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Abstract
Let k£ > 2 be an integer and T be the set consisting of all sums of consecutive
squares. We prove that 7T is a k-additive uniqueness set for the set of multiplicative
functions. That is, if a multiplicative function f satisfies a multivariate Cauchy’s
functional equation f(x1+zo+---+xx) = f(z1)+ f(x2) +- - -+ f(zk) for arbitrary
X1y ..., 2 € T, then f is the identity function f(n) =n for all n € N.

1. Introduction

An arithmetic function f : N — C is called multiplicative if f(1) = 1 and
f(mn) = f(m)f(n) whenever ged(m,n) = 1. Let M denote the set of complex
valued multiplicative functions.

A set E C N is called an additive uniqueness set of a set of arithmetic functions
F if f € F is uniquely determined under the condition

f(m+mn)= f(m)+ f(n) for all m,n € E. (1)

For example, N and {1} U 2N are trivially additive uniqueness sets of M.

This concept was first introduced by C. A. Spiro [9] in 1992. She proved that
the set of primes is an additive uniqueness set of My = {f € M| f(po) #
0 for some prime po}. Later on, Spiro’s work has been extended in many direc-
tions.

Let & > 2 be a fixed integer. If there is only one function f € F satisfying
flzr+az2+ - +xp) = f(x1) + flxe) + -+ + f(xy) for arbitrary x; € E, i €
{1,2,...,k}, then E is called a k-additive uniqueness set of F.

In 2010, Fang [4] proved that the set of primes is a 3-additive uniqueness set of
M. In 2013, Dubickas and Sarka [3] generalized Fang’s result to sums of arbitrary
primes.
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In 1996, Chung [1] proved the following result.

Theorem 1. Let f # 0 be a multiplicative function. If f fulfills the condition
f(m? +n?) = f(m?) + f(n?)
for all positive integers m and n, then
e f(4)=0o0r f(4) =4,
o f(®*) = (f(g*)* for all positive integers q and k,
o if f(4) =4, then f(m?) =m? for all positive integers m.

In particular, the set S of positive squares is not an additive uniqueness set for
multiplicative functions.

In 1999, Chung and Phong [2] showed that the set of positive triangular numbers
T, = %, n € N and the set of positive tetrahedral numbers Te,, = M,
n € N are new additive uniqueness sets for M and Park [6] extended their work to
sums of k triangular numbers, k& > 3.

Park [5] proved that S is a k-additive uniqueness set of M for every k > 3. In

2022, he [7] proved that the set
W = {a®>+b*: (a,b) # (0,0)} = {1,2,4,5,8,9,10,13,16,17,...}

of numbers which are representable as sums of two squares is an additive uniqueness
set for multiplicative functions.

n
Set s, = > 3% and let
i=0

T ={sm—su| m>n>0, mnecZ}={1,4,509,13,14,16,25,29,...}.

be the set of all finite sums of consecutive squares.

Note that if W(x) is the counting function for the set W, then by Landau’s
theorem, W(x) ~ ﬁzz as x — 00, where B is an explicitly defined positive
constant. On the other hand, for the counting function of T, we have

2?3 (logx) 271827 « T(x) < 22/3,

(see [10]). Thus, the set T is sparser than W.

Although 7 is a 0-density subset of N, it has a nice additive structure. Platiel
and Rung [8] proved that T forms an additive basis of the exact order 3, i.e. each
nonnegative integer can be written as the sum of at most three numbers from 7.

The main result of this short note is the following theorem.
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Theorem 2. Fiz k > 2. The set T consisting of all finite sums of consecutive
squares is a k-additive uniqueness set of M, namely, if a multiplicative function f
satisfies

fl@r+ae+ -4 xp) = flz) + flz2) + -+ fak)
for arbitrary x1,...,x €T, then f is the identity function.

Since § C T, the k-additivity of 7 for k£ > 3 immediately follows from the
k-additivity of S. For k > 4, we will present an alternative, much simpler proof.

2. Proof

Proof of Theorem 2. The proof consists of four cases.

Case I: k = 2. Trivially, f(1) = 1 and f(2) = 2. If f(4) = 0, then f(5) = 1,
f(9) =2f(4)+1 =1, and f(14) = f(9) + f(5) = 2. But this would lead to a

contradiction:
F(28) = F(7)(4) = 0
— J(4) + f(14) = 4

Thus, f(4) = 4 and f(n) = n for n < 10. Next, we use induction on n. Suppose
that f(n) =n forn < N. If N is not a prime power, then N = ab with ged(a,b) = 1
and f(N) = N by the multiplicativity of f and the induction hypothesis. Thus, we
may assume that NV is a prime power.

Let N = 2" with » > 4. Assume that 2" is fixed by f for all r < 2m. Then
f(22mF1) = 22m+1 gince

FEH) = @I 4 B = f(m) + f(2P),
We obtain f(22(m+1)) = 22(m+1) by calculating £(5 - 22™) in two ways:
f(5-2%™) = f(5) - f(2°™)

and
f<5 A 22m) — f<22(m+1) + 22m> _ f(22(m+1)) 4 f(22m).

