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Abstract

We provide evidence for a conjecture of Yamamura that the truncated logarithmic
polynomials

Fn(x) = 1 + x+
x2

2
+ · · ·+ xn

n

have Galois group Sn for all n ≥ 1.

1. Introduction

A pioneering result of Schur [11] asserts that the truncated exponential polynomials,

1 + x+
x2

2!
+ · · ·+ xn

n!
,

are irreducible over Q with Galois group An (if 4 | n) or Sn (otherwise). What

can be said about the Galois groups of rational polynomials arising from series

truncations of other interesting functions?

Motivated by Schur’s work, in [12] the authors consider the irreducibility and

Galois properties of the polynomials

Fn(x) = 1 + x+
x2

2
+ · · ·+ xn

n
.

These polynomials arise as the truncated Maclaurin polynomials of the functions

F (x) = 1− log(1− x). A main result of [12] is that GalQ(Fn) ≃ Sn for any n ≥ 12

with n ̸≡ 1 mod 4 and for any prime value of n ≡ 1 mod 4 (cf. [12, Theorem 3.1]).
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This work, together with numerical computations at small values of n, prompted

Yamamura [13] to conjecture the following.

Conjecture 1 (Yamamura). For all n ≥ 1, we have GalQ(Fn) ≃ Sn.

In this article, we offer:

• (Theorem 3) A proof of Yamamura’s conjecture for infinitely many composite

integers n ≡ 1 mod 4, thereby extending the results of [12].

• (Proposition 1) A short proof – different from that of [12] – of Yamamura’s

conjecture in the case n ̸≡ 1 mod 4.

• (Sections 2 and 5) Commentary on why one might expect a full proof in the

case n ̸≡ 1 mod 4 to be difficult.

By a Newton polygon argument in [12], the Fn are irreducible over Q with

GalQ(Fn) ⊇ An for all n ≥ 1. Thus, Yamamura’s conjecture amounts to proving

that the discriminant of Fn is not a rational square once n > 1. Let us now set

some notation.

The discriminant of a univariate polynomial P (x) of degree n and leading coef-

ficient an is given by

disc(P ) = (−1)(
n
2)a−1

n Res(P, P ′). (1)

Computing the derivative

F ′
n(x) = 1 + x+ x2 + · · ·+ xn−1,

whose roots are the nontrivial n-th roots of unity, the discriminant we seek is there-

fore

disc(Fn) = (−1)(
n
2)n

∏
{θ:F ′

n(θ)=0}

Fn(θ). (2)

Let Ln = lcm{1, 2, . . . , n}. Then

Fn(x) =
F̃n(x)

Ln
,

where F̃n(x) is a polynomial with integer coefficients. The relations

θn = 1 and 1 + θ + θ2 + · · ·+ θn−1 = 0

hold when θ is an n-th root of unity, which allow us to simplify F̃n(θ); we have

F̃n(θ) =

n−2∑
k=0

akθ
k where ak =

{
Ln + Ln

n − Ln

n−1 if k = 0
Ln

k − Ln

n−1 if k > 0.
(3)



INTEGERS: 25 (2025) 3

Replacing Fn(θ) with F̃n(θ)/Ln in Equation (2) yields the following expression

for the discriminant of Fn(x):

disc(Fn) = (−1)(
n
2) n

Ln−1
n

∏
{θ:F ′

n(θ)=0}

F̃n(θ). (4)

Note that the product

Pn :=
∏

{θ:F ′
n(θ)=0}

F̃n(θ) (5)

is an integer. As we will see below, the main difficulty in proving Yamamura’s con-

jecture is understanding the prime factorization of Pn. We pause for an illustrative

example.

Example 1. Let n = 9. Then we compute

disc(F9) =
9

L8
9

∏
{θ:F ′

9(θ)=0}

F̃9(θ) =

(
3

212385474

)2

P9,

hence disc(F9) is a rational square if and only if P9 is. In this case, we compute

P9 = 1531 · 3137311 · 113564970051005791,

and these prime factors do not appear to be predictable a priori.

The above example illustrates the main difficulty in proving disc(Fn) ̸∈ Q×2

when n is a square: the factor Pn is typically not divisible by primes dividing n,

so we cannot use “small” primes to our advantage. And, additionally, the prime

divisors of Pn may be quite difficult or impossible to characterize.

