

(αk − α1)(αk − α2) · · · (αk − αk−1)(αk − αk+1) · · · (αk − αr+1)

=
αr
k∏

j ̸=k

(αk − αj)
.

On the other hand, we notice that

P (t) = tr+1 − xtr − y = (t− α1)(t− α2) · · · (t− αr+1).

Then for 1 ≤ k ≤ r + 1, we have

P ′(αk) = (r + 1)αr
k − rxαr−1

k =
∏
j ̸=k

(αk − αj),
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which gives

bk =
αr
k

(r + 1)αr
k − rxαr−1

k

=
αr
k

αr−1
k ((r + 1)αk − rx)

=
αk

(r + 1)αk − rx
.

Thus

U
(r)
n+1 =

r+1∑
k=1

bkα
n
k =

r+1∑
k=1

αn+1
k

(r + 1)αk − rx
.

Now, we determine the Binet type formula for the sequence of polynomials

(V
(r,s)
n )n≥0. Using Equation (1), we have

V (r,s)
n = U

(r)
n+1 + syU

(r)
n−r

=

r+1∑
k=1

αn+1
k

(r + 1)αk − rx
+ sy

r+1∑
k=1

αn−r
k

(r + 1)αk − rx

=

r+1∑
k=1

αn−r
k (αr+1

k + sy)

(r + 1)αk − rx
.

Now, since y = αr+1
k − xαr

k, it follows that

V (r,s)
n =

r+1∑
k=1

αn−r
k ((s+ 1)αr+1

k − sxαr
k)

(r + 1)αk − rx
=

r+1∑
k=1

αn
k

(s+ 1)αk − sx

(r + 1)αk − rx
.

(ii) Assuming that P has a multiple zero (let α1 = α2 = α) and using the same
technique as in (i), we have

U
(r)
n+1 =

r+1∑
k=1

bkα
n
k = b1α

n
1 + b2α

n
2 +

r+1∑
k=3

bkα
n
k

=
αn+r
1

(α1 − α2)
∼
P (α1)

+
αn+r
2

(α2 − α1)
∼
P (α2)

+

r+1∑
k=3

αn+r
k

(αk − α1)(αk − α2) · · · (αk − αk−1)(αk − αk+1) · · · (αk − αr+1)

=
αn+r
1

(α1 − α2)
∼
P (α1)

− αn+r
2

(α1 − α2)
∼
P (α2)

+

r+1∑
αk ̸=α

αn+1
k

(r + 1)αk − rx

=
1

∼
P (α1)

[
αn+r
1 − αn+r

2

α1 − α2
−

( ∼
P (α1)
∼
P (α2)

− 1

)
αn+r
2

α1 − α2

]
+

r+1∑
αk ̸=α

αn+1
k

(r + 1)αk − rx

=
1

∼
P (α1)

[
αn+r
1 − αn+r

2

α1 − α2
−

( ∼
P (α1)−

∼
P (α2)

α1 − α2

)
αn+r
2

∼
P (α2)

]
+

r+1∑
αk ̸=α

αn+1
k

(r + 1)αk − rx
.
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To end the proof, let α2 tend to α1 = α. For the companion sequences (V
(r,s)
n )n≥0,

we apply Equation (1) with y = −αr+1

r
.

3. The (p, q)-Analogue of the r-Fibonacci Polynomial and Its Companion
Sequences

For p, q ∈ R, the (p, q)-numbers are defined as:

[n]p,q := pn−1 + pn−2q + pn−2q2 + · · ·+ pqn−2 + qn−1 =
pn − qn

p− q
,

[n]p,q! := [1]p,q[2]p,q · · · [n]p,q.

Also, we have

[n]p,q = pn−k[k]p,q + qk[n− k]p,q,[
n

k

]
p,q

=
[n]p,q!

[k]p,q![n− k]p,q!
,

and [
n

k

]
p,q

= pk
[
n− 1

k

]
p,q

+ qn−k

[
n− 1

k − 1

]
p,q

, (2)

[
n

k

]
p,q

= qk
[
n− 1

k

]
p,q

+ pn−k

[
n− 1

k − 1

]
p,q

. (3)

The theory of (p, q)-calculus has been studied by many mathematicians. Cor-

cino [11] studied the (p, q)-extension of the binomial coefficients and derived some

properties similar to those of ordinary and q-binomial coefficients. In [3], Bazeniar

et al. gave an interpretation of generalized binomial coefficients and their (p, q)-

analogue using a new type of symmetric function. According to Ahmia and Bel-

bachir [2], the log-convexity is preserved under the (p, q)-binomial transformation.

In this section, we propose the (p, q)-analogue of the r-Fibonacci polynomial and

its companion sequences associated with the unified approach of Cigler and Car-

litz [7, 10]. Belbachir et al. [5] introduced the generalized q-analogue of r-Fibonacci

polynomials U
(r)
n+1(z,m), which is a unified approach of those of Carlitz and Cigler

[7, 10]. They define

U
(r)
n+1(z,m) :=

⌊n/(r+1)⌋∑
k=0

q(
k+1
2 )+m(k2)

[
n− rk

k

]
q

zk,
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with U
(r)
0 (z,m) = 0. These polynomials satisfy the following recurrence formulas:

U
(r)
n+1(z,m) = U(r)

n (qz,m) + qzU
(r)
n−r(zq

m+1,m)

and

U
(r)
n+1(z,m) = U(r)

n (z,m) + qn−rzU
(r)
n−r(zq

m−r,m).

