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Abstract

Furstenberg and Glasner proved that for an arbitrary k € N, any piecewise syndetic
set of integers contains a k-term arithmetic progression and the collection of such
progressions is itself piecewise syndetic in Z. The above result was extended for ar-
bitrary semigroups by Bergelson and Hindman, using the algebra of the Stone-Cech
compactification of discrete semigroups. In addition, they provided an abundance
of arithmetic progressions for various types of large sets. The first author, Hind-
man, and Strauss introduced two notions of large sets, namely, a J-set and a C-set.
Bergelson and Glasscock introduced another notion of largeness, which is analogous
to the notion of J-set, namely a CR-set. All these sets contain arithmetic progres-
sions of arbitrary length. The second author and Goswami proved that for any
J-set, A C N, the collection {(a,b) : {a,a+b,a+2b,...,a+1b} C A}, is a J-set in
(N x N, +). In this article, we prove the same for CR-sets.

1. Introduction

For a general commutative semigroup (5, +), a set A C S is said to be syndetic in
(S, +) if there exists a finite set /' C S such that (J,cp —t+A=S. Aset ACS
is said to be thick if, for every finite set £ C S, there exists an element x € S such
that £+ 2 C A. A set A C S is said to be a piecewise syndetic set if there exists a
finite set F' C S such that |J,.p —t 4+ A is thick in S [12, Definition 4.38, page 101].
It can be proved that a piecewise syndetic set is the intersection of a thick set and
a syndetic set [12, Theorem 4.49].

One of the famous Ramsey theoretic results is the so-called van der Waerden’s
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theorem [13], which states that at least one cell of any partition {Cy,Cs, ..., C.} of
N contains an arithmetic progression of arbitrary length. Since arithmetic progres-
sions are invariant under shifts, it follows that every piecewise syndetic set contains
arbitrarily long arithmetic progressions. The following theorem was proved alge-
braically by Furstenberg and Glasner in [9] and combinatorially by Beigelbock in

[1].
Theorem 1. Let k € N and assume that S C Z is piecewise syndetic. Then
{(a,d) : {a,a+d,...,a+kd} C S} is piecewise syndetic in Z>.

To state the next theorem we need the following definition.

Definition 1. Let (S, +) be a commutative semigroup and let A C S. The subset
Ais a J-set if and only if for every F' € Py (SV), there exist a € S and H € Py (N)
such that for each f € F we have a +)_ 4 f(n) € A.

In [7], the authors proved the following theorem.

Theorem 2. Let k € N and assume that S C N is a J-set. Then
{(a,d): {a,a+d,...,a+kd} C S}
is also a J-set in N x N.

To express the main result of this article, we have to first define a combinatorially
rich set (or CR-set) introduced in [2]. For n,r € N, let S"*™ denote the set of
r X n matrices with elements in S. For M = (M;;) € S™" and a non-empty
a C{1,2,---,n}, My; denotes the sum ), M;;.

Definition 2. Let (S, +) be a commutative semigroup. A subset A C S'is a CR-set
if for all n € N, there exists an r € N such that for all M € S"*™, there exists a
non-empty set o C {1,2,...,r} and s € S such that for all j € {1,2,...,n},

S+ M(,J‘ € A
We denote by CR (S, +) the class of combinatorially rich subsets of (S, +).

Choosing (S,+) = (N,+) and M;; = j from the above definition, there exist a
nonempty « C {1,2,...,7} and s € N such that

{s+|al,s+2|al,....,s+n|a|} CA

Thus, combinatorially rich sets in (N, +) are AP-rich, i.e., they contain arbitrarily
long arithmetic progressions. It can be stated that piecewise syndetic subsets of S
are CR-sets and that CR-subsets of S are J-sets. Of course, the first inclusion implies
that the set of CR-subsets of S is non-empty, and the second inclusion immediately
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implies that CR-subsets of S contain arbitrarily long arithmetic progressions. We
prove that for any CR-set A C N, the collection

{(a,b) : {a,a+b,a+2b,...,a+1b} C A}

is a CR~set in (N x N, +) and the same result for essential CR-sets. The next section
is devoted to essential CR-sets.

2. Essential CR-Set

A collection F C P (S) \ {0} is upward hereditary if, whenever A € F and A C
B C S, it follows that B € F. A nonempty and upward hereditary collection
F CP(S)\{0} will be called a family. If F is a family, the dual family F* is given
by

F*={ECS: foral Ac F,ENA#(}.

A family F possesses the Ramsey property if, whenever A € F and A = A; U As,
there is some 4 € {1,2} such that A; € F.

We give a brief review of the algebraic structure of the Stone-Cech compactifi-
cation of discrete semigroups.

