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Abstract

The aim of the present work is to provide some properties of the r-Fibonacci poly-
nomial and its companion sequences. We present the Binet forms for both cases:
distinct and multiple zeros of the characteristic polynomial. Then, we define their
(p, q)-analogues and present the alternating sums of their terms using a matrix
method. In addition, we extend the definition of the r-Fibonacci polynomial to in-
clude negative r values, we focus on the behavior of the resulting sequence, which is
a solution of a recurrence relation, and establish its relationship with the generalized
Padovan and Perrin numbers.

1. Introduction

The present paper is a continuation of our recent study [1] of the r-Fibonacci
polynomial and its companion sequences. In [12], Raab introduced the r-Fibonacci
bivariate polynomial sequence (U,Sr) (z,9))n by the following recursion:

{ Uér) =0, U,gr) =zl (1<k<r),

0 =0 4y, (n 2 ),

where r is a positive integer, and  and y are two variables. Abbad et al. [1] defined
a family of companion sequences (Vn(r’s))nzo indexed by s (1 < s <) as follows:
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VO(T’S) =541, Vk(r) =zF (1<k<r),
VY = avi™ gV (n > ).

The sequence (V,ST’S)) is called the r-Lucas polynomial of type s. The sequences
(V,S’”’s))n and (U,(f))n are linked, for n > r, by the following relation:

V) = Ul 4+ syUl?, (1)

For more details about the r-Fibonacci polynomial and its companion sequences,
see [1]. This paper is structured as follows. Section 2 presents the Binet formula
for the r-Fibonacci polynomial and its companion sequences. Section 3 introduces
(p, q)-analogues of these sequences. Section 4 employs a matrix method to evaluate
the alternating sum of the r-Fibonacci polynomial and its companion sequences.
Finally, the definition of the r-Fibonacci polynomial is extended to negative r values.

2. Binet Type Formulas

In this section, we present the Binet type formulas corresponding to the r-Fibonacci
sequence and to the companion r-Lucas sequences.

h
Let P(t) ="' —at" —y = [] (t — ;)" be the characteristic polynomial of the
j=1
sequences (U,Sr))nzo and (Vér’s))nzo, where oy, ..., ay, are the zeros of P and r; is

h
the multiplicity of a; for 1 < j < h such that ) r; = r + 1. Raab [12] showed
j=1

that o = ra/(r + 1) is a real multiple zero of P and that the greatest multiplicity
of any real zero is two. DeGua’s rule for identifying imaginary roots states that if
2m consecutive terms of an equation are missing, the equation has 2m imaginary
roots. Similarly, when 2m — 1 consecutive terms are missing, the equation has either
2m — 2 or 2m imaginary roots, depending on whether the two terms between which
the 2m —1 terms are missing have like or unlike signs. Consequently, we can deduce
that the polynomial P has at most three real zeros. This is due to the presence of
(r—1) consecutive missing terms in the expression of the linear recurrence relation,
which implies that at least (r — 2) of its zeros are imaginary. Additionally, « is
a multiple zero of P if and only if the discriminant of P equals zero, leading to
y = (—=1/r) (rz/(r +1))"t". As a result, the characteristic polynomial P can be
split in the following way:

P(t) = (t —ar)(t —ag) -+ (¢ = apya) iy # (=1/r) (rz/(r + 1)

P(t) = (t — a)2P(t) if y = (—1/r) (rz/(r + 1)) ", where P(a) # 0.



INTEGERS: 25 (2025) 3

Theorem 1. Let a1,qq,...,a,41 be the zeros of the characteristic polynomial
P(t) = t™ —xt” —y associated with (U,Sr))nzo and (Vér’s))nzo. Then for1 <s<r,
we have the following

(i) Ify # (=1/r) (ra/r + )",

() sy a?tt sy Doy — sz
T _ k -
Upl1= E —k  apnd VY g ak

— (r+1ay —rx Doy —ra’