In [12] the authors show that if n ≡ 0, 2, 3 (mod 4), then disc(Fn) ̸∈ Q×2. They

then prove that if n ≡ 1 (mod 4) and n is prime, then disc(Fn) ̸∈ Q×2. In some

cases we give independent, streamlined proofs of these discriminant results, as well

as some mild generalizations, as follows.

Theorem 1. If n ≡ 0, 2, 3 (mod 4), or if n ≡ 1 (mod 4) and is the odd power of a

prime, then disc(Fn) ̸∈ Q×2.

Regarding the prime divisors of Pn, we can say the following as a generalization

of Example 1.

Theorem 2. If n = p2e for an odd prime p and a positive integer e, then Pn is

coprime to p.

However, the main contribution of this paper is to give substantially new infinite

families of integers n ≡ 1 (mod 4) for which disc(Fn) is not a rational square.
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Theorem 3. Let m be a positive integer. For all but finitely many primes q, if

mq ≡ 1 (mod 4) then disc(Fmq) ̸∈ Q×2.

Remark 1. For each integer m one can explicitly compute the finite set of primes

for which the above theorem does not apply. It is then a matter of computation to

check that disc(Fn) ̸∈ Q×2 for each of these exceptional primes. We give examples

to demonstrate this in the final section of this article.

Before proving our results, we briefly survey the calculation of discriminants for

number-theoretic purposes.

2. Commentary on Discriminants, Resultants, and Arithmetic

The systematic study of the algebraic properties of families of orthogonal polyno-

mials appears to originate in two papers of Holt [6, 7], in which he studies the

irreducibility of certain Legendre polynomials. Holt’s methods were generalized

significantly by Ille and Schur [11], leading to extensive studies of the irreducibility

and Galois theory of many families of hypergeometric polynomials (e.g., Jacobi, La-

guerre, Chebyshev, Hermite). Assuming irreducibility, there are Newton Polygon

methods that will allow one to prove that the Galois group contains An. Deciding

whether or not the Galois group is all of Sn is then a matter of determining when

the discriminant is a rational square.

The applications of orthogonal polynomials to arithmetic go beyond computa-

tional Galois theory. In particular, if ssp(t) ∈ Fp[t] denotes the supersingular poly-

nomial (whose roots are the supersingular j-invariants of elliptic curves over Fp),

then ssp(t) is the reduction modulo p of a certain Jacobi polynomial. For more

background and for other interesting lifts of ssp(t) to Q, see [8, 10]. A conjecture

of Mahburg and Ono [9] states that the “Jacobi lifts” are irreducible with maximal

Galois group, and in [5] we gave evidence for this conjecture using many of the

techniques originally described by Schur.

In the case of the classical families of orthogonal polynomials, the discriminants

tend to have nice expressions. A prototypical example is the case of the truncated

exponential polynomials

en(x) =

n∑
j=0

xj

j!
,

whose discriminants are given by disc(en) = (−1)(
n
2) (n!)

n
. This formula is a key

feature of Coleman’s proof that GalQ (en) always contains An and equals Sn if and

only if 4 ∤ n [2]. We note that if

L(α)
n (x) =

n∑
i=0

(−1)i
(
n+ α

n− i

)
xi

i!
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denotes the nth Generalized Laguerre Polynomial (GLP), then en(x) = L
(−1−n)
n (x).

Ultimately, the reason that certain hypergeometric polynomials (including all

of the ones mentioned above) have such tidy discriminant formulas is that they

satisfy a Sturm-Liouville differential equation, relating the derivative of a member

of the family to another member, and that the polynomials solve certain recurrence

relations; for example, in the case of the GLP we have

d

dx
L(α)
n (x) = −L

(α+1)
n−1 (x).

The recurrence relations, together with the differential equations, typically allow for

explicit discriminant formulas, via Equation (1), which are amenable to arithmetic

study.

This is not the case with the truncated logarithmic polynomials Fn(x) – the

derivative of Fn(x) does not belong to the same family (as in the case of the clas-

sical orthogonal polynomials). However, the roots of F ′
n(x) are the nontrivial n-th

roots of unity, hence are independently equipped with a good deal of algebraic and

arithmetic symmetry. Thus, from the point of view of discriminants, our family

{Fn(x)} is more amenable to computation than a “random” family of polynomials,

but is harder to work with than a family of classical orthogonal polynomials. This

manifests itself in Equation (4) where we understand some of the prime factorization

quite well (viz., n/Ln−1
n ) and the rest (Pn) not at all.