Now let N = p” with p =1 (mod 4) and assume that f(n) = n for all n < N. Then
there exist positive integers = and y such that

pr — .1'2 4 y2.
So, from Theorem 1, we get

fO) =@+ = f@®) + f(®) =2+ =p".
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Let P, = 12422 4+...4n? be the nth square pyramidal number. Note that P, € T
n

and P, = w. By an inductive argument, we have f(P,) = Y. f(i%) = P,.
i=1

Next, consider the case N = p” with p = 3 (mod 4) and assume that f(n) =n
for all n < N. If r is even, then p” = 4m + 1 and it cannot be a sum of two positive
squares. Note that

Py, + Py = 2m +1)(3m + 1)(4m + 1).

In this case, gcd(2m+1,4m+1) = ged(3m+1,4m +1) = ged(2m+1,3m+1) =1
and 2m + 1,3m + 1 < 4m + 1. Hence, f(4m + 1) = 4m + 1.
If 7 is odd, then N = p" = 4m + 3 and we have the identity

Poyui1 + Pago = (dm + 3)(2m + 1)(3m + 2).

Note that, ged(2m + 1,4m + 3) = ged(3m + 2,4m + 3) = ged(2m + 1,3m +2) =1
and 2m 4+ 1,3m + 2 < 4m + 3. Thus, f(4m + 3) = 4m + 3.

Case II: k= 3. Since S C T, this immediately follows from the 3-additivity of S.

Case III: k = 4. Platiel and Rung’s theorem guarantees that every positive integer
can be written as a sum of three numbers from 7 some of which possibly vanish.
But, since 9 € T and

n=mn-94+9=mn-9+4+5=(m—9)+4+4+1,

every integer n > 9 can be written as a sum of four positive numbers from 7.
Note that f(4) =4, f(7) = f(4+1+141) = 7and f(10) = f(4+4+1+1) = 10.
From

f2)f(5) =10

we obtain two solutions

{f(20) =4f(5) = f(14+4+1+1)=Tf(2) +6

F@2) ==, 1(5) = —5 or f(2)=2,f(5)=5.
But the first case would lead to a contradiction:
11
fA4)=fb+4+4+1) = 0

= f(7-2)=7f(2) = —20.

Thus, we can conclude that f(2) = 2 and f(5) = 5. From the equalities f(12) =
4f(3) = f(5+5+1+1), f(8) = f(5+1+1+1), f(18) =2f(9) = f(5+5+4+4),
we obtain f(3) = 3, f(8) =8, f(9) =9 and f should be the identity function by
induction.
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Case IV: k > 5. It is clear that the sum of k£ numbers from 7 can represent k, but
cannot represent any number from 1 through k — 1. Since sums of four numbers
from T represent all integers greater than or equal to 10, the sum

I+ +1+r+y+2+w,
———

k —4 times

where x,y, z,w € T, can represent all integers greater than or equal to k + 6.
Note that

(k—2)-14+13+1
(k—2)-1+9+5,
(k—3)-1+5+5+5
(k—3)-1+13+1+1,
(k—4)+16=(k—4) - 1+4+4+4+4
(k—4)-14+9+5+1+1
(k—4)-1+13+13+13+4
(k—4)-14+36+5+1+1.

Let z = f(4), y = f(5), z = f(9) and w = f(13). The above equalities give rise
to the system of equations

l+w=y+=2
Jy=w+2
dr=y+z+2

Jw+zr=xz+y+2.

The solutions are

f4)=f(5)=rf(9)=rf(13)=1
f(4) =4, f(5) =5, f(9) =9, f(13) = 13.

Consider the first solution set f(4) = f(5) = f(9) = f(13) = 1. Arrange positive
numbers from 7T into an increasing sequence and let x,, denote the nth term. Then
flx1) = f(x2) = f(x3) = f(zg) = f(x5) = 1. Observe that, every z, withn > 5

can be written as a sum of four numbers from 7. From the equality
(k—=5)+14+4+4+4+z, @)
=(k—5)+ 13+ 2z, + xp + x. + 24,

with a,b,¢,d < e, we infer that f(x,) =1 for all n > 5 inductively.
But for sufficiently large n, x, can be represented as a sum of £ numbers from
T. So f(x,) =k, which is a contradiction.
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Hence, we conclude that f(4) =4, f(5) =5, f(9) =9 and f(13) = 13. Moreover,
(2) yields f(z,) = x,, for every n > 1.

If N is a sum of k positive numbers from 7 then f(N) = N. Otherwise, choose an
integer M > k+6 such that ged(M, N) = 1. Then M and M N can be represented as
sums of k positive numbers from 7. By the multiplicativity of f, we get M f(N) =
f(M)f(N) = f(MN) = MN. Therefore, f(N) = N and this completes the proof.
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