Also, Benmezai proposed the (p, q)-analogue of the r-Fibonacci polynomial associ-

ated with the Cigler approach [6]. Inspired by the (p, q)-binomial definition given

in [11], we propose the following definition for the (p, q)-analogue of r-Fibonacci

polynomials.

Definition 1. For all n ≥ 0, the (p, q)-analogue of the r-Fibonacci polynomial is

defined as

U
(r)
n+1(x, y, p, q,m) :=

⌊n/(r+1)⌋∑
k=0

p(
n+1−(r+1)k

2 )q(
k+1
2 )+m(k2)

[
n− rk

k

]
p,q

xn−(r+1)kyk,

with U
(r)
0 = 0 and U

(r)
j = p(

j+1
2 )xj−1 for 1 ≤ j ≤ r.

By setting p = 1, we derive some particular cases of the (p, q)-analogue of the

r-Fibonacci polynomial. This includes the q-analogue presented in [5] and the q-

analogue introduced by Cigler in [9], where r = 1 and m = 0.

Theorem 2. The (p, q)-analogue of the r-Fibonacci polynomials satisfy the follow-

ing recurrence formulas:

U
(r)
n+1(x, y, p, q,m) = pxU(r)

n (px, qy, p, q,m) + qyU
(r)
n−r(px, q

m+1y, p, q,m) (4)

and

U
(r)
n+1(x, y, p, q,m) = pxU(r)

n (px, py, p, q,m) + qyU
(r)
n−r(qx, q

m+1y, p, q,m). (5)

Proof. We use Equation (2) to prove the first identity. We have

U
(r)
n+1(x, y, p, q,m)

=

⌊n/(r+1)⌋∑
k=0

p(
n+1−(r+1)k

2 )q(
k+1
2 )+m(k2)

×

(
qk
[
n− rk − 1

k

]
p,q

+ pn−(r+1)k

[
n− rk − 1

k − 1

]
p,q

)
xn−(r+1)kyk

= px

⌊n/(r+1)⌋∑
k=0

p(
n−(r+1)k

2 )q(
k+1
2 )+m(k2)

[
n− rk − 1

k

]
p,q

(px)n−(r+1)k−1(qy)k
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+

⌊n/(r+1)⌋∑
k=0

p(
n+1−(r+1)k

2 )q(
k+1
2 )+m(k2)pn−(r+1)k

[
n− rk − 1

k − 1

]
p,q

xn−(r+1)kyk

= pxU(r)
n (px, qy, p, q,m) +

⌊n/(r+1)⌋∑
k=1

p(
n+1−(r+1)(k+1)

2 )q(
k+2
2 )+m(k+1

2 )pn−(r+1)(k+1)

×
[
n− r(k + 1)− 1

k

]
p,q

xn−(r+1)(k+1)yk+1

= pxU(r)
n (px, qy, p, q,m) + qy

⌊n/(r+1)⌋∑
k=1

p(
n−r−(r+1)k

2 )q(
k+1
2 )+m(k2)

×
[
n− r − 1− rk

k

]
p,q

(px)n−r−1−(r+1)k(qm+1y)k

= pxU(r)
n (px, qy, p, q,m) + qyU

(r)
n−r(px, q

m+1y, p, q,m).

Now we use Equation (3) to prove the second identity. We have

U
(r)
n+1(x, y, p, q,m)

=

⌊n/(r+1)⌋∑
k=0

p(
n+1−(r+1)k

2 )q(
k+1
2 )+m(k2)

×

(
pk
[
n− rk − 1

k

]
p,q

+ qn−(r+1)k

[
n− rk − 1

k − 1

]
p,q

)
xn−(r+1)kyk

= px

⌊n/(r+1)⌋∑
k=0

p(
n−(r+1)k

2 )q(
k+1
2 )+m(k2)

[
n− rk − 1

k

]
p,q

(px)n−(r+1)k−1(py)k

+

⌊n/(r+1)⌋∑
k=0

p(
n+1−(r+1)k

2 )q(
k+1
2 )+m(k2)qn−(r+1)k

[
n− rk − 1

k − 1

]
p,q

xn−(r+1)kyk,

= pxU(r)
n (px, py, p, q,m) +

⌊n/(r+1)⌋∑
k=1

p(
n+1−(r+1)(k+1)

2 )q(
k+2
2 )+m(k+1

2 )qn−(r+1)(k+1)

×
[
n− r(k + 1)− 1

k

]
p,q

xn−(r+1)(k+1)yk+1

= pxU(r)
n (px, py, p, q,m) + qy

⌊n/(r+1)⌋∑
k=1

p(
n−r−(r+1)k

2 )q(
k+1
2 )+m(k2)