3. Preliminary Results

Combining Equations (4) and (5), we can write

disc(Fn) = (−1)(
n
2) nPn

Ln−1
n

. (6)

By Equation (5), Pn is an integer since it is the resultant of integral polynomials.

We start with a lemma showing that Pn is positive.

Lemma 1. Let Pn be defined as in Equation (5). Then Pn is positive.

Proof. Let n > 1. If n is odd, the roots of F ′
n(x) = 1 + x + x2 + · · · + xn−1

come in complex-conjugate pairs. If n is even, then −1 is the unique real root of

F ′
n(x), while the remaining roots come in complex-conjugate pairs. For each pair

of complex-conjugate roots (θ, θ), we have

Fn(θ)Fn(θ) = Fn(θ)Fn(θ) = ∥Fn(θ)∥2 > 0,
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taking advantage of the fact that the polynomial Fn(x) has real coefficients. One

also verifies directly that Fn(−1) > 0. Therefore, whether n is even or odd, we have

Pn =
∏

{θ: F ′
n(θ)=0}

F̃n(θ) = L1−n
n

∏
{θ: F ′

n(θ)=0}

Fn(θ) > 0,

as claimed.

We now give a concise proof that disc(Fn) ̸∈ Q×2 when n ̸≡ 1 (mod 4).

Proposition 1. If n ≡ 0, 2, or 3 (mod 4), then disc(Fn) ̸∈ Q×2.

Proof. Applying Lemma 1 to Equation (6) shows that if n ≡ 2, 3 (mod 4), then

disc(Fn) < 0 and hence is not a rational square. If n ≡ 0 (mod 4), we first compute

disc(F4) = 725/432 ̸∈ Q×2. If n ≥ 8, then there exists a prime number in the inter-

val (n/2, n−2). Fix such a prime ℓ and observe that vℓ(n) = 0 and that vℓ(Ln) = 1.

Thus, vℓ
(
n/Ln−1

n

)
is odd. For a nontrivial n-th root of unity θ, consider F̃n(θ).

Reducing Equation (3) modulo ℓ, we have F̃n(θ) ≡ (Ln/ℓ) θ
ℓ (mod ℓ), whence Pn

is coprime to ℓ:

Pn =
∏

{θ:F ′
n(θ)=0}

F̃n(θ)

≡
∏

{θ:F ′
n(θ)=0}

Ln

ℓ
θℓ (mod ℓ)

≡
(
Ln

ℓ

)n−1

· (−1) (mod ℓ)

̸≡ 0 (mod ℓ).

Thus, vℓ(disc(Fn)) is odd and so disc(Fn) ̸∈ Q×2.

This brings us to the case n ≡ 1 (mod 4), which is the most mysterious. We

start by generalizing [12, Thm. 3.1] to when n is a prime power.

Theorem 4. Let p ≡ 1 (mod 4), e a positive integer, and n = pe. Then Pn is

coprime to p.

Proof. We start by reducing the factors F̃n(θ) of Pn modulo p:

a0 = Ln +
Ln

n
− Ln

n− 1
≡ Ln

n
(mod p) ̸≡ 0 (mod p), and

ak =
Ln

k
− Ln

n− 1
≡ 0 (mod p)
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for all k = 1, . . . n−2, due to the fact that 0 ≤ vp(k) ≤ e−1 for all such k. Therefore

Pn =
∏

{θ:F ′
n(θ)=0}

F̃n(θ) ≡
∏

{θ:F ′
n(θ)=0}

Ln

n
≡

(
Ln

n

)n−1

̸≡ 0 (mod p),

as claimed.

Corollary 1. Let p ≡ 1 (mod 4), e a positive integer, and n = pe. If e is odd, then

disc(Fn) ̸∈ Q×2. If e is even, then disc(Fn) ̸∈ Q×2 if and only if Pn ̸∈ Q×2.

Proof. Note that whether e is even or odd, we have

vp (disc(Fn)) = vp(n)− (n− 1)vp(Ln) + vp(Pn) = e− e(n− 1) + 0,

by Theorem 4. If e is odd, then vp (disc(Fn)) is odd (because n ≡ 1 (mod 4)) and

hence disc(Fn) ̸∈ Q×2. If e is even, then n/Ln−1
n is a rational square, hence disc(Fn)

is a rational square if and only if Pn is.