(ii) If y = (—=1/r) (rz/r + 1),

~

n+r—1 P’ r+1 n+1
U = (e a2
P(a) P(a) ) wefanpa T Dok —r2
and
n+r—1 _ _ 5/
V() : (! S)—f—(r—&—f)— (r S)N(Ot)
P(a) " " " Pa)
r+1
n(s+ 1oy — sz
b3 aplt b
e o (r4+1ay —rx
Proof. (i) As noted in [8], the general term of the sequence (U,ST)),DO can be ex-

pressed as U7(1-21 Z bra}, where the by are rational numbers and the oy, are the

zeros of the charactenstlc polynomial. This system of equations can be solved using
Cramer’s rule and the Vandermonde determinant. To find the coefficients by, we
utilize the first (r 4 1) terms of the sequence (Uff)) and the symmetric functions of
the zeros of the characteristic polynomial. The result is:

by = Ve
(o —on)(op — 2) -+ (o — 1) (g — Qugey1) -+ - (Q — Qpg1)
_ oy,
[1 (ar —aj)

ik
On the other hand, we notice that
Pt) =t —at" —y = (t —a1)(t —ag) - (t — aps1).

Then for 1 < k <r+ 1, we have

P'(ag) = (r+1)ap —rzal ! = H(ak — ),
J#k
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which gives

aj, aj, o

(r+1)aj — rova) - af N+ Day, —rz)  (r+1)ag —raz’

b =

Thus
r+1 r+1 n+1

(T) — b Qp
Unta Z KOk = Z (7‘ + 1oy, —rx’

Now, we determine the Binet type formula for the sequence of polynomials
( ,ST’S))HZO. Using Equation (1), we have

Ve = ol 4 syulD,
r+1 n+1 r+1 n—r
_ jad. ol
Z (r4+ 1oy —rx +syz (r+1ag —rx
k=1 k=1
+1 a~ r r
— (r+1og —ra '

+1

Now, since y = a;" " — zay, it follows that

r+1 n_r r r
v =% ap (s + Dag 't — swaf) S ap (s +1)ay — sz

(r+ Doy —rx Fr+ 1oy —ra’

k=1 k=1

(ii) Assuming that P has a multiple zero (let a3 = as = «) and using the same
technique as in (i), we have

r+1 r+1
UL = beai = biaf +bsag + Y bray
k=1 k=3
L apt
(1 —a2)P(an) (a2 — a1)P(az)
+1 n+r
prt (ar —a1)(ak —a2) -+ (ak — ak—1) (o — arg1) - - (k — Arg1)
(a1 — a2)P(a1) (a1 — a2)P(as)  agge T Dok =12
_ 1 |:04?+T —apt (ﬁ(al) L) e = art!
Plan) a1 —az P(as) a1 — Qs = (r+ Dok —rx
_ 1 {a?*r —apt (73@) - ;(a2)> A I
P(an) a1 — a2 a1 — Qo Pla) ol (r+ Dok —rx
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To end the proof, let as tend to a; = a. For the companion sequences (VTET’S))”N),
ar+1 -
O

we apply Equation (1) with y = —

3. The (p, q)-Analogue of the r-Fibonacci Polynomial and Its Companion
Sequences

For p,q € R, the (p, g)-numbers are defined as:

Mlpg =" 40" 2q+" 2+ +p" P+ = pfl — Zn ,
[Mp,q! = [Up,q[2]pq - [p,q-
Also, we have
[M)pq = pn_k[k]nq + qk[n — klpq,
{n] _ [n]p,q!
k p.q [Klp.g!ln — Klp,q!
and n n—1 n—1
It W ®
n rln—1 nk|n—1
A I W ®

The theory of (p,q)-calculus has been studied by many mathematicians. Cor-
cino [11] studied the (p, ¢)-extension of the binomial coefficients and derived some
properties similar to those of ordinary and g-binomial coefficients. In [3], Bazeniar
et al. gave an interpretation of generalized binomial coefficients and their (p, q)-
analogue using a new type of symmetric function. According to Ahmia and Bel-
bachir [2], the log-convexity is preserved under the (p, ¢)-binomial transformation.
In this section, we propose the (p,q)-analogue of the r-Fibonacci polynomial and
its companion sequences associated with the unified approach of Cigler and Car-
litz [7, 10]. Belbachir et al. [5] introduced the generalized g-analogue of r-Fibonacci
polynomials U;Tll(z, m), which is a unified approach of those of Carlitz and Cigler
[7, 10]. They define

[n/(r+1)] it o — rk
U;TJ)rl(Z,m) = Z q( 2 )+m(2)[ ] 2*,
q
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with Uér)(z, m) = 0. These polynomials satisfy the following recurrence formulas:

Ug;)_l(z,m) = Uglr) (qz,m) + qZU(T) (qu+1,m)

n—r

and
Ug}rl(z, m) = U,(f)(z, m) + q”szU,(QT(zqm*T, m).

