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Abstract

In 1999, Balog, Brüdern, and Wooley showed there are infinitely many prime gaps
p− q that are (log p)

3
4 -smooth, and infinitely many consecutive prime gaps that are

(log p)
7
8 -smooth. Advancements made since then by Zhang, Maynard, and Poly-

math8btowards resolving the twin prime conjecture have given us the tools to lower
the bounds made by Balog, Brüdern, and Wooley to 47. Moreover, we can show
there are infinitely many m-tuples of primes whose gaps are all ym-smooth for a
calculable prime ym.

1. Introduction

The twin prime conjecture posits there are infinitely many pairs of primes p > q

such that p − q = 2. Whilst unresolved, a significant result from Polymath8b [8,

Theorem 1.4], building upon the work of Goldston, Pintz, and Yıldırım [4], Zhang

[12], and Maynard [6], asserts there are infinitely many pairs of primes p > q such

that p− q ≤ 246 (a result we elaborate on later).

An alternative way to weaken the twin prime conjecture is to assert there are

infinitely many pairs of primes p, q such that p − q = 2n, or, to restate, whose

difference is 2-smooth.1 However, a proof of this conjecture is also beyond current

techniques. So is the conjecture stating there are infinitely many pairs of primes

p > q whose gap is 3-smooth, or 5-smooth.

We define S(y) to be the set of all y-smooth integers. In 1999, Balog, Brüdern,

and Wooley [1] showed there are infinitely many pairs of primes p > q such that

p−q ∈ S
Ä
(log p)

3
4

ä
, and infinitely many consecutive primes p > q such that p−q ∈

S
Ä
(log p)

7
8

ä
. Moreover, it follows immediately from the aforementioned results
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1An integer is y-smooth if its largest prime factor is less than or equal to y.
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m km
2 50
3 35265
4 1624545
5 73807570
6 3340375663

Table 1: Lowest known values of km

given by Polymath8b there are infinitely many pairs of primes p > q with gap

p− q ∈ S (241). In this paper, we show the following.

Theorem 1. There exist infinitely many pairs of primes p > q such that p − q ∈
S(47).

To this effect, we shall use a celebrated theorem due to Maynard [6] (and inde-

pendently Tao [11]), for which we first require some definitions to state precisely.

Definition 1. A k-tuple of integers Hk is admissible if, for every prime p, the

elements of Hk do not cover all congruence classes mod p.

Definition 2. The diameter of a k-tuple is the difference between its largest and

smallest element.

The following version of the Maynard-Tao Theorem was formulated by Banks,

Freiberg, and Turnage-Butterbaugh [2].

Theorem 2 ([6]). For any positive integer m ≥ 2, there exists some km ∈ N such

that, for any admissible k-tuple of integers Hk where k ≥ km, there exist infinitely

many integers n such that n+ h is prime for at least m elements h ∈ Hk.

The m = 2 case was proved by Zhang in 2013, with k2 = 3.5·106 [12, Theorem 1].

Polymath8a [7] refined his method such that one could take k2 = 632. Maynard [6,

Proposition 4.3] discovered a simpler method that lowered k2 to 105 and showed km
to be finite for all m, giving km < cm2e4m for some absolute constant c. Subsequent

optimizations made by Polymath8b [8, Theorem 3.2] and Stadlmann [9, Corollary 1]

give us the current lowest known values of km recorded in Table 1.

Remark 1. For m > 6, Stadlmann [9, Theorem 2] showed km < ce3.8075m for some

absolute constant c.

Remark 2. Computations by Engelsma in an unpublished work [3, Table 5] show

that an admissible 50-tuple of integers with diameter 246 exists, and that this

diameter is minimal over all admissible 50-tuples.

Remark 3. An immediate consequence of the above fact, and the Maynard-Tao

Theorem, is the existence of infinitely many pairs of primes p > q such that p− q ≤
246.
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Remark 4. Maynard [6] showed k2 can be lowered to 5 assuming the Elliott-

Halberstam Conjecture.

The twin prime conjecture belongs to a larger group of problems on the distribu-

tion of patterns of small prime gaps. Such patterns can be represented by a k-tuple

of integers Hk. In generalizing the twin prime conjecture, one can ask: for how

many integers n is n+h prime for all h ∈ Hk? The case H2 = (0, 2) corresponds to

the twin prime conjecture. In 1923, Hardy and Littlewood [5], through probabilistic

reasoning, made the following conjecture (the formulation we present here follows

Tao [10]).

Conjecture 1 (Hardy-Littlewood k-tuples Conjecture). Given an admissible k-

tuple Hk, we define

G = G (Hk) :=
∏
p∈P

1− vp
pÄ

1− 1
p

äk
where P is the set of all primes and vp is the number of congruence classes mod p

covered by the elements in Hk. Then, the number of natural numbers n < x such

that n+Hk consists entirely of primes is asymptotic to G x
(log x)k

.