×
[
n− r − 1− rk

k

]
p,q

(qx)n−r−1−(r+1)k(qm+1y)k

= pxU(r)
n (px, py, p, q,m) + qyU

(r)
n−r(qx, q

m+1y, p, q,m).
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Definition 2. Let r and s be positive integers such that 1 ≤ s ≤ r. For n ≥ 0, we

define the (p, q)-analogue of the r-Lucas polynomials of type s of the first kind and

the second kind, respectively, as follows:

V(r,s)
n (x, y, p, q,m) :=

⌊n/(r+1)⌋∑
k=0

p(
n−(r+1)k

2 )q(m+1)(k2)
[
n− rk

k

]
p,q

×
(
1 +

spn−(r+1)k[k]p,q
[n− rk]p,q

)
xn−(r+1)kyk

and

V(r,s)
n (x, y, p, q,m) :=

⌊n/(r+1)⌋∑
k=0

p(
n−(r+1)k

2 )q(
k+1
2 )+m(k2)

[
n− rk

k

]
p,q

× p−k

(
1 +

sq(n−(r+1)k)[k]p,q
[n− rk]p,q

)
xn−(r+1)kyk,

with V
(r,s)
0 (x, y, p, q,m) = V(r,s)

0 (x, y, p, q,m) = s+ 1.

Remark 1. Note that for p = 1, we obtain the q-analogue of the r-Lucas polynomial

of type s; see [1].

Let us now establish some links with the initial r-Fibonacci polynomial.

Theorem 3. For positive integers r and s, the polynomials V
(r,s)
n (x, y, p, q,m) and

V(r,s)
n (x, y, p, q,m) satisfy the following recursions:

1. ( Expression of V
(r,s)
n ’s in terms of U

(r)
n+1 and U

(r)
n−r without weight)

V(r,s)
n (x, y, p, q,m) = U

(r)
n+1(x/p, y/q, p, q,m) + syU

(r)
n−r(x, yq

m, p, q,m),

V(r,s)
n (x, y, p, q,m) = U

(r)
n+1(x/p, y/p, p, q,m) + sy(q/p)n−rU

(r)
n−r(x, yp

rqm−r, p, q,m);

2. ( Expression of V
(r,s)
n ’s in terms of U

(r)
n+1 and U

(r)
n weighted by s)

V(r,s)
n (x, y, p, q,m) = (s+ 1)U

(r)
n+1(x/p, y/q, p, q,m)− sxU(r)

n (x, y, p, q,m),

V(r,s)
n (x, y, p, q,m) = (s+ 1)U

(r)
n+1(x/p, y/p, p, q,m)− sxU(r)

n (x, y, p, q,m);

3. ( Expression of V
(r,s)
n ’s in terms of U

(r)
n and U

(r)
n−r)

V(r,s)
n (x, y, p, q,m) = xUn(x, y, p, q,m) + (1 + s)yUn−r(x, yq

m, p, q,m),

V(r,s)
n (x, y, p, q,m) = xU(r)

n (x, y, p, q,m) + (1 + s)(q/p)n−ryU
(r)
n−r(x, yp

rqm−r,m).
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Proof. We prove the first two relations. The other identities are proved in the same

way. We have

V(r,s)
n (x, y, p, q,m)

=

⌊n/(r+1)⌋∑
k=0

p(
n−(r+1)k

2 )q(
k
2)(m+1)

[
n− rk

k

]
p,q

xn−(r+1)kyk

+ s

⌊n/(r+1)⌋∑
k=0

p(
n−(r+1)k

2 )+(n−(r+1)k)q(
k
2)(m+1)

[
n− rk − 1

k − 1

]
p,q

xn−(r+1)kyk

=

⌊n/(r+1)⌋∑
k=0

p(
n+1−(r+1)k

2 )q(
k+1
2 )+m(k2)

[
n− rk

k

]
p,q

(x/p)n−(r+1)k(y/q)k

+ s

⌊n/(r+1)⌋∑
k=0

p(
n+1−(r+1)(k+1)

2 )q(
k+1
2 )(m+1)

[
n− r(k + 1)− 1

k

]
p,q

xn−(r+1)(k+1)yk+1

= U
(r)
n+1(x/p, y/q, p, q,m)

+ sy

⌊n/(r+1)⌋∑
k=0

p(
n−r−(r+1)k

2 )q(
k+1
2 )+m(k2)

[
n− r − 1− rk

k

]
p,q

xn−r−1−rk(qmy)k

= U
(r)
n+1(x/p, y/q, p, q,m) + syU

(r)
n−r(x, q

my, p, q,m).