Also, Benmezai proposed the (p, ¢)-analogue of the r-Fibonacci polynomial associ-
ated with the Cigler approach [6]. Inspired by the (p, ¢)-binomial definition given
in [11], we propose the following definition for the (p,q)-analogue of r-Fibonacci
polynomials.

Definition 1. For all n > 0, the (p, ¢)-analogue of the r-Fibonacci polynomial is
defined as

- |n/(r+1)] (n+1—(r+l)k) (k+1)+m(k’) n—rk n—(r+1)k, k
UY) (z,y,p,q,m) := kZ:O pU 2 g 2 o y*,

i1

with Uér) =0 and U;-T) :p( 221 for 1 <j<r.

By setting p = 1, we derive some particular cases of the (p, ¢)-analogue of the
r-Fibonacci polynomial. This includes the g-analogue presented in [5] and the g-
analogue introduced by Cigler in [9], where 7 = 1 and m = 0.

Theorem 2. The (p, q)-analogue of the r-Fibonacci polynomials satisfy the follow-
ing recurrence formulas:

ULy (2,9, p,q.m) = pr U (p, gy, p, ¢.m) + qy U (pr, g™ ly.p,qom)  (4)
and

ULy (2,9, p,q.m) = pr U (pr, py. p.q,m) + qy U (g, "y, p.q,m). (5)
Proof. We use Equation (2) to prove the first identity. We have

UELTJ,)-l (xa ya p7 Q7 m)

Ln/(r+1)]
_ Z p(n+17y+1)k)q(k42r1)+m(12c)
k=0
X (q’c [n - Zc B 1} 4+ pn(r Dk [” _krkl_ 1] ) gDk
p,q p.q
[n/(r+1)]

- Z p("*(";rl)k)q(k;rl)_,'_m(l;) [n - 7‘“: - 1:| (px)n_(r+1)k—1(qy)k
k=0 P:q
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[n/(r+1)]
+ Z p(
k=0

n—rk—1
k—1

n+17gr+1)k) k«gl)_‘rm(g)

A

p7l—(7‘+1)]€ |:

] gDk b
p,q
[n/(r+1)]
= peUL) (pr,qy.p.q,m)+ > p
k=1

—rk+1)—1
y [n 7( k+ ) } =) (k1) k)
p,q

(n+17(7-;1)(k+1))q(k;2)+m(k;1)pn_(r+l)(k_,’_l)

Ln/ (1)
= peUQ (pz,qy.p qm) +ay Y pl
k=1

:| (px)n—r—l—(r-&-l)k(qm—&-ly)k
p,q

n77-7é7»+1)k)q(k42rl)+m(l2c)

n—r—1—rk
k

= pzU) (pz, qy, p, g, m) + qyU (pz, ¢y, p, ¢, m).

Now we use Equation (3) to prove the second identity. We have

ngrll(xa yvpa q) m)

[n/(r+1)] ey (e .
= Z p( 2 )q( 31)+m(3)
k=0
% <pk {n - rkk - 1} I L {n —krkl— 1} > G
pq P.q
/D) n—(r+1)k) (k41 Ky [n—1k—1
= px Z p( 2 )q( 2 )-‘rm(Q)[ L ] (pl,)n—(r—&-l)k—l(py)k
k=0 p.a
[n/(r+1)]
+ p(n+17ér+l)k)q(k;1)+m(g)qn—(T+1)k l:n —krk‘l— 1] x"‘“*”'“y’“,
k=0 X
[n/(r+1))
= U pr,py,pogm)+ Y pl ) () rm() grren (k)
k=1
y {n — T(k]:— 1) — 1] = (D (D) k1
X
[n/(r+1)]
= Uy, pam) +ay Y pl ()G
k=1

[n—T—l—rk
X

L :| (qx)n—r—l—(r—&-l)k(qm—&-ly)k
p.q

= peUD (pz, py, p, ¢, m) + qyU (g, ¢y, p,q,m).
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Definition 2. Let r and s be positive integers such that 1 < s <r. For n > 0, we
define the (p, ¢)-analogue of the r-Lucas polynomials of type s of the first kind and
the second kind, respectively, as follows:

ln/(r+1)]

V(s (z,y,p,q,m) = Z p(n—(vjl)k)q(m-i-l)(g) [n — rkz}
@ k
P Pq
« (1 4 ‘ka]wl) g Dk k
[n — V"k]p,q
and
/D] e e 0 [n—rk
VOO (@,y,pam) =y plT (B mG) [ }
k
k=0 e
« <1 n sq(n— (TR [k’]p,q> g T+ Dk k-
[Tl - rk]p,q

with V" (2, y,p,q,m) = V" (2, y,p,q,m) = 5 + 1.

