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Abstract

Furstenberg and Glasner proved that for an arbitrary k ∈ N, any piecewise syndetic
set of integers contains a k-term arithmetic progression and the collection of such
progressions is itself piecewise syndetic in Z. The above result was extended for ar-
bitrary semigroups by Bergelson and Hindman, using the algebra of the Stone-Čech
compactification of discrete semigroups. In addition, they provided an abundance
of arithmetic progressions for various types of large sets. The first author, Hind-
man, and Strauss introduced two notions of large sets, namely, a J-set and a C-set.
Bergelson and Glasscock introduced another notion of largeness, which is analogous
to the notion of J-set, namely a CR-set. All these sets contain arithmetic progres-
sions of arbitrary length. The second author and Goswami proved that for any
J-set, A ⊆ N, the collection {(a, b) : {a, a+ b, a+ 2b, . . . , a+ lb} ⊂ A}, is a J-set in
(N× N,+). In this article, we prove the same for CR-sets.

1. Introduction

For a general commutative semigroup (S,+), a set A ⊆ S is said to be syndetic in

(S,+) if there exists a finite set F ⊂ S such that
⋃

t∈F −t + A = S. A set A ⊆ S

is said to be thick if, for every finite set E ⊂ S, there exists an element x ∈ S such

that E + x ⊂ A. A set A ⊆ S is said to be a piecewise syndetic set if there exists a

finite set F ⊂ S such that
⋃

t∈F −t+A is thick in S [12, Definition 4.38, page 101].

It can be proved that a piecewise syndetic set is the intersection of a thick set and

a syndetic set [12, Theorem 4.49].

One of the famous Ramsey theoretic results is the so-called van der Waerden’s
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theorem [13], which states that at least one cell of any partition {C1, C2, . . . , Cr} of

N contains an arithmetic progression of arbitrary length. Since arithmetic progres-

sions are invariant under shifts, it follows that every piecewise syndetic set contains

arbitrarily long arithmetic progressions. The following theorem was proved alge-

braically by Furstenberg and Glasner in [9] and combinatorially by Beigelböck in

[1].

Theorem 1. Let k ∈ N and assume that S ⊆ Z is piecewise syndetic. Then

{(a, d) : {a, a+ d, . . . , a+ kd} ⊂ S} is piecewise syndetic in Z2.

To state the next theorem we need the following definition.

Definition 1. Let (S,+) be a commutative semigroup and let A ⊆ S. The subset

A is a J-set if and only if for every F ∈ Pf

(
SN), there exist a ∈ S and H ∈ Pf (N)

such that for each f ∈ F we have a+
∑

n∈H f(n) ∈ A.

In [7], the authors proved the following theorem.

Theorem 2. Let k ∈ N and assume that S ⊆ N is a J-set. Then

{(a, d) : {a, a+ d, . . . , a+ kd} ⊂ S}

is also a J-set in N× N.

To express the main result of this article, we have to first define a combinatorially

rich set (or CR-set) introduced in [2]. For n, r ∈ N, let Sr×n denote the set of

r × n matrices with elements in S. For M = (Mij) ∈ Sr×n and a non-empty

α ⊆ {1, 2, · · · , n}, Mαj denotes the sum
∑

i∈α Mij .

Definition 2. Let (S,+) be a commutative semigroup. A subset A ⊆ S is a CR-set

if for all n ∈ N, there exists an r ∈ N such that for all M ∈ Sr×n, there exists a

non-empty set α ⊆ {1, 2, . . . , r} and s ∈ S such that for all j ∈ {1, 2, . . . , n},

s+Mα,j ∈ A.

We denote by CR (S,+) the class of combinatorially rich subsets of (S,+).

Choosing (S,+) = (N,+) and Mij = j from the above definition, there exist a

nonempty α ⊆ {1, 2, . . . , r} and s ∈ N such that

{s+ | α |, s+ 2 | α |, . . . , s+ n | α |} ⊂ A.

Thus, combinatorially rich sets in (N,+) are AP-rich, i.e., they contain arbitrarily

long arithmetic progressions. It can be stated that piecewise syndetic subsets of S

are CR-sets and that CR-subsets of S are J-sets. Of course, the first inclusion implies

that the set of CR-subsets of S is non-empty, and the second inclusion immediately
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implies that CR-subsets of S contain arbitrarily long arithmetic progressions. We

prove that for any CR-set A ⊆ N, the collection

{(a, b) : {a, a+ b, a+ 2b, . . . , a+ lb} ⊂ A}

is a CR-set in (N× N,+) and the same result for essential CR-sets. The next section

is devoted to essential CR-sets.