For the second identity, we have

V(r,s)
n (x, y, p, q,m)

=

⌊n/(r+1)⌋∑
k=0

p(
n−(r+1)k

2 )q(
k+1
2 )+m(k2)p−k

[
n− rk

k

]
p,q

xn−(r+1)kyk

+ s

⌊n/(r+1)⌋∑
k=0

p(
n−(r+1)k

2 )q(
k+1
2 )+m(k2)p−kq(n−(r+1)k)

[
n− rk − 1

k − 1

]
p,q

xn−(r+)kyk

=

⌊n/(r+1)⌋∑
k=0

p(
n+1−(r+1)k

2 )q(
k+1
2 )+m(k2)

[
n− rk

k

]
p,q

(x/p)n−(r+1)k(y/p)k

+ s

⌊n/(r+1)⌋∑
k=0

p(
n−(r+1)k

2 )q(
k+1
2 )+m(k2)p−kq(n−(r+1)k)

[
n− rk − 1

k − 1

]
p,q

xn−(r+1)kyk

= U
(r)
n+1(x/p, y/p, p, q,m) + sy

⌊n/(r+1)⌋∑
k=0

p(
n−r−(r+1)k

2 )q(
k+1
2 )+m(k2)q(m−r)k+n−r

× p−n+r(k+1)

[
n− r(k + 1)− 1

k

]
p,q

xn−r−1−(r+1)kyk
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= U
(r)
n+1(x/p, y/p, p, q,m) + sy(q/p)n−r

⌊n/(r+1)⌋∑
k=0

p(
n−r−(r+1)k

2 )q(
k+1
2 )+m(k2)

×
[
n− r − 1− rk

k

]
p,q

xn−r−1−(r+1)k(prqm−ry)
k

= U
(r)
n+1(x/p, y/p, p, q,m) + sy(q/p)n−rU

(r)
n−r(x, yp

rqm−r, p, q,m).

Using the previous identities, we show that the (p, q)-analogue of the r-Lucas

polynomials of type s of the first and second kind satisfy the same recurrence re-

lations as the (p, q)-analogue of the r-Fibonacci polynomial given in Relations (4)

and (5).

Corollary 1. The (p, q)-analogue of the r-Lucas polynomial of type s of the first

and second kind satisfy the following recurrences, respectively:

V
(r,s)
n+1 (x, y, p, q,m) = pxV(r,s)

n (px, qy, p, q,m) + qyV
(r,s)
n−r (px, q

m+1y, p, q,m)

and

V(r,s)
n+1 (x, y, p, q,m) = pxV(r,s)

n (px, py, p, q,m) + qyV(r,s)
n−r (qx, q

m+1y, p, q,m),

with V
(r,s)
0 (x, y, p, q,m) = V(r,s)

0 (x, y, p, q,m) = s+ 1.

4. The Alternating Sum of Finite Terms of the r-Fibonacci Polynomial
and the Related Companion Sequences

To derive an explicit formula for the alternating sum of the r-Fibonacci polynomial

terms and its companion sequences, we introduce a new sequence ξ
(r)
n = mn−1U

(r)
n ,

where m is a positive integer. This sequence satisfies the recurrence relation

ξ
(r)
n+1 = mxξ(r)n +mr+1yξ

(r)
n−r,

with initial conditions ξ
(r)
0 = 0, ξ

(r)
k = (mx)k−1 (1 ≤ k ≤ r). Let Ar(x, y) be the

companion matrix of order (r + 1) associated with ξ
(r)
n :

Ar(x, y) :=



0 0 · · · 0 mr+1y
1 0 · · · 0 0

0 1
. . .

...
...

...
. . .

. . . 0 0
0 · · · 0 1 mx

 ,
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and its n-power

An
r (x, y) =


mr+1yξ

(r)
n−r yξ

(r)
n−r+1 · · · mr+1yξ

(r)
n−1 mr+1yξ

(r)
n

mr+1yξ
(r)
n−r−1 yξ

(r)
n−r · · · mr+1yξ

(r)
n−2 mr+1yξ

(r)
n−1

...
...

. . .
...

...

mr+1yξ
(r)
n−2r+1 yξ

(r)
n−2r+2 · · · mr+1yξ

(r)
n−r mr+1yξ

(r)
n−r+1

ξ
(r)
n−r+1 ξ

(r)
n−r+2 · · · ξ

(r)
n ξ

(r)
n+1

 .

Using a matrix approach, we compute S
(r)
n (m), the sum of the terms of the sequence

(ξ
(r)
n )n, given by

S(r)
n (m) =

n∑
j=1

ξ
(r)
j .

The following result is a generalization of Theorem 4 in [1]. The proof follows a

similar approach.

Theorem 4. Let S
(r)
n (m) be the sum of the first n terms of the sequence (ξ

(r)
k ), and

let P (t) = tr+1−mxtr−mr+1y be its characteristic polynomial such that P (1) ̸= 0.

Then

S(r)
n (m) =

1

1−mx−mr+1y
(1− ξ

(r)
n+1 −mr+1y

r∑
j=1

ξ
(r)
n−r+j). (6)

Corollary 2 ([1, Theorem 4]). The sum of the terms of (U
(r)
n (x, y))n is given by

S(r)
n (1) =

1

1− x− y
(1− U

(r)
n+1 − y

r∑
j=1

U
(r)
n−r+j).

Corollary 3. The alternating sum of the terms of (U
(r)
n (x, y))n is given by

S(r)
n (−1) =

1

1 + x+ (−1)ry
(1− (−1)nU

(r)
n+1 + (−1)ry

r∑
j=1

(−1)n−r+j−1U
(r)
n−r+j).

Example 1. For r = 1 and (x, y) = (1, 1), we obtain the alternating sum of

Fibonacci numbers (Fn)n≥0 (A000045 in the OEIS),

n∑
j=1

(−1)j−1Fj = 1− (−1)nFn−1.