Remark 1. Note that for p = 1, we obtain the g-analogue of the r-Lucas polynomial
of type s; see [1].

Let us now establish some links with the initial r-Fibonacci polynomial.

Theorem 3. For positive integers r and s, the polynomials ng’s)(x, Y, p,q, m) and
ng’s)(amy,p, q,m) satisfy the following recursions:

1. ( Ezpression of Vi) %5 in terms of Ugﬁrl and Ugflr without weight)

V& (2, y,p,q,m) = UL (2/p,y/a,p,asm) + syUL (x, g™, p, g, m),

V) (@, y,p,q,m) = UL (2/p,y /b, g,m) + sy(a/p)" UL, (2, yp" g™, p, g, m);
2. ( Expression of V) s i terms of Ug:ll and U weighted by s)
VU (@, y.p.q,m) = (s 4+ DU (0/p.y/a,p,a,m) — 52U (@,y.p.q,m),
VO (@, y,p,q,m) = (s + 1)UL (2/p,y/p,p.g,m) — seUL (2, y,p, ¢, m);

3. ( Expression of V") 5s in terms of UL and U;T_)T)

Vi (@,y,p,q,m) = 2Un(2,y,p,¢,m) + (1+ 5)yUn (2, y4™, p, ¢, m),

V) (2, y,p,q,m) = 20U (2, 9,0, 0,m) + (14 8)(q/p)" "y U (2, yp g™ " m).
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Proof. We prove the first two relations. The other identities are proved in the same
way. We have

V) (2, y,p,q,m)

Ln/(r+1)] i
_ Z p("—(7"2+1)k)q(’;)(m+1) {n—r } xnf(rJrl)kyk
k=0 LI P
[n/(r+1)] - . k1
+s Z p("“’;+ )')+(n*(r+1)k)q(é)(m+1) n—rk— g (T Dk
k-1
k=0 Pq
n/ it 1] nt+1l—(r+1)k k41 n|n —rk
= X IO ek
k=0 k Pq
[n/(r+1)]
s Z p(n+1*(r;l)(k+l))q(k‘;1)(m+l) [n —r(k+1)— 1} g (D (kD) e
k
k=0 p,q
= UgLT—i)-l(x/p7 y/Q7p7 q, m)
[n/(r+1)] s (e w1k
+sy 3 ol Hm@[ ] gt TR gy
k=0 k p,q

= UYL (2/p,y/a,p.q.m) + syUL (z,q™y.p, ¢ m).
For the second identity, we have

V) (2, y, p, g, m)

Ln/(r+1)] ey ks . ok
S p<"-<z+>>q<;>+m<2>pk[n ] 2=k
k=0 k p,q

/) n—(r+1)k\ (k+1 k n—rk—1
+ s Z p( 2 )L]( 2 )+m(2)p7kq(n7(r+1)k) |: b—1 :l xnf(r+)kyk
k=0 p,q
[n/(r+1)] (n+17(r+1)k) (k+1)+m(k) n—rk —(r1)k &
=30 TTETILE O T (e
k=0 p,q

)

3

Ln/(r+1)J n—(r+1)k k+1 k n — ’I“k —1
+s > PG () +m(8) =k (= (1)) [ } =Dk
p,q

k=0 - |
. [n/(r+1)] n—r—(r41)k\ (k41 k
_ Un+1 (.’L‘/p, y/p,p7 q, m) + sy E p( 2 )Q( 2 )+m(2)q(m—r)k+n—r
k=0

xXp

—n+r(k+1) |:TL - ’/‘(k + 1) - 1:| xn—r—l—(r—‘—l)k k
k
p,q

)
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[n/(r+1)]
r n—r n—r—(r+1)k k+1 m k
u') (/p,y/p,p,a,m) + sy(a/p) > pl" ) ()4 ()
k=0

—r—1—1k
[n r ] 7":| xn_r_1_(r+1)k(prqm—ry)
P,q

k

n—rU(T)

= Uiﬁ)rl (z/p,y/p,p,q,m) + sy(q/p) nlr (T yp g™ " p, g, m).