2. Essential CR-Set

A collection F ⊆ P (S) \ {∅} is upward hereditary if, whenever A ∈ F and A ⊆
B ⊆ S, it follows that B ∈ F . A nonempty and upward hereditary collection

F ⊆ P (S) \ {∅} will be called a family. If F is a family, the dual family F∗ is given

by

F∗ = {E ⊆ S : for all A ∈ F , E ∩A ̸= ∅}.

A family F possesses the Ramsey property if, whenever A ∈ F and A = A1 ∪ A2,

there is some i ∈ {1, 2} such that Ai ∈ F .

We give a brief review of the algebraic structure of the Stone–Čech compactifi-

cation of discrete semigroups.

Let S be a discrete semigroup. The elements of βS are regarded as ultrafilters

on S. Let A = {p ∈ βS : A ∈ p}. The set {A : A ⊂ S} is a basis for the closed sets

of βS. The operation ‘·’ on S can be extended to the Stone–Čech compactification

βS of S so that (βS, ·) is a compact right topological semigroup (meaning that for

each p ∈ βS, the function ρp (q) : βS → βS defined by ρp (q) = q · p is continuous)

with S contained in its topological center (meaning that for any x ∈ S, the function

λx : βS → βS defined by λx(q) = x · q is continuous). There is a famous theorem

[12, Theorem 2.5], due to Ellis which states that if S is a compact right topological

semigroup then the set of idempotents, E (S), is not empty. A nonempty subset I

of a semigroup T is called a left ideal of S if TI ⊂ I, a right ideal if IT ⊂ I, and

a two-sided ideal (or simply an ideal) if it is both a left and right ideal. A minimal

left ideal is a left ideal that does not contain any proper left ideal. Similarly, we

can define a minimal right ideal and the smallest ideal.

Any compact Hausdorff right topological semigroup T has the smallest two-sided

ideal

K(T ) =
⋃

{L : L is a minimal left ideal of T}

=
⋃

{R : R is a minimal right ideal of T}.

Given a minimal left ideal L and a minimal right ideal R, L∩R is a group, and in

particular contains an idempotent. If p and q are idempotents in T , we write p ≤ q
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if and only if pq = qp = p. An idempotent is minimal with respect to this relation

if and only if it is a member of the smallest ideal K(T ) of T . Given p, q ∈ βS and

A ⊆ S, we know that A ∈ p · q if and only if the set {x ∈ S : x−1A ∈ q} ∈ p, where

x−1A = {y ∈ S : x · y ∈ A}. See [12] for an elementary introduction to the algebra

of βS and any unfamiliar details.

It is known that the family F has the Ramsey property if and only if the family F∗

is a filter. For a family F with the Ramsey property, let β(F) = {p ∈ βS : p ⊆ F}.
Then we get the following from [4, Theorem 5.1.1].

Theorem 3. Let S be a discrete set. For every family F ⊆ P (S) with the Ramsey

property, β (F) ⊆ βS is closed. Furthermore, F = ∪β (F). Also if K ⊆ βS is

closed, then FK =
{
E ⊆ S : E ∩K ̸= ∅

}
is a family with the Ramsey property and

K = β (FK).

Let S be a discrete semigroup. Then, for every family F ⊆ P (S) with the Ramsey

property, β (F) ⊆ βS is closed. If β (F) is a subsemigroup of βS, then E (βF) ̸= ∅.

Definition 3. Let F be a family with the Ramsey property such that β(F) is a

subsemigroup of βS, and let p be an idempotent in β(F). Then each member of p

is called an essential F-set.

The family F is called left (right) shift-invariant if for all s ∈ S and all E ∈ F ,

one has sE ∈ F(Es ∈ F). The family F is called left (right) inverse shift-invariant

if for all s ∈ S and all E ∈ F , one has s−1E ∈ F(Es−1 ∈ F). We derive the

following theorem from [4, Theorem 5.1.2].

Theorem 4. If F is a family having the Ramsey property then βF ⊆ βS is a left

ideal if and only if F is left shift-invariant. Similarly, βF ⊆ βS is a right ideal if

and only if F is right shift-invariant.