Let S be a discrete semigroup. The elements of 8S are regarded as ultrafilters
on S. Let A= {pe€BS:Acp}. Theset {A:AC S} is a basis for the closed sets
of 3S. The operation ¢’ on S can be extended to the Stone-Cech compactification
BS of S so that (85, ) is a compact right topological semigroup (meaning that for
each p € A4S, the function p, (¢) : 8S — BS defined by p, (¢) = ¢ - p is continuous)
with S contained in its topological center (meaning that for any « € S, the function
Az : BS — BS defined by A(¢) = = - ¢ is continuous). There is a famous theorem
[12, Theorem 2.5], due to Ellis which states that if S is a compact right topological
semigroup then the set of idempotents, E (.5), is not empty. A nonempty subset I
of a semigroup T is called a left ideal of S if TI C I, a right ideal if IT C I, and
a two-sided ideal (or simply an ideal) if it is both a left and right ideal. A minimal
left ideal is a left ideal that does not contain any proper left ideal. Similarly, we
can define a minimal right ideal and the smallest ideal.

Any compact Hausdorff right topological semigroup 7" has the smallest two-sided
ideal

K(T) = | J{L : L is a minimal left ideal of T’}
= J{R: R is a minimal right ideal of T}.

Given a minimal left ideal L and a minimal right ideal R, LN R is a group, and in
particular contains an idempotent. If p and ¢ are idempotents in T, we write p < ¢
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if and only if pg = gp = p. An idempotent is minimal with respect to this relation
if and only if it is a member of the smallest ideal K(T') of T'. Given p,q € S and
A C S, we know that A € p- ¢ if and only if the set {x € S: 2714 € ¢} € p, where
r1A={ye S:z-ye A}. See [12] for an elementary introduction to the algebra
of BS and any unfamiliar details.

It is known that the family F has the Ramsey property if and only if the family F*
is a filter. For a family F with the Ramsey property, let 3(F) = {p € 85 : p C F}.
Then we get the following from [4, Theorem 5.1.1].

Theorem 3. Let S be a discrete set. For every family F C P (S) with the Ramsey
property, B(F) C BS is closed. Furthermore, F = UB(F). Also if K C BS is
closed, then Fi = {E CS:ENK # @} s a family with the Ramsey property and
K = B (Fk).

Let S be a discrete semigroup. Then, for every family 7 C P (S) with the Ramsey
property, 8 (F) C S is closed. If 8 (F) is a subsemigroup of 35, then E (8F) # 0.

Definition 3. Let F be a family with the Ramsey property such that S(F) is a
subsemigroup of 85, and let p be an idempotent in S(F). Then each member of p
is called an essential F-set.

The family F is called left (right) shift-invariant if for all s € S and all E € F,
one has sE € F(Es € F). The family F is called left (right) inverse shift-invariant
if for all s € S and all E € F, one has s7'F € F(Es™! € F). We derive the
following theorem from [4, Theorem 5.1.2].

Theorem 4. If F is a family having the Ramsey property then BF C 58S is a left
ideal if and only if F is left shift-invariant. Similarly, BF C S is a right ideal if
and only if F is right shift-invariant.

From [4, Theorem 5.1.10], we can identify those families 7 with Ramsey prop-
erty for which 5 (F) is a subsemigroup of 5S. The condition is a rather technical
weakening of left-shift invariance.

Theorem 5. Let S be any discrete semigroup, and let F be a family of subsets of
S having the Ramsey property. Then the following are equivalent.

(1) B(F) is a subsemigroup of BS.

(2) F has the following property:

If E C S is any set, and if there is A € F such that for all finite H C A, one
has (ﬂqux_lE) € F, then E € F.

The elementary characterization of essential F-sets is known from [5, Theorem
5].
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Definition 4. Let w be the first infinite ordinal and let each ordinal denote the set
of all its predecessors. In particular, 0 = @), and for eachn € N, n = {0,1,...,n — 1}.

(a) If f is a function and dom (f) = n € w, then for all z, f~z = fU{(n,x)}.
(b) Let T be a set of functions whose domains are members of w. For each f € T
By(T)={z: frxeT}.

We get the following theorem from [5, Theorem 5], which plays a vital role in
this article.

Theorem 6. Let (S,-) be a semigroup, and assume that F is a family of subsets of
S with the Ramsey property such that 8 (F) is a subsemigroup of 8S. Let A C S.
Then the statements (a), (b), and (c) are equivalent and are implied by statement
(d). If S is countable, then all five statements are equivalent.

(a) A is an essential F-set.
(b) There is a non empty set T of functions such that
(i) for all f € T, domain(f) € w and rang (f) C A;
it) for all f €T and all x € , Bp~p C ™ ;an
i) for all f € T and all By (T), By !By (T d
(iti) for all F' € Py (T), Nyep Br(T) is an F-set.
c ere 1s a downward directed family (Cr of subsets o such that
There is a d d di d family (Cr)pe; of sub f A such th

(i) for each F € I and each x € Cr there exists G € I with Cq C 27 1Ck;
and

(ii) for each F € Py (I), \per Cr is an F-set.
(d) There is a decreasing sequence (Cy,)0 | of subsets of A such that

(i) for each n € N and each x € C,,, there exists m € N with Cp,, C 27 1C),;
and

(i1) for each n € N, C,, is an F-set.