Example 2. For r = 1 and (x, y) = (2, 1), the sequence (U
(r)
n ) reduces to the usual

Pell sequence (Pn)n≥0 (A000129 in the OEIS). We have

n∑
j=1

(−1)j−1Pj =
1

2
(1 + (−1)n−1(Pn+1 − Pn)).
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Example 3. For r = 2 and (x, y) = (1, 1), we obtain the 2-Fibonacci numbers

(Tn)n≥0 (A000930 in the OEIS), which satisfy the recursion Tn+1 = Tn+Tn−2 with

T0 = 0, T1 = T2 = 1. Then

n∑
j=1

Tj = (Tn+3 − 1) and

n∑
j=1

(−1)j−1Tj =
1

3
(1− (−1)n(Tn+1 + Tn−3)).

Now, we derive the expression for the sum of the terms of the companion se-

quences (η
(r,s)
n ) of (ξ

(r)
n ) defined by

S(r,s)
n (m) =

n∑
j=1

η
(r,s)
j =

n∑
j=1

mjV
(r,s)
j .

Theorem 5. Let S
(r,s)
n (m) be the sum of the first n terms of (η

(r,s)
k ), and let P (t) =

tr+1−mxtr−mr+1y be the corresponding characteristic polynomial such that P (1) ̸=
0. Then

S(r,s)
n (m) =

1

1−mx−mr+1y
(1 + smr+1y − η

(r,s)
n+1 −mr+1y

∑r

j=1
η
(r,s)
n−r+j)− 1.

Proof. According to Equation (1), the companion sequences (η
(r,s)
n ) satisfy the re-

lation

η(r,s)n = ξ
(r)
n+1 + smr+1yξ

(r)
n−r.

It follows that∑n

j=r
η
(r,s)
j =

∑n

j=r
(ξ

(r)
j+1 + smr+1yξ

(r)
j−r)

=
∑n+1

j=r+1
ξ
(r)
j + smr+1y

∑n−r

j=1
ξ
(r)
j

= S
(r)
n+1(m)−

∑r

j=1
ξ
(r)
j + smr+1yS

(r)
n−r(m).

Since
∑r

j=1 ξ
(r)
j =

∑r
j=1(mx)j−1 =

∑r−1
j=0(mx)j = 1 +

∑r−1
j=1 η

(r,s)
j , using Equation

(6), we obtain∑n

j=1
η
(r,s)
j + 1 =

1

1−mx−mr+1y
(1− ξ

(r)
n+2 −mr+1y

∑r
j=1 ξ

(r)
n−r+j+1)

+ sy
1

1−mx−mr+1y
(1− ξ

(r)
n−r+1 −mr+1y

∑r

j=1
ξ
(r)
n−2r+j)

=
1 + smr+1y − η

(r,s)
n+1 −mr+1y

∑r
j=1 η

(r,s)
n−r+j

1−mx−mr+1y
.
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Finally, we have

∑n

j=1
η
(r,s)
j =

1 + smr+1y − η
(r,s)
n+1 −mr+1y

∑r
j=1 η

(r,s)
n−r+j

1−mx−mr+1y
− 1.

Theorem 5 allows us to evaluate the alternating sum for the terms of the com-

panion sequences of the r-Fibonacci polynomial.

Corollary 4 ([1, Theorem 5]). For any integer n ≥ 1, we have

n∑
j=1

V
(r,s)
j = S(r,s)

n (1) =

1 + sy − V
(r,s)
n+1 − y

r∑
j=1

V
(r,s)
n−r+j

1− x− y
− 1.

Corollary 5. The alternating sum of the terms of (V
(r,s)
n (x, y))n is given by

n∑
j=1

(−1)jV
(r,s)
j =

1− (−1)rsy + (−1)nV
(r,s)
n+1 + (−1)ry

r∑
j=1

(−1)n−r+jV
(r,s)
n−r+j

1 + x+ (−1)ry
− 1.

Example 4. For (r, s) = (1, 1) and (x, y) = (1, 1), we obtain the finite alternating

sum of the Lucas numbers (A000032 in the OEIS), and

n∑
k=1

(−1)kLk = 1 + (−1)nLn−1.

Example 5. For (r, s) = (2, 1) and (x, y) = (1, 1), we obtain (T
(2,1)
n )n≥0, the

2-Fibonacci-Lucas numbers of type 1, and we have

n∑
k=1

T
(2,1)
k = T

(2,1)
n+3 − 3 and

n∑
k=1

(−1)kT
(2,1)
k =

1

3
((−1)n(T

(2,1)
n+1 + T

(2,1)
n−3 )− 1.

Example 6. For (r, s) = (2, 2) and (x, y) = (1, 1), we get (T
(2,2)
n )n≥0, the 2-

Fibonacci-Lucas numbers of type 2, and we find

n∑
k=1

T
(2,2)
k = T

(2,2)
n+3 −4 and

n∑
k=1

(−1)kT
(2,2)
k =

1

3
(−1+(−1)n(T

(2,1)
n+1 +T

(2,1)
n−3 )−1.
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5. Extension of the r-Fibonacci Polynomial to Negative r Values

Our purpose in this section is to expand the definition of the r-Fibonacci polynomial

to include negative values of r. We establish an explicit formula for the general term

of this extended polynomial sequence. Subsequently, we determine its generating

function and provide Binet-like formulae. We consider x and y to be invertible

elements within a commutative unitary ring A.