By Example 1, we cannot expect to make much general progress on the case when

n ≡ 1 (mod 4) when n is a square, due to the unpredictable prime factorization of

Pn. For the rest of the paper, we assume n ≡ 1 (mod 4) is not a square.

4. The Case n = mq

Fix a positive integer m, let ω be a primitive mth root of unity, and define

X(m) :=

m−1∏
k=1

(
1

m
+ ωk +

1

2
ω2k + · · ·+ 1

(m− 1)
ω(m−1)k

)
Y (m) := 1 +

1

2
+ · · ·+ 1

m
.

Observe that both X(m) and Y (m) are rational numbers. Consider the set

Em = {primes ℓ | vℓ(X(m)) > 0, vℓ(Y (m)) > 0, and mℓ ≡ 1 (mod 4)},

consisting of all prime divisors of X(m) and Y (m) whose product with m is con-

gruent to 1 (mod 4).

Remark 2. While Em can be computed explicitly for fixedm, we expect that saying

anything in general about this set could be difficult. Even without considering

X(m), the set Em relies on understanding p-adic properties of the sequence Y (m)

of harmonic numbers, which is known to be a hard problem (see [1]).

Theorem 5. For all primes q such that q ̸∈ Em, if q > m and n := mq ≡ 1

(mod 4), we have disc(Fn) ̸∈ Q×2.
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Proof. Recall that

disc(Fmq) =
mq

Lmq−1
mq

Pmq. (7)

Since mq ≡ 1 (mod 4), we have that vq

(
mq

Lmq−1
mq

)
is odd. Thus, if vq(Pmq) is even,

then disc(Fmq) ̸∈ Q×2. We now compute Pmq (mod q).

Let θk = exp(2πi/mq)k and ω = exp(2πi/m). Then

Pmq =

mq−1∏
k=1

mq−2∑
j=0

ajθ
j
k

 .

Reducing each coefficient modulo q gives us

Pmq ≡
mq−1∏
k=1

(
a0 + aqθ

q
k + a2qθ

2q
k + · · ·+ a(m−1)qθ

(m−1)q
k

)
(mod q)

≡
mq−1∏
k=1

(
a0 + aqω

k + a2qω
2k + · · ·+ a(m−1)qω

k(m−1)
)

(mod q)

≡
mq−1∏
k=1

(
Lmq

mq
+

Lmq

q
ωk +

Lmq

2q
ω2k + · · ·+ Lmq

(m− 1)q
ωk(m−1)

)
(mod q)

≡
(
Lmq

q

)mq−1

︸ ︷︷ ︸
̸≡0 (mod q)

mq−1∏
k=1

(
1

m
+

ωk

1
+

ω2k

2
+ · · ·+ ωk(m−1)

(m− 1)

)
(mod q).

As k ranges over 1, . . . ,mq − 1, the product in the last congruence above can be

rewritten as
mq−1∏
k=1

(
1

m
+

ωk

1
+

ω2k

2
+ · · ·+ ωk(m−1)

(m− 1)

)
= (X(m)Y (m))

q−1
X(m)

= X(m)qY (m)q−1.

Thus,

Pmq ≡
(
Lmq

q

)mq−1

X(m)qY (m)q−1 (mod q),

which is coprime to q by the hypothesis that X(m) and Y (m) are both coprime to

q. Thus, vq(Pmq) = 0 and so disc(Fmq) ̸∈ Q×2.

5. Examples and Conclusions

We conclude the paper with several examples and observations. We start by setting

m = p, a prime number, in Theorem 5. If we fix p, then as long as both X(p)
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and Y (p) are coprime to q > p, we can conclude that disc(Fpq) ̸∈ Q×2. For the

remaining values of q ∈ Ep, we can check by hand as long as it is computationally

feasible. The following result is a sample implementation of our methods. We note

that other examples with n = pq are similarly easy to generate.

Proposition 2. For any prime q, if n = 3q, 5q, or 7q, then disc(Fn) ̸∈ Q×2.

Proof. If n ≡ 2, 3 (mod 4), we are done by Proposition 1. We have seen in Example

1 that disc(F9) ̸∈ Q×2. By using the issquare command in PariGP we check that

neither disc(F25) nor disc(F49) is a rational square.