This conjecture is generally believed to be true and appears consistent with

experimental data. Moreover, the Maynard-Tao Theorem is a significant stride

towards it. We will be applying the Maynard-Tao Theorem to the question of

smooth gaps between primes, with the following results.

Theorem 3. Let ym represent the largest prime less than or equal to km, where

km is as in Table 1, Remark 1, and Remark 4. Then, there exists infinitely many

m-tuples of primes Pm = (p1, p2, p3, ..., pm) such that pi − pj ∈ S(ym) for all

1 ≤ j < i ≤ m.

Note that Theorem 1 is simply a special case of Theorem 3, where m = 2,

km = 50, and ym = 47.

Remark 5. Improvements on the bound on km would improve upon Theorem 3,

lowering the bound ym.

We give an example of Remark 5 below.

Theorem 4. Assuming the Elliott-Halberstam Conjecture, there exist infinitely

many pairs of primes p > q such that p− q ∈ S(5).

Proof. The theorem follows directly from Remark 4 and Theorem 3.

Definition 3. A tuple H is difference y-smooth if hi − hj ∈ S(y) for every pair of

elements hi, hj ∈ H.
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Theorem 5. For any positive integer k, there exists a k-tuple of integers Hk such

that Hk is admissible and Hk is difference k-smooth.

Theorem 3 follows from Theorem 5, which we will show in Section 2.

Remark 6. Balog, Brüdern, and Wooley [1] distinguished between smooth prime

gaps and consecutive smooth gaps. However, Banks, Freiberg, and Turnage-But-

terbaugh [2, Theorem 1] established the admissible k-tuples in the Maynard-Tao

Theorem also infinitely often represent consecutive prime gaps. Hence, there is no

need to distinguish between consecutive and non-consecutive smooth prime gaps.

2. Proofs of Theorem 3 and Theorem 5

To prove Theorem 3, we apply the Maynard-Tao theorem to a difference ym-smooth

km-tuple (whose existence is established in the proof of Theorem 5).

Proof of Theorem 3. Assuming Theorem 5, let H be a km-tuple that is admissible

and difference km-smooth. Since H is admissible and contains at least km elements,

then, by the Maynard-Tao Theorem, there are infinitely many n ∈ N such that n+h

is prime for at least m elements h ∈ H. Let Pm(n) = (p1, p2, p3, ..., pm) be such

an m-tuple of primes. For any two elements of pi, pj ∈ Pm(n), pi − pj = hs − ht,

where hs, ht ∈ H. Recall H is difference km-smooth, so, pi − pj = hs − ht ∈ S(ym).

Therefore, there are infinitely many m-tuples of primes Pm(n) with gaps pi − pj ∈
S(km) = S(ym) for all pairs of elements pi, pj ∈ Pm(n).

We prove Theorem 5 by an explicit construction of a difference k-smooth k-tuple

of integers.

Proof of Theorem 5. Let ω be the product of all positive primes up to k inclusive.

Consider the arithmetic progression Hk = (0, ω, 2ω, 3ω, ..., (k − 1)ω).

For every prime p ≤ k, p | ω. So, every element of Hk is 0 mod p. For every

prime p > k, there are at least k+1 congruence classes mod p, but only k elements

in Hk, and therefore, the elements of Hk cannot cover every congruence class mod

p. Hence, Hk is admissible.

The difference between any two elements of Hk is aω for some integer 0 < a < k.

We define y to be the largest prime not exceeding k. Then, both a and ω ∈ S(y),
so aω ∈ S(y). Therefore, Hk is difference y-smooth.

Thus, given any positive integer k, Hk is an admissible, y-smooth k-tuple, as

desired.
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3. Optimality of ym

A natural question arises from the above formulation: Is the bound ym optimal, or

can it be lowered?

Proposition 1. Let zk represent the largest prime less than or equal to k. Then,

Hk is admissible implies Hk is not difference ℓ-smooth for any ℓ < zk.

Proof. Consider the elements of Hk mod zk. Because Hk is admissible, its elements

cannot cover all congruence classes mod zk. At most, its k elements can cover

zk − 1 congruence classes. But k > zk − 1, so by the pigeonhole principle, there

exists some pair of elements hi, hj ∈ Hk in the same congruence class mod zk. Then,

hi − hj ≡ 0 mod zk, so zk | hi − hj . But zk > ℓ and zk is prime, so zk is a witness

for Hk not being difference ℓ-smooth for any ℓ < zk.

Remark 7. As a consequence of Proposition 1, improving Theorem 3 requires a

different method, one avoiding the Maynard-Tao sieve.
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