Definition 3. For any integer r ≥ 2, we define the (−r)-Fibonacci bivariate poly-

nomial sequence (U
(−r)
n (x, y))n by the following recursion:{

U
(−r)
0 = 0, U

(−r)
1 = 1, U

(−r)
2 = · · · = U

(−r)
r = 0,

U
(−r)
n+1 = y−1U

(−r)
n−r+1 − y−1xU

(−r)
n−r (n ≥ r).

(7)

Theorem 6. Let r be a nonnegative integer, and x, y two elements of a commutative

unitary ring A. We suppose that x and y are reversible in A. Then for n ≥ 1, we

have

U
(−r)
n+1 =

∑
k

(
k

n− rk

)
y−k(−x)n−rk,

or

U
(−r)
n+1 =

∑
k

(
(n− k)/r

k

)
y−(n−k)/r(−x)k.

The first sum is confined to integer values of k ranging from ⌊n/(r + 1)⌋ to ⌊n/r⌋.
The second sum is limited to integer k values between 0 and ⌊n/r⌋ such that r divides

(n− k).

Proof. Using Theorem 3 given in [4], we consider the sequence (U
(−r)
n )n given by

U
(−r)
n = y−1U

(−r)
n−r − y−1xU

(−r)
n−r−1 with a1 = a2 = · · · = ar−1 = 0, ar = y−1 and

ar+1 = −xy−1. Then, for n ≥ −r, we have

y(−r)
n =

∑
ri+(r+1)j=n

(
i+ j

j

)
(y−1)i(−xy−1)j =

∑
r(i+j)+j=n

(
i+ j

j

)
(y−1)i+j(−x)j .

Letting i+ j = k, we obtain

y(−r)
n =

⌊n/r⌋∑
k

(
k

n− rk

)
(−x)n−rk(y−1)k,

with initial conditions, U
(−r)
−j = 0 for 0 ≤ j ≤ r − 1, and U

(−r)
−r = −x−1y. On

the other hand, let (λj)0≤j≤r be the sequence defined by λj =
r−j∑
k=0

akU
(−r)
k+j , with
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a0 = −1. We have λj = 0 for 1 ≤ j ≤ r − 1, λ0 = x−1 and λr = −x−1y. The

sequence (U
(−r)
n )n can be expressed as

U (−r)
n =

r∑
j=0

λjy
(−r)
n+j = λ0y

(−r)
n + λry

(−r)
n+r =

⌊n/r⌋∑
k

(
k

n− 1− rk

)
(−x)n−1−rk(y−1)k.

Setting n− rk = k′, the second sum is easily obtained.

Remark 2. The companion matrix of the (−r)-Fibonacci sequence of order (r+1)

is given as follows:

Br(x, y) :=



0 0 · · · y−1 −xy−1

1 0 · · · 0 0

0 1
. . .

...
...

...
. . .

. . . 0 0
0 · · · 0 1 0

 .

By an inductive argument and using Equation (7), we get its nth power

Bn
r (x, y) =


U

(−r)
n+1 U

(−r)
n+2 · · · U

(−r)
n+r −xy−1U

(−r)
n

U
(−r)
n U

(−r)
n+1 · · · U

(−r)
n+r−1 −xy−1U

(−r)
n−1

...
...

. . .
...

...

U
(−r)
n−r+2 U

(−r)
n−r+3 · · · U

(−r)
n+1 −xy−1U

(−r)
n−r+1

U
(−r)
n−r+1 U

(−r)
n−r+2 · · · U

(−r)
n −xy−1U

(−r)
n−r

 .

The sequence (U
(−r)
n )n possesses combinatorial properties. It immediately follows

that

U
(−r)
n+m =

r−1∑
j=0

U
(−r)
n+j U

(−r)
m+1−j − xy−1U

(−r)
n−1 U

(−r)
m−r+1.

Setting n = m, we obtain

U
(−r)
2n =

r−1∑
j=0

U
(−r)
n+j U

(−r)
n+1−j − xy−1U

(−r)
n−1 U

(−r)
n−r+1.

Specifically, we find the following identity for Padovan numbers by entering r = 2

and (x, y) = (−1, 1),

P2n = 2PnPn+1 + (Pn−1)
2.

Now, we define the companion sequence associated with the (−r)-Fibonacci poly-

nomial.
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Definition 4. For any integer r ≥ 2, we define the companion sequence related to

(U
(−r)
n )n by the following recurrence relation:{

V
(−r)
0 = r + 1, V

(−r)
1 = · · · = V

(−r)
r−1 = 0, V

(−r)
r = ry−1,

V
(−r)
n+1 = y−1V

(−r)
n−r+1 − y−1xV

(−r)
n−r , (n ≥ r).