Let (S,4) be a commutative semigroup. By [2, Lemma 2.14], the class CR is
partition regular; also, it is trivial that the class CR is translation invariant. Hence
B (CR) is a closed subsemigroup of 8 (S) by Theorem 4. Let A be a subset of (.S, +).
We call A an essential CR-set if and only if A € p for some p € E(8(CR)). Then
from the above, we get the following theorem.

Theorem 7. Let (S,+) be a countable commutative semigroup. Then the following
are equivalent.

(a) A is an essential CR-set.
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(b) There is a decreasing sequence (Cy) >~ of subsets of A such that

(i) for each n € N and each x € C,,, there exists m € N with C,, C 27 1C,,;
and

(ii) for each n € N, C,, is a CR-set.

3. Proof of the Main Theorem

Now we are going to prove the abundance of arithmetic progressions in CR-sets.

Definition 5. Let A = (a;j),,,,, and B = (bi;),,,,, be two matrices. The con-

catenation of A and B is C = A7 B, defined by C = (Cij)mx(nlJrnz)’ where

ai; if j <my
Cij =

bij 1f]>’fL2
3 6 5 8 9 1 6
Example 1. Let A=(7 4),B=(6 8 3 5|,andC = (9. Then
1 3 79 2 1 8
36 58 9 16
AB~C=[7 4 6 8 3 5 9
1379 2 18

Theorem 8. Let (S,+) be a commutative semigroup. Let A be a CR-set in S and
l € N. Then the set

{(a,b) : {a,a+b,a+2b,...,a+1b} C A}
is a CR-set in (S x S, +).

Proof. Let C = {(a,b) : {a,a+b,a+2b,...,a+ (I1—1)b} C A}. Since A is
CR-set, for any n € N, we can find r such that M € S™!" there exist a € S,
and o C {1,2,...,7} such that a + > ;. , M;; € A for all j € {1,2,...,In}. If
M’ € (S x 8§)™", then M’ = (M}, M2)) , . Let s€Sand

i3

Miy + k(s + Mfy)  Mip+ k(s + Miy) -+ Mi, + k(s + M)
b | Mo TR+ M) Mg+ k(s + M) o My o+ k(s + M)
My + k(s +M2) My +k(s+ M) ... My, + k(s + M)

fork € {0,1,2,...,1—1}. So, M = M°~M*'~ ...~ M~ and M is an r xIn matrix.
There exists o € {1,2,...,r} such that a+>_,., M;; € Aforall j € {1,2,...,In}.
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This implies that a + >, Mi{j + k(s + MZQJ) € A for all j € {1,2,...,n} and
ke {0,1,2,...,1 -1}, that is, a + Y ;e M}, + kY, (s + M) € Aforall j €
{1,2,...,n} and k € {0,1,2,...,1 — 1}. This implies that

a+ZMi{j+k(|a|s+Zij)€A

1€a 1€
forall j € {1,2,...,n} and k € {0,1,2,...,1 — 1}. So,

at+ > M +k(als+Y ME)eA

i€ [A<TeY
forall j € {1,2,...,n} and k € {0,1,2,...,1 — 1}, that is,
i€Ex [2<teY

for all j € {1,2,...,n}. Finally, we get (a,| o |s)+ >, (Mil,j + ij) € C for all
je{1,2,...,n}. Hence C is a CR-set. O

Now we can prove the abundance of arithmetic progressions in an essential CR-
set, using elementary characterization and the above theorem.

Theorem 9. Let A be an essential CR-set in N, and | € N. Then the set
{(a,b): {a,a+b,a+2b,...,a+1b} C A}
is an essential CR-set in (N x N, +).

Proof. As A is an essential CR-set, there exists a decreasing sequence of CR-sets in
N, say {4, : n € N}, satisfying the property (b)(i) of Theorem 7. So,

ADA DA DDA, D ...

and for : € N, B; = {(a,b) e NxN: {a,a+ba+2b,...,a+ (Il —1)b} C A;} are
CR-sets in N x N. Consider

BOB 2B,2---2B,2....

Pick n € N and (a,b) € B,,. Then {a,a+b,a+2b,...,a+ (I—1)b} C A,,. Now,
by property (b)(i) of Theorem 7, there exists V; € N such that a + ib € A; for
i=0,1,2,...,l—1and Ay, C —(a+ib)+A,. Taking N = max{Ng, N1,..., N1},
we get
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Now, if (a1, b1) is any element of By, then

[

{ar,a1 +b1,a1 +2b1,...,a1 + (1 —1)b1} C Ay C ﬂ (—(a+1ib) + A,) .

i=0
So (a1+a)+i.(b1+b) € A, foralli € {0,1,2,...,1—1}. Hence (a1,b1) € —(a,b)+B,.
This implies By C —(a,b) + B,,. Therefore, for any (a,b) € B, there exists N € N
such that By C —(a,b) + B,, showing the property (b)(i) of Theorem 7. This
proves theorem. O
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