O

Using the previous identities, we show that the (p, ¢)-analogue of the r-Lucas
polynomials of type s of the first and second kind satisfy the same recurrence re-
lations as the (p, ¢)-analogue of the r-Fibonacci polynomial given in Relations (4)
and (5).

Corollary 1. The (p,q)-analogue of the r-Lucas polynomial of type s of the first
and second kind satisfy the following recurrences, respectively:

VS (@, y,p,q,m) = prV ) (p, qu, p, ¢, m) + gV (pr, ¢y, p, g, m)

and
V) (@, y,p, ¢, m) = pxVE (pr, py, p, g, m) + qyV ) (g, ¢y, p, g, m),

with V" (&, y,p,q,m) = V& (2,y,p,q¢,m) = s + 1.

4. The Alternating Sum of Finite Terms of the r-Fibonacci Polynomial
and the Related Companion Sequences

To derive an explicit formula for the alternating sum of the r-Fibonacci polynomial
terms and its companion sequences, we introduce a new sequence £ = m»—1U{",
where m is a positive integer. This sequence satisfies the recurrence relation

&l = maeD +mr iyl

with initial conditions §ér) = 0,5,(:) = (mx)*~! (1 < k <r). Let A.(x,y) be the

companion matrix of order (r + 1) associated with &(J):

0 0 --- 0 mtly

1 0 --- 0 0
Ap(zyy):=1 0 1 . ,

: 0 0
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and its n-power

L N e s
T—Hyfn - §(T) L mTHyf,(:_)Q r+1y€n )
A?(CL‘, y) = .
mr+ly€7(;_)2r+1 yg?%mu,_g e mr+1(y)§,(f_)7. T+1y§n il
gnr—r-i-l gn’r—r—&-Q T fnr €n+1

Using a matrix approach, we compute ST(LT) (m), the sum of the terms of the sequence
(&), given by
S (m) =€
j=1
The following result is a generalization of Theorem 4 in [1]. The proof follows a
similar approach.

Theorem 4. Let ST(LT)(m) be the sum of the first n terms of the sequence ( ,(:)), and
let P(t) = t" Tt —mat” —m" 1y be its characteristic polynomial such that P(1) # 0.
Then

r 1 ) r1 (r)
S M) = iy~ e *yZﬁn ®

Corollary 2 ([1, Theorem 4)). The sum of the terms of (Uyn )(:r Y))n 1S given by

1 r T
1 - Ur(z+)1 Z U’r’(L )T+J

Si(1) = J—

Corollary 3. The alternating sum of the terms of (U,(LT) (x,y))n is given by

T

(1— (1)U, + (~1)y S (D,

j=1

1
S l4z+(=D)ry

Example 1. For r = 1 and (z,y) = (1,1), we obtain the alternating sum of
Fibonacci numbers (F},)n>0 (A000045 in the OEIS),

i(w’le =1—(-1D)"F,_;.

Example 2. For r = 1 and (z,y) = (2, 1), the sequence (Ur(f)) reduces to the usual
Pell sequence (P,),>0 (A000129 in the OEIS). We have

S = S (1) (Pt — o))

j=1



INTEGERS: 25 (2025) 12

Example 3. For r = 2 and (x,y) = (1,1), we obtain the 2-Fibonacci numbers
(Th)n>0 (A000930 in the OEIS), which satisfy the recursion T},41 = T}, +T,,—2 with
TO == O,Tl = T2 = 1. Then

n n

STy =(Tus—1) and Y (1T = 21— (<) (T + Tos))
j=1

Jj=1

Now, we derive the expression for the sum of the terms of the companion se-
quences (1, (r ’S)) of ( ff)) defined by

S(r 5) ZT](T ,8) ijv(rs

Theorem 5. Let ST(LT’S)(m) be the sum of the first n terms of (77,(;"’8)), and let P(t) =
t Tt —mat” —m" 1y be the corresponding characteristic polynomial such that P(1) #
0. Then

7,8 1 T8 r T8
S (m) = 1_mx_mr+1y(1+sm Ly — ) — +1yZ nfl 7,)+j 1.

Proof. According to Equation (1), the companion sequences (7 é )) satisfy the re-

lation

) = 0+ smr Ty

It follows that
ijrn§7',s) - Zj:r(fj(’:-)l”LsmrHng(‘?r)
n+1 n— r r
= ZJ r+1 —|—8m yzj .

