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Abstract

Let k ≥ 2 be an integer and T be the set consisting of all sums of consecutive
squares. We prove that T is a k-additive uniqueness set for the set of multiplicative
functions. That is, if a multiplicative function f satisfies a multivariate Cauchy’s
functional equation f(x1+x2+ · · ·+xk) = f(x1)+f(x2)+ · · ·+f(xk) for arbitrary
x1, ..., xk ∈ T , then f is the identity function f(n) = n for all n ∈ N.

1. Introduction

An arithmetic function f : N → C is called multiplicative if f(1) = 1 and

f(mn) = f(m)f(n) whenever gcd(m,n) = 1. Let M denote the set of complex

valued multiplicative functions.

A set E ⊆ N is called an additive uniqueness set of a set of arithmetic functions

F if f ∈ F is uniquely determined under the condition

f(m+ n) = f(m) + f(n) for all m,n ∈ E. (1)

For example, N and {1} ∪ 2N are trivially additive uniqueness sets of M.

This concept was first introduced by C. A. Spiro [9] in 1992. She proved that

the set of primes is an additive uniqueness set of M0 = {f ∈ M| f(p0) ̸=
0 for some prime p0}. Later on, Spiro’s work has been extended in many direc-

tions.

Let k ≥ 2 be a fixed integer. If there is only one function f ∈ F satisfying

f(x1 + x2 + · · · + xk) = f(x1) + f(x2) + · · · + f(xk) for arbitrary xi ∈ E, i ∈
{1, 2, . . . , k}, then E is called a k-additive uniqueness set of F .

In 2010, Fang [4] proved that the set of primes is a 3-additive uniqueness set of

M0. In 2013, Dubickas and Šarka [3] generalized Fang’s result to sums of arbitrary

primes.
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In 1996, Chung [1] proved the following result.

Theorem 1. Let f ̸= 0 be a multiplicative function. If f fulfills the condition

f(m2 + n2) = f(m2) + f(n2)

for all positive integers m and n, then

• f(4) = 0 or f(4) = 4,

• f(q2k) = (f(q2))k for all positive integers q and k,

• if f(4) = 4, then f(m2) = m2 for all positive integers m.

In particular, the set S of positive squares is not an additive uniqueness set for

multiplicative functions.

In 1999, Chung and Phong [2] showed that the set of positive triangular numbers

Tn = n(n+1)
2 , n ∈ N and the set of positive tetrahedral numbers Ten = n(n+1)(n+2)

6 ,

n ∈ N are new additive uniqueness sets for M and Park [6] extended their work to

sums of k triangular numbers, k ≥ 3.

Park [5] proved that S is a k-additive uniqueness set of M for every k ≥ 3. In

2022, he [7] proved that the set

W = {a2 + b2 : (a, b) ̸= (0, 0)} = {1, 2, 4, 5, 8, 9, 10, 13, 16, 17, . . .}

of numbers which are representable as sums of two squares is an additive uniqueness

set for multiplicative functions.

Set sn =
n∑

i=0

i2 and let

T = {sm − sn| m > n ≥ 0, m, n ∈ Z} = {1, 4, 5, 9, 13, 14, 16, 25, 29, . . .}.

be the set of all finite sums of consecutive squares.

Note that if W (x) is the counting function for the set W , then by Landau’s

theorem, W (x) ∼ Bx√
log x

as x → ∞, where B is an explicitly defined positive

constant. On the other hand, for the counting function of T , we have

x2/3(log x)−2−log 2−ϵ ≪ T (x) ≪ x2/3,

(see [10]). Thus, the set T is sparser than W .

Although T is a 0-density subset of N, it has a nice additive structure. Platiel

and Rung [8] proved that T forms an additive basis of the exact order 3, i.e. each

nonnegative integer can be written as the sum of at most three numbers from T .

The main result of this short note is the following theorem.
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Theorem 2. Fix k ≥ 2. The set T consisting of all finite sums of consecutive

squares is a k-additive uniqueness set of M, namely, if a multiplicative function f

satisfies

f(x1 + x2 + · · ·+ xk) = f(x1) + f(x2) + · · ·+ f(xk)

for arbitrary x1, . . . , xk ∈ T , then f is the identity function.

Since S ⊂ T , the k-additivity of T for k ≥ 3 immediately follows from the

k-additivity of S. For k ≥ 4, we will present an alternative, much simpler proof.

2. Proof

Proof of Theorem 2. The proof consists of four cases.

Case I: k = 2. Trivially, f(1) = 1 and f(2) = 2. If f(4) = 0, then f(5) = 1,

f(9) = 2f(4) + 1 = 1, and f(14) = f(9) + f(5) = 2. But this would lead to a

contradiction:

f(28) = f(7)f(4) = 0

= f(14) + f(14) = 4

Thus, f(4) = 4 and f(n) = n for n ≤ 10. Next, we use induction on n. Suppose

that f(n) = n for n < N . If N is not a prime power, then N = ab with gcd(a, b) = 1

and f(N) = N by the multiplicativity of f and the induction hypothesis. Thus, we

may assume that N is a prime power.

Let N = 2r with r ≥ 4. Assume that 2r is fixed by f for all r ≤ 2m. Then

f(22m+1) = 22m+1 since

f(22m+1) = f(22m + 22m) = f(22m) + f(22m).

We obtain f(22(m+1)) = 22(m+1) by calculating f(5 · 22m) in two ways:

f(5 · 22m) = f(5) · f(22m)

and

f(5 · 22m) = f(22(m+1) + 22m) = f(22(m+1)) + f(22m).