From [4, Theorem 5.1.10], we can identify those families F with Ramsey prop-

erty for which β (F) is a subsemigroup of βS. The condition is a rather technical

weakening of left-shift invariance.

Theorem 5. Let S be any discrete semigroup, and let F be a family of subsets of

S having the Ramsey property. Then the following are equivalent.

(1) β (F) is a subsemigroup of βS.

(2) F has the following property:

If E ⊆ S is any set, and if there is A ∈ F such that for all finite H ⊆ A, one

has
(
∩q∈Hx−1E

)
∈ F , then E ∈ F .

The elementary characterization of essential F-sets is known from [5, Theorem

5].
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Definition 4. Let ω be the first infinite ordinal and let each ordinal denote the set

of all its predecessors. In particular, 0 = ∅, and for each n ∈ N, n = {0, 1, ..., n− 1}.

(a) If f is a function and dom (f) = n ∈ ω, then for all x, f⌢x = f ∪ {(n, x)}.

(b) Let T be a set of functions whose domains are members of ω. For each f ∈ T ,

Bf (T ) = {x : f⌢x ∈ T}.

We get the following theorem from [5, Theorem 5], which plays a vital role in

this article.

Theorem 6. Let (S, ·) be a semigroup, and assume that F is a family of subsets of

S with the Ramsey property such that β (F) is a subsemigroup of βS. Let A ⊆ S.

Then the statements (a), (b), and (c) are equivalent and are implied by statement

(d). If S is countable, then all five statements are equivalent.

(a) A is an essential F-set.

(b) There is a non empty set T of functions such that

(i) for all f ∈ T , domain (f) ∈ ω and rang (f) ⊆ A;

(ii) for all f ∈ T and all x ∈ Bf (T ), Bf⌢x ⊆ x−1Bf (T ); and

(iii) for all F ∈ Pf (T ),
⋂

f∈F Bf (T ) is an F-set.

(c) There is a downward directed family ⟨CF ⟩F∈I of subsets of A such that

(i) for each F ∈ I and each x ∈ CF there exists G ∈ I with CG ⊆ x−1CF ;

and

(ii) for each F ∈ Pf (I) ,
⋂

F∈F CF is an F-set.

(d) There is a decreasing sequence ⟨Cn⟩∞n=1 of subsets of A such that

(i) for each n ∈ N and each x ∈ Cn, there exists m ∈ N with Cm ⊆ x−1Cn;

and

(ii) for each n ∈ N, Cn is an F-set.

Let (S,+) be a commutative semigroup. By [2, Lemma 2.14], the class CR is

partition regular; also, it is trivial that the class CR is translation invariant. Hence

β (CR) is a closed subsemigroup of β (S) by Theorem 4. Let A be a subset of (S,+).

We call A an essential CR-set if and only if A ∈ p for some p ∈ E (β (CR)). Then

from the above, we get the following theorem.

Theorem 7. Let (S,+) be a countable commutative semigroup. Then the following

are equivalent.

(a) A is an essential CR-set.
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(b) There is a decreasing sequence ⟨Cn⟩∞n=1 of subsets of A such that

(i) for each n ∈ N and each x ∈ Cn, there exists m ∈ N with Cm ⊆ x−1Cn;

and

(ii) for each n ∈ N, Cn is a CR-set.

3. Proof of the Main Theorem

Now we are going to prove the abundance of arithmetic progressions in CR-sets.

Definition 5. Let A = (aij)m×n1
and B = (bij)m×n2

be two matrices. The con-

catenation of A and B is C = A⌢B, defined by C = (cij)m×(n1+n2)
, where

cij =

{
aij if j ≤ n1

bij if j > n2.

Example 1. Let A =

3 6
7 4
1 3

, B =

5 8 9 1
6 8 3 5
7 9 2 1

, and C =

6
9
8

. Then

A⌢B⌢C =

3 6 5 8 9 1 6
7 4 6 8 3 5 9
1 3 7 9 2 1 8

 .

Theorem 8. Let (S,+) be a commutative semigroup. Let A be a CR-set in S and

l ∈ N. Then the set

{(a, b) : {a, a+ b, a+ 2b, . . . , a+ lb} ⊂ A}

is a CR-set in (S × S,+).