= Sihm) - ijl & + smr+lys£2T<m>.

Since >0, §j(-T) =g (ma) Tt = Z;;é(mI)J =147 nj(r’s), using Equation
(6), we obtain

n () _ 1 (r) r1, 5 ()
ijl ny o+l = 1 — mz — mr+1y(1 —&pfa—m ij:1 £n7r+j+1)

1 (r)
+ Sy]. — i — m»,quy(l €n r+1 yz n 2T+]

1+ smly — () —mrtly S0 nff s,)ﬂ
1—mz —mrtly
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Finally, we have

Zn (',',,73) 1 + SmT-Hy 77( - T+1y Z] 1 nnr 57“)+J

-1
j=1" 1—mz—mrtly

O

Theorem 5 allows us to evaluate the alternating sum for the terms of the com-
panion sequences of the r-Fibonacci polynomial.

Corollary 4 ([1, Theorem 5]). For any integer n > 1, we have

SV = s -
j=1

l—z—y

(T’,S)(

Corollary 5. The alternating sum of the terms of (Vp"'”’ (z,y))n is given by

T

n . 1— (=1)"sy + (~1)"V,5) + (~1 D"y X (-1 rHiyine
—1)vin) = = —1.
2 (WY, L+a4(=1)ry

j=1

Example 4. For (r,s) = (1,1) and (x,y) = (1,1), we obtain the finite alternating
sum of the Lucas numbers (A000032 in the OEIS), and

En:(—l)kLk =14 (=1)"Lp_;.
k=1

Example 5. For (r,s) = (2,1) and (z,y) = (1,1), we obtain (T,Sz’l))nzo, the
2-Fibonacci-Lucas numbers of type 1, and we have

- 2,1) 2,1 " 2,1 1 n (2,1 2,1
STV =Tk =3 and YDA = (()MTE + ) -1
k=1

Example 6. For (r,s) = (2,2) and (z,y) = (1,1), we get (T7(z2’2))n207 the 2-
Fibonacci-Lucas numbers of type 2, and we find

n n
2,2) 2,2 22) 1 (2,1 2,
ST =13 4 and Y (-1 >=§(—1+(—1) T+ -1
k=1
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5. Extension of the r-Fibonacci Polynomial to Negative r Values

Our purpose in this section is to expand the definition of the r-Fibonacci polynomial
to include negative values of r. We establish an explicit formula for the general term
of this extended polynomial sequence. Subsequently, we determine its generating
function and provide Binet-like formulae. We consider = and y to be invertible
elements within a commutative unitary ring A.

Definition 3. For any integer r > 2, we define the (—r)-Fibonacci bivariate poly-
nomial sequence (U,(L_r) (z,9))n by the following recursion:

{ Uy =0, 0" =1, 057 == U =0, (7)

Uy =y U —y et (0> ).

n

Theorem 6. Letr be a nonnegative integer, and x,y two elements of a commutative
unitary ring A. We suppose that x and y are reversible in A. Then for n > 1, we

have L
o =Y ()t
k
or

k

The first sum is confined to integer values of k ranging from |n/(r +1)] to |n/r].
The second sum is limited to integer k values between 0 and |n/r| such thatr divides
(n—k).

Proof. Using Theorem 3 given in [4], we consider the sequence (UT(L_T))n given by

-1

Ur(L_T) = yilU,(i::) - y’lef;rfl with ay = a2 =---=a,_1 =0, a, =y~ and

s
a,y1 = —xy~ L. Then, for n > —r, we have

. i3\, a1y S AU
w= X (eveary- X0 (e,

rit+(r+1)j=n / r(i+j)+j=n J
Letting ¢ + j = k, we obtain

y(—r) _ an/SJ k (_x)n—rk(y—l)k
" n—rk ’

k
with initial conditions, U(;r) =0for0<j<r—1,and UST) = —2"'y. On

r—j
the other hand, let (A;)o<;j<, be the sequence defined by \; = > akUéj_;), with
k=0
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ap = —1. Wehave \; =0for 1 <j<r—1, N = =" and A\, = —z~'y. The

sequence (U,(L_r))n can be expressed as

r [n/r]
-r -r - -r k n—1—r -
U =30 = a0l A = Y <n_ ) _rk)(—w) PRy TR
j=0 k

Setting n — rk = k’, the second sum is easily obtained. O

Remark 2. The companion matrix of the (—r)-Fibonacci sequence of order (r+ 1)
is given as follows:

-1 1

0 O Y —zy~

1 0 0 0
B.(z,y):=] 0 1

O 0

o --- 0 1 0

By an inductive argument and using Equation (7), we get its nth power

vy Uy e vl eyl

L T O
Biwy)=| SRR :

Uy o Upg o UGy —ay 0,70

Ur(;:)ﬂ Uf;:)ﬁ ooyl _xyilUfl:TT)

The sequence (Ufl_r))n possesses combinatorial properties. It immediately follows
that

r—1
U = SOV — e U
j=0
Setting n = m, we obtain

r—1
Uz(rjr) = Z Uﬁl? U’I'(L;’,i)fj - xy_lUﬁ;Tl) Uf;f«)ﬂ-
j=0
Specifically, we find the following identity for Padovan numbers by entering r = 2
and (z,y) = (—1,1),
Py, = 2PnPn+l + (Pn—l)z-

Now, we define the companion sequence associated with the (—r)-Fibonacci poly-
nomial.
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Definition 4. For any integer r > 2, we define the companion sequence related to
(U,(L_T))n by the following recurrence relation:

n T

VO(_T) =4+ 1’ Vl(_r) — — V(_T) — 0’ Vr(_T) — Tyil,
Vﬁ?=y*Wﬁﬁ4—y4xW7ﬁ(nZT)

The (—r)-Fibonacci polynomial and its companion sequence satisfy a similar
identity to (1). The following proposition gives an explicit form for V,g_T) in terms
of r and U,S_r).

Proposition 1. Let r > 2 be an integer and x,y be reversible elements of a com-
mutative unitary ring A. For n > r, we have

Vi = rUT(L:i) —ay U, (8)

Proof. We consider the sequence (V,E_r)) given by the recurrence relation
Vi =y VT -y ey T
-1

Applying Theorem 3 in [4], for a; = ay =+ =a,—1 =0,a, =y

—xy~!, we get V_(;T) = (x77) for 1 <j <7 and VO(_T) =1+ 1. Thus, the sequence

(A\j)o<j<r becomes

and a,41 =

r—j
- aVi),
k=0
with ag = —1. So, Ao =r+1—y~Y(z71)" and \; = 277 for 1 < j < r. Finally, we
get
(-r)  _ (=) (= (=r)
v = XUy Y + MU DA +Unrin
= U U - ‘1U£ i
= TU,(;;) - yile,(L:Z).
O

Theorem 7. Forn > 1, the sequence (V,S””))nzl satisfies the following two equiv-
alent identities:

k—1
V(—T") — n —k(_ \n—rk n/r
n % il )y R T Ay | ]

or

V(T:§:

-k
( n r )/7“) T S Sy
!

k
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with Vo(fr) =r+1and[r|n] =1 forr dividing n and [r | n] =0 otherwise. The
first summuation is restricted to integers k > 0 such that |[n/(r+1)] <k < |n/r|;
the second summation is limited to integers 0 < k < |[n/(r+1)] — 1 for which r
divides (n — k — 1).

Proof. The proof is done using Equation (8) and Theorem 6. O

We mention that for any integer r > 2, the (—r)-Fibonacci polynomial (U,(L_T))n
and its companion sequence (Vn(’”)n are linked with some classical sequences.
There are many studies in the literature that concern the particular case (z,y) =
(—1,1) that include Padovan numbers (P,),>0 (A000931 in the OEIS) and Per-
rin (Padovan-Lucas) numbers (E,),>0 (A001608 in the OEIS) for r = 2 (see for
instance, [13] and references therein). We also have the sequences (A127838 and
A050443 in the OEIS) for » = 3. In Table 1, we present a chart of these sequences
for the first values of r.

Name | Sloane’s code First terms

Ui | A000931 0,1,0,1,1,1,2,2,3,4,5, 7,9, 12, 16,...

US| A127838 0,1,0,0,1,1,0,1,2,1, 1, 3,3, 2, 4,...
Y A127839 0,1,0,0,0,1,1,0,0,1,2,1,0, 1, 3,...