The (−r)-Fibonacci polynomial and its companion sequence satisfy a similar

identity to (1). The following proposition gives an explicit form for V
(−r)
n in terms

of r and U
(−r)
n .

Proposition 1. Let r ≥ 2 be an integer and x, y be reversible elements of a com-

mutative unitary ring A. For n ≥ r, we have

V (−r)
n = rU

(−r)
n+1 − xy−1U

(−r)
n−r . (8)

Proof. We consider the sequence (V
(−r)
n ) given by the recurrence relation

V (−r)
n = y−1V

(−r)
n−r − y−1xV

(−r)
n−r−1.

Applying Theorem 3 in [4], for a1 = a2 = · · · = ar−1 = 0, ar = y−1 and ar+1 =

−xy−1, we get V
(−r)
−j = (x−j) for 1 ≤ j ≤ r and V

(−r)
0 = r+ 1. Thus, the sequence

(λj)0≤j≤r becomes

λj = −
r−j∑
k=0

akV
(−r)
k+j ,

with a0 = −1. So, λ0 = r + 1− y−1(x−1)r and λj = x−j for 1 ≤ j ≤ r. Finally, we

get

V (−r)
n = λ0U

(−r)
n+1 + λ1U

(−r)
n+2 + · · ·+ λrU

(−r)
n+r+1

= rU
(−r)
n+1 + U

(−r)
n+1 − y−1U

(−r)
n−r+1

= rU
(−r)
n+1 − y−1xU

(−r)
n−r .

Theorem 7. For n ≥ 1, the sequence (V
(−r)
n )n≥1 satisfies the following two equiv-

alent identities:

V (−r)
n =

∑
k

n

n− rk

(
k − 1

n− 1− rk

)
y−k(−x)n−rk + ry−n/r[r | n]

or

V (−r)
n =

∑
k

n

k + 1

(
(n− 1− r − k)/r

k

)
y−(n−1−k)/r(−x)k+1 + ry−n/r[r | n],
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with V
(−r)
0 = r + 1 and [r | n] = 1 for r dividing n and [r | n] = 0 otherwise. The

first summuation is restricted to integers k ≥ 0 such that ⌊n/(r + 1)⌋ ≤ k ≤ ⌊n/r⌋;
the second summation is limited to integers 0 ≤ k ≤ ⌊n/(r + 1)⌋ − 1 for which r

divides (n− k − 1).

Proof. The proof is done using Equation (8) and Theorem 6.

We mention that for any integer r ≥ 2, the (−r)-Fibonacci polynomial (U
(−r)
n )n

and its companion sequence (V
(−r)
n )n are linked with some classical sequences.

There are many studies in the literature that concern the particular case (x, y) =

(−1, 1) that include Padovan numbers (Pn)n≥0 (A000931 in the OEIS) and Per-

rin (Padovan-Lucas) numbers (En)n≥0 (A001608 in the OEIS) for r = 2 (see for

instance, [13] and references therein). We also have the sequences (A127838 and

A050443 in the OEIS) for r = 3. In Table 1, we present a chart of these sequences

for the first values of r.

Name Sloane’s code First terms

U
(−2)
n A000931 0, 1, 0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16,. . .

U
(−3)
n A127838 0, 1, 0, 0, 1, 1, 0, 1, 2, 1, 1, 3, 3, 2, 4,. . .

U
(−4)
n A127839 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 1, 3,. . .

U
(−5)
n A127840 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 2, 1, 0,. . .

V
(−2)
n A001608 3, 0, 2, 3, 2, 5, 5, 7, 10, 12, 17, 22, 29, 39,. . .

V
(−3)
n A050443 4, 0, 0, 3, 4, 0, 3, 7, 4, 3, 10, 11, 7, 13, 21,. . .

V
(−4)
n A087935 5, 0, 0, 0, 4, 5, 0, 0, 4, 9, 5, 0, 4, 13, 14, 5, 4,. . .

V
(−5)
n A087936 6, 0, 0, 0, 0, 5, 6, 0, 0, 0, 5, 11, 6, 0, 0, 5,16,. . .

Table 1: The first terms of (U
(−r)
n )n and (V

(−r)
n )n.

The sequences (U
(−r)
n (x, y))n and (V

(−r)
n (x, y))n are called the r-generalized

Padovan and r-generalized Perrin numbers, respectively.

The generating functions of the (−r)-Fibonacci sequence and its companion se-

quence are given by the following theorem.

Theorem 8. For z ∈ C the generating functions of (U
(−r)
n )n≥0 and (V

(−r)
n )n≥0 are

given by

U(z) =
∑
n≥0

U
(−r)
n+1 z

n =
1

1− y−1zr + xy−1zr+1

and

V (z) =
∑
n≥0

V (−r)
n zn =

r + 1− y−1zr

1− y−1zr + xy−1zr+1
,

respectively.
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Proof. Let U(z) = U
(−r)
1 +U

(−r)
2 z +U

(−r)
3 z2 . . . ; then using Equation (7), we have

(1− y−1zr + xy−1zr+1)U(z) = U
(−r)
1 and U(z) =

1

1− y−1zr + xy−1zr+1
.

Finally, the expression of V (z) is obtained by Equation (8).