It therefore suffices to consider n = 3q, 5q, or 7q in the case n ≡ 1 (mod 4) and

q > 3, 5, 7, respectively. By Theorem 5, we are reduced to checking finitely many

cases. In Table 1 we compute, for each value of p, the rational numbers X(p) and

Y (p) and determine the set Ep.

p X(p) Y (p) Ep

3 13/36 11/6 {11}
5 (11 · 101 · 3001)/(283454) 137/(22 · 3 · 5) {101, 137, 3001}
7 1170728665999621/(212365676) (3 · 112)/(22 · 5 · 7) {11}

Table 1: X(p), Y (p), and Ep for p ∈ {3, 5, 7}.

In each case we find an auxiliary prime ℓ for which disc(Fn) is not a square modulo

ℓ:

disc(F33) ≡ 14 (mod 37)

disc(F505) ≡ 200 (mod 509)

disc(F685) ≡ 443 (mod 709)

disc(F15005) ≡ 13652 (mod 15017)

disc(F77) ≡ 39 (mod 79);

none of these are squares.

We close with several observations which suggest that a different approach than

that discussed in this paper may be necessary in order to prove Yamamura’s con-

jecture in general. In particular, the condition that n = mq with q > m is a strong

hypothesis that we cannot remove. What cases are left to prove? Among all n ≡ 1

(mod 4), either

• n is an odd square, or
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• n has at least two distinct prime divisors, and at least one prime divisor at

which n has odd valuation.

In the second case, Theorem 5 handles values of the form

n = qe11 qe22 · · · qer−1
r−1 qr,

for prime numbers q1 < q2 < · · · < qr. With regard to generalizing the proof of

Theorem 5, we present the following data as evidence that a different approach is

needed.

1. The condition q > m in Theorem 5 allows us to compute F̃mq(θ) (mod q)

easily – the only ak which are not divisible by q are the ajq for j = 1, . . . ,m−1.

If q < m, then we would need to include additional multiples of q less than

m.

For example, consider n = 21 = 3 · 7. By Proposition 2, we know that

disc(F21) ̸∈ Q×2 by working modulo 7. However, if we were to localize at the

prime 3 instead, we first directly compute in PariGP that v3(disc(F21)) = −34,

and then separately compute using (7) that

v3 (disc(F21)) = v3(21)− 20v3(L21) + v3(P21) = 1− 40 + v3(P21),

whence v3(P21) = 5. Therefore, it is not the case that if vp(n) is odd then

vp (disc(Fn)) is odd as well.

To finish this example, we note that the prime factorization of P21 is

P21 = 35 · 31 · 412 · 335642497 · 1236257387 · 11513876767
× 1381773062083 · 3484835094151 · 2204197718654031818404984907
× 9004989137610212635527213226585626310173203221874790587323

6753813403920291816681

This computation was carried out on PariGP in 38.5 minutes on a personal

laptop.

2. Setting m = 8 in Theorem 5 implies n ≡ 0 (mod 4), hence m = 9 is the

smallest composite value of m for which we can have n ≡ 1 (mod 4). In that

case we compute

X(9) =
37 · 229 · 367 · 98481394090065580021

2243165878

Y (9) =
7129

23 · 32 · 5 · 7
.

Thus, if q ̸∈ {37, 229, 7129, 98481394090065580021}, we can immediately con-

clude that disc(F9q) ̸∈ Q×2 (note that 367 ≡ 3 (mod 4)). However, for the
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remaining values of q we run into some of the computational limits of this

question.

Let q = 37. One can verify in PariGP that v37(P333) = 37, which agrees with

Pmq ≡
(
Lmq

q

)mq−1

X(m)qY (m)q−1 (mod q)

from the proof of Theorem 5. Therefore, none of the primes < 333 can be

used to immediately deduce whether or not disc(F333) is a rational square.

The next prime larger than 333 is 337 and we check that disc(F333) ≡ 157

(mod 337), which is not a square; this computation took 16.2 seconds on a

personal computer. However, a similar analysis is computationally infeasible

for the remaining values of q.

3. It is not necessarily the case that if p > n, then vp(disc(Fn)) is odd (which

would automatically imply disc(Fn) ̸∈ Q×2). For example, we have

v4019(disc(F15)) = v4019(P15) = 2.

4. We checked all odd square values of n from 1 to 1000 and in none of those

cases do we find that disc(Fn) is a rational square.

Acknowledgment. We would like to thank the referee for their comments which
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