Ul | A127840 0,1,0,0,0,0,1,1,0,0,0,1,2, 1, 0,...

v | A001608 3,0,2, 3,25, 5,7, 10, 12, 17, 22, 29, 39,...
(=3 | A050443 4,0,0,3,4,0,3,7,4,3,10, 11, 7, 13, 21,...
=D | A087935 | 5,0,0,0,4,5,0,0,4,9,5, 0,4, 13, 14, 5, 4,...

v | A087936 6,0,0,0,0,56,0,0,0,5, 11, 6,0, 0, 5,16,.. .

Table 1: The first terms of (U,(L_T))n and (Vé_r))n.

The sequences (Uy(,_r) (z,y))n and (Vn(_r) (z,y))n are called the r-generalized
Padovan and r-generalized Perrin numbers, respectively.

The generating functions of the (—r)-Fibonacci sequence and its companion se-
quence are given by the following theorem.

Theorem 8. For z € C the generating functions of (U,(L_r))nzo and (V,f‘”)nzo are

given by
— (=7) n _ 1
U(z) = n§>0: ntl # = T Y127+ ay—lor+l

and
r+1— y‘lzr
1—ylzr 4 py—1z7+1’

Viz)= 3 v =

n>0

respectively.
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Proof. Let U(z) = U™ + US™ 2+ US ™22 .. then using Equation (7), we have

1
1— y—lzr + xy—lz'r+1 :

(1—y 2" +ay 2" ™HU(2) = Ul(_r) and U(z) =
Finally, the expression of V(z) is obtained by Equation (8). O

5.1. Binet Formulae

In this subsection, we give the Binet formula associated with the (—r)-Fibonacci
sequence and its companion sequence. We start with the following result.

Lemma 1. Let P(t) = "t —y=Y + zy~! be the characteristic polynomial of the
sequence (Ur(l_r))n. We suppose that x # (17)((r+ 1)y)~Y/". Then, the polynomial
P has no multiple zeros.

Proof. Suppose that P(t) = 0 has a multiple root S with 8 # 0. Then, we have
1,

PB)=p"" -y 'B+ay t =0and P'(B) = (r+1)8" —y ' =0,50 8= (&7)7.

Hence P(83) = (%)%1 — y_l(ffrl)% +ay~! = 0, which gives

z=(—)((r+1)y)7.

r
r+1
O

Theorem 9. Let 31,5, ...,Br4+1 be the zeros of the characteristic polynomial as-
sociated with (U,(fr))nzo such that x # (;57)((r + Dy)~ /7. Then

r4+1 ﬂn+7~+1 r+1
_ "k

(=r) _ -r) _ n
UnH*erH_ and v )726,«
k=1

—1
k=1 k Ty

Proof. Let (1, B2,...,Brt1 be the eigenvalues of the matrix B, (z,y) and M, (z,y)
be the Vandermonde matrix given as follows:

BT By o Bra
r—1 r—1 L. r—1
1 2 1

M. (2, ) = ) ) ) ]
B1 Bo © B
1 1 .1

The eigenvalues of the matrix B, (z,y) are all distinct if we suppose the discriminant
of the characteristic polynomial associated with (Ur(fr))nzo is different from zero,



INTEGERS: 25 (2025) 19

so the matrix B,(z,y) is diagonalizable and the relation B,.(z,y) x M,(z,y) =
M, (z,y) x D is satisfied, where D = Diag(B1, P2, ..., Br+1). Then,

M71

(z,y) x B! (z,y) x My(z,y) = D".
Letting B, (z,y) = (b;;), we have the following linear system of equations:

b1 B1 + biZﬁI_i “+ biry1) = 5n+r+11 ‘
bin By +b12f5 " + -+ bz(r—i—l) =gyt Z,

bt By + bioBlit + o+ by = BT
Thus, for each 1 < 4,7 < r we have

det(M (2, y))
det(M,(z,y)) ’
o

where (M (z,y)) is the matrix obtained from (M,
with the vector

bi; =

x,7)) by replacing the j** column

Bn+r+1 7
BnJrrJrl 7
M;(z,y) =
6n+r+1 7
: det(M}(x
Setti =j=1, t by =U ") = 7.
etting 1= ] we ge 11 = Upg det( ( y))
Finally, using Equation (8), we have
Vi = Ul - *lvf;?
r+1 n+r+1l . —1gn—r+r
- Y LWA
Pt T+ :L‘y_l
r+1 7‘+1 -1
— 2y
= Z/Bk r+1
Ty~
r+1

— Zﬁ;g.
k=1
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