Now let N = pr with p ≡ 1 (mod 4) and assume that f(n) = n for all n < N . Then

there exist positive integers x and y such that

pr = x2 + y2.

So, from Theorem 1, we get

f(pr) = f(x2 + y2) = f(x2) + f(y2) = x2 + y2 = pr.
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Let Pn = 12+22+ . . .+n2 be the nth square pyramidal number. Note that Pn ∈ T
and Pn = n(n+1)(2n+1)

6 . By an inductive argument, we have f(Pn) =
n∑

i=1

f(i2) = Pn.

Next, consider the case N = pr with p ≡ 3 (mod 4) and assume that f(n) = n

for all n < N . If r is even, then pr = 4m+1 and it cannot be a sum of two positive

squares. Note that

P2m + P4m+1 = (2m+ 1)(3m+ 1)(4m+ 1).

In this case, gcd(2m+1, 4m+1) = gcd(3m+1, 4m+1) = gcd(2m+1, 3m+1) = 1

and 2m+ 1, 3m+ 1 < 4m+ 1. Hence, f(4m+ 1) = 4m+ 1.

If r is odd, then N = pr = 4m+ 3 and we have the identity

P2m+1 + P4m+2 = (4m+ 3)(2m+ 1)(3m+ 2).

Note that, gcd(2m+ 1, 4m+ 3) = gcd(3m+ 2, 4m+ 3) = gcd(2m+ 1, 3m+ 2) = 1

and 2m+ 1, 3m+ 2 < 4m+ 3. Thus, f(4m+ 3) = 4m+ 3.

Case II: k = 3. Since S ⊂ T , this immediately follows from the 3-additivity of S.

Case III: k = 4. Platiel and Rung’s theorem guarantees that every positive integer

can be written as a sum of three numbers from T some of which possibly vanish.

But, since 9 ∈ T and

n = (n− 9) + 9 = (n− 9) + 4 + 5 = (n− 9) + 4 + 4 + 1,

every integer n > 9 can be written as a sum of four positive numbers from T .

Note that f(4) = 4, f(7) = f(4+1+1+1) = 7 and f(10) = f(4+4+1+1) = 10.

From {
f(20) = 4f(5) = f(14 + 4 + 1 + 1) = 7f(2) + 6

f(2)f(5) = 10

we obtain two solutions

f(2) = −20

7
, f(5) = −7

2
or f(2) = 2, f(5) = 5.

But the first case would lead to a contradiction:

f(14) = f(5 + 4 + 4 + 1) =
11

2
= f(7 · 2) = 7f(2) = −20.

Thus, we can conclude that f(2) = 2 and f(5) = 5. From the equalities f(12) =

4f(3) = f(5+ 5+ 1+ 1), f(8) = f(5+ 1+ 1+ 1), f(18) = 2f(9) = f(5+ 5+ 4+ 4),

we obtain f(3) = 3, f(8) = 8, f(9) = 9 and f should be the identity function by

induction.
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Case IV: k ≥ 5. It is clear that the sum of k numbers from T can represent k, but

cannot represent any number from 1 through k − 1. Since sums of four numbers

from T represent all integers greater than or equal to 10, the sum

1 + · · ·+ 1︸ ︷︷ ︸
k − 4 times

+x+ y + z + w,

where x, y, z, w ∈ T , can represent all integers greater than or equal to k + 6.

Note that

(k − 2) + 14 = (k − 2) · 1 + 13 + 1

= (k − 2) · 1 + 9 + 5,

(k − 3) + 15 = (k − 3) · 1 + 5 + 5 + 5

= (k − 3) · 1 + 13 + 1 + 1,

(k − 4) + 16 = (k − 4) · 1 + 4 + 4 + 4 + 4

= (k − 4) · 1 + 9 + 5 + 1 + 1

(k − 4) + 43 = (k − 4) · 1 + 13 + 13 + 13 + 4

= (k − 4) · 1 + 36 + 5 + 1 + 1.

Let x = f(4), y = f(5), z = f(9) and w = f(13). The above equalities give rise

to the system of equations 
1 + w = y + z

3y = w + 2

4x = y + z + 2

3w + x = xz + y + 2.

The solutions are

f(4) = f(5) = f(9) = f(13) = 1

f(4) = 4, f(5) = 5, f(9) = 9, f(13) = 13.

Consider the first solution set f(4) = f(5) = f(9) = f(13) = 1. Arrange positive

numbers from T into an increasing sequence and let xn denote the nth term. Then

f(x1) = f(x2) = f(x3) = f(x4) = f(x5) = 1. Observe that, every xn with n ≥ 5

can be written as a sum of four numbers from T . From the equality

(k − 5) + 1 + 4 + 4 + 4 + xe

= (k − 5) + 13 + xa + xb + xc + xd,
(2)

with a, b, c, d < e, we infer that f(xn) = 1 for all n ≥ 5 inductively.

But for sufficiently large n, xn can be represented as a sum of k numbers from

T . So f(xn) = k, which is a contradiction.
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Hence, we conclude that f(4) = 4, f(5) = 5, f(9) = 9 and f(13) = 13. Moreover,

(2) yields f(xn) = xn for every n ≥ 1.

If N is a sum of k positive numbers from T then f(N) = N . Otherwise, choose an

integerM ≥ k+6 such that gcd(M,N) = 1. ThenM andMN can be represented as

sums of k positive numbers from T . By the multiplicativity of f , we get Mf(N) =

f(M)f(N) = f(MN) = MN . Therefore, f(N) = N and this completes the proof.
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