5.1. Binet Formulae

In this subsection, we give the Binet formula associated with the (−r)-Fibonacci

sequence and its companion sequence. We start with the following result.

Lemma 1. Let P (t) = tr+1 − y−1t + xy−1 be the characteristic polynomial of the

sequence (U
(−r)
n )n. We suppose that x ̸= ( r

r+1 )((r+1)y)−1/r. Then, the polynomial

P has no multiple zeros.

Proof. Suppose that P (t) = 0 has a multiple root β with β ̸= 0. Then, we have

P (β) = βr+1 − y−1β + xy−1 = 0 and P ′(β) = (r + 1)βr − y−1 = 0, so β = ( y
−1

r+1 )
1
r .

Hence P (β) = ( y
−1

r+1 )
r+1
r − y−1( y

−1

r+1 )
1
r + xy−1 = 0, which gives

x = (
r

r + 1
)((r + 1)y)

−1
r .

Theorem 9. Let β1, β2, . . . , βr+1 be the zeros of the characteristic polynomial as-

sociated with (U
(−r)
n )n≥0 such that x ̸= ( r

r+1 )((r + 1)y)−1/r. Then

U
(−r)
n+1 =

r+1∑
k=1

βn+r+1
k

rβr+1
k − xy−1

and V (−r)
n =

r+1∑
k=1

βn
k .

Proof. Let β1, β2, . . . , βr+1 be the eigenvalues of the matrix Br(x, y) and Mr(x, y)

be the Vandermonde matrix given as follows:

Mr(x, y) =



βr
1 βr

2 · · · βr
r+1

βr−1
1 βr−1

2 · · · βr−1
r+1

...
...

...
...

β1 β2

... βr+1

1 1 · · · 1

 .

The eigenvalues of the matrix Br(x, y) are all distinct if we suppose the discriminant

of the characteristic polynomial associated with (U
(−r)
n )n≥0 is different from zero,
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so the matrix Br(x, y) is diagonalizable and the relation Br(x, y) × Mr(x, y) =

Mr(x, y)×D is satisfied, where D = Diag(β1, β2, . . . , βr+1). Then,

M−1
r (x, y)×Bn

r (x, y)×Mr(x, y) = Dn.

Letting Br(x, y) = (bij), we have the following linear system of equations:
bi1β

r
1 + bi2β

r−1
1 + · · ·+ bi(r+1) = βn+r+1−i

1 ,

bi1β
r
2 + b12β

r−1
2 + · · ·+ bi(r+1) = βn+r+1−i

2 ,
...

bi1β
r
r+1 + bi2β

r−1
r+1 + · · ·+ bi(r+1) = βn+r+1−i

r+1 .

Thus, for each 1 ≤ i, j ≤ r we have

bij =
det(M

(j)
r (x, y))

det(Mr(x, y))
,

where (M j
r (x, y)) is the matrix obtained from (Mr(x, y)) by replacing the jth column

with the vector

M i
r(x, y) =


βn+r+1−i
1

βn+r+1−i
2

...
βn+r+1−i
r

 .

Setting i = j = 1, we get b11 = U
(−r)
n+1 =

det(M1
r (x, y))

det(Mr(x, y))
.

Finally, using Equation (8), we have

V (−r)
n = rU

(−r)
n+1 − xy−1U

(−r)
n−r

=

r+1∑
k=1

rβn+r+1
k − xy−1βn−r+r

k

rβr+1
k − xy−1

=

r+1∑
k=1

βn
k

rβr+1
k − xy−1

rβr+1
k − xy−1

=

r+1∑
k=1

βn
k .

Acknowledgments. The authors would like to thank the anonymous referee for

reviewing the work thoroughly. Also, we would like to thank Professor Atmane

Benmezai for their numerous helpful suggestions.



INTEGERS: 25 (2025) 20

References

[1] S. Abbad, H. Belbachir, and B. Benzaghou, Companion sequences associated to the r-
Fibonacci sequence: algebraic and combinatorial properties, Turkish J. Math 43 (2019), 1095-
1114.

[2] M. Ahmia and H. Belbachir, p, q-Analogue of a linear transformation preserving log-convexity,
Indian J. Pure Appl. Math 49 (2018), 549-557.

[3] A. Bazeniar, M. Ahmia, and H. Belbachir, Connection between bisnomial coefficients and
their analogs and symmetric functions, Turkish J. Math 42 (2018), 807-818.

[4] H. Belbachir and F. Bencherif, Linear recurrent sequences and powers of a square matrix,
Integers 6 (2006), #A12, 17 pp.

[5] H. Belbachir, A. Benmezai, and A. Bouyakoub, Generalized Carlitz’s approach for q-Fibonacci
and q-Lucas polynomials, submitted.

[6] A. Benmezai, Le Q-analogue des suites de Fibonacci et de Lucas, Ph.D. thesis, Oran 1 Uni-
versity, (2016).

[7] L. Carlitz, Fibonacci notes, 4: q-Fibonacci polynomials, The Fibonacci Quart 13 (1975),
97-102.

[8] L. Cerlienco, M. Mignotte, and F. Piras, Suites récurrentes linéaires, propriétés algébriques et
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