Proof. Let C = {(a, b) : {a, a + b, a + 2b, . . . , a + (l − 1) b} ⊂ A}. Since A is

CR-set, for any n ∈ N, we can find r such that M ∈ Sr×ln, there exist a ∈ S,

and α ⊂ {1, 2, . . . , r} such that a +
∑

i∈α Mi,j ∈ A for all j ∈ {1, 2, . . . , ln}. If

M ′ ∈ (S × S)
r×ln

, then M ′ =
((
M1

ij ,M
2
ij

))
r×ln

. Let s ∈ S and

Mk =


M1

11 + k(s+M2
11) M1

12 + k(s+M2
12) · · · M1

1n + k(s+M2
1n)

M1
21 + k(s+M2

21) M1
22 + k(s+M2

22) . . . M1
2n + k(s+M2

2n)
...

... . . .
...

M1
r1 + k(s+M2

r1) M1
r2 + k(s+M2

r2) . . . M1
rn + k(s+M2

rn)


for k ∈ {0, 1, 2, . . . , l − 1}. So,M = M0⌢M1⌢ . . .⌢ M l−1 andM is an r×lnmatrix.

There exists α ∈ {1, 2, . . . , r} such that a+
∑

i∈α Mi,j ∈ A for all j ∈ {1, 2, . . . , ln}.
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This implies that a +
∑

i∈α M1
i,j + k(s + M2

ij) ∈ A for all j ∈ {1, 2, . . . , n} and

k ∈ {0, 1, 2, . . . , l − 1}, that is, a +
∑

i∈α M1
i,j + k

∑
i∈α(s + M2

ij) ∈ A for all j ∈
{1, 2, . . . , n} and k ∈ {0, 1, 2, . . . , l − 1}. This implies that

a+
∑
i∈α

M1
i,j + k(| α | s+

∑
i∈α

M2
ij) ∈ A

for all j ∈ {1, 2, . . . , n} and k ∈ {0, 1, 2, . . . , l − 1}. So,

a+
∑
i∈α

M1
i,j + k(| α | s+

∑
i∈α

M2
ij) ∈ A

for all j ∈ {1, 2, . . . , n} and k ∈ {0, 1, 2, . . . , l − 1}, that is,(
a+

∑
i∈α

M1
i,j , | α | s+

∑
i∈α

M2
ij

)
∈ C

for all j ∈ {1, 2, . . . , n}. Finally, we get (a, | α | s) +
∑

i∈α

(
M1

i,j +M2
i,j

)
∈ C for all

j ∈ {1, 2, . . . , n}. Hence C is a CR-set.

Now we can prove the abundance of arithmetic progressions in an essential CR-

set, using elementary characterization and the above theorem.

Theorem 9. Let A be an essential CR-set in N, and l ∈ N. Then the set

{(a, b) : {a, a+ b, a+ 2b, . . . , a+ lb} ⊂ A}

is an essential CR-set in (N× N,+).

Proof. As A is an essential CR-set, there exists a decreasing sequence of CR-sets in

N, say {An : n ∈ N}, satisfying the property (b)(i) of Theorem 7. So,

A ⊇ A1 ⊇ A2 ⊇ · · · ⊇ An ⊇ . . .

and for i ∈ N, Bi = {(a, b) ∈ N× N : {a, a + b, a + 2b, . . . , a + (l − 1) b} ⊂ Ai} are

CR-sets in N× N. Consider

B ⊇ B1 ⊇ B2 ⊇ · · · ⊇ Bn ⊇ . . . .

Pick n ∈ N and (a, b) ∈ Bn. Then {a, a + b, a + 2b, . . . , a + (l − 1) b} ⊂ An. Now,

by property (b)(i) of Theorem 7, there exists Ni ∈ N such that a + ib ∈ Ai for

i = 0, 1, 2, . . . , l−1 and ANi ⊆ −(a+ib)+An. Taking N = max {N0, N1, . . . , Nl−1},
we get

AN ⊆
l−1⋂
i=0

(−(a+ ib) +An) .
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Now, if (a1, b1) is any element of BN , then

{a1, a1 + b1, a1 + 2b1, . . . , a1 + (l − 1) b1} ⊆ AN ⊆
l−1⋂
i=0

(−(a+ ib) +An) .

So (a1+a)+i.(b1+b) ∈ An for all i ∈ {0, 1, 2, . . . , l−1}. Hence (a1, b1) ∈ −(a, b)+Bn.

This implies BN ⊆ −(a, b)+Bn. Therefore, for any (a, b) ∈ Bn, there exists N ∈ N
such that BN ⊆ −(a, b) + Bn, showing the property (b)(i) of Theorem 7. This

proves theorem.
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