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Abstract

We obtain various sharp bounds for inclusion-exclusion-like sums involving the ceil-
ing and the nearest integer functions, which supplement some of the previous results
on sums defined by Jacobsthal and Tverberg.

1. Introduction

Let a, b ∈ Z and m ∈ Z+. In 1957, Jacobsthal [6] introduced sums of the form

Sa,b;m(K) =

K∑
k=0

fa,b;m(k),

where

fa,b;m(k) =

⌊
a+ b+ k

m

⌋
−
⌊
a+ k

m

⌋
−
⌊
b+ k

m

⌋
+

⌊
k

m

⌋
. (1)

In the above equation and throughout this article, unless stated otherwise, ⌊x⌋
is the largest integer less than or equal to x, k is an integer, and K is a nonnegative
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integer. So we can consider f = fa,b;m and S = Sa,b;m as functions of k and K

defined on Z and on N∪{0}, respectively. Both f and S were also studied by Carlitz

[2, 3] and Grimson [5], and were extended in 2012 by Tverberg [13] to the following

form.

Definition 1. Let m and ℓ be positive integers, [1, ℓ] = {1, 2, 3, . . . , ℓ}, and C a

multiset of ℓ integers a1, a2, . . . , aℓ, that is, ai = aj is allowed for some i ̸= j. Define

f : Z → R and S : N ∪ {0} → R by

f(C,m, k) =
∑

T⊆[1,ℓ]

(−1)ℓ−|T |
⌊
k +

∑
i∈T ai

m

⌋
,

S(C,m,K) =

K∑
k=0

f(C,m, k).

We sometimes write f({a1, a2, . . . , aℓ},m, k) and S({a1, a2, . . . , aℓ},m,K) instead

of f(C,m, k) and S(C,m, k), respectively. As usual, the empty sum is defined to

be zero.

For example, if C = {a, b}, then f(C,m, k) = f({a, b},m, k) is the same as that

given in (1), and if C = {a1, a2, a3}, then f(C,m, k) is

f({a1, a2, a3},m, k) =

⌊
a1 + a2 + a3 + k

m

⌋
−
⌊
a1 + a2 + k

m

⌋
−
⌊
a1 + a3 + k

m

⌋

−
⌊
a2 + a3 + k

m

⌋
+

⌊
a1 + k

m

⌋
+

⌊
a2 + k

m

⌋

+

⌊
a3 + k

m

⌋
−
⌊
k

m

⌋
.

Jacobsthal [6] showed that for any K ∈ N ∪ {0}, we have

0 ≤ S({a, b},m,K) ≤ ⌊m/2⌋ , (2)

which is a sharp inequality, that is, the lower bound 0 is actually the minimum value

and the upper bound ⌊m/2⌋ is the maximum value of S({a, b},m,K). Tverberg

[13] proved (2) in a different way and also gave the extreme values of

S({a1, a2, a3},m,K)

without proof. Onphaeng and Pongsriiam [8] then extended Tverberg’s result and

obtained the maximum and minimum values of f in all cases ℓ ≥ 2. In fact, the
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extreme values of f are connected with Jacobsthal numbers Jn and Jacobsthal-

Lucas numbers jn defined, respectively, by the recurrence relations

J0 = 0, J1 = 1, Jn = Jn−1 + 2Jn−2 for n ≥ 2,

and

j0 = 2, j1 = 1, jn = jn−1 + 2jn−2 for n ≥ 2.

The sequences (Jn)n≥0 and (jn)n≥0 are, respectively, A001045 and A014551 in the

On-Line Encyclopedia of Integer Sequences (OEIS) [12]. Onphaeng and Pongsriiam

[8] also obtained the minimum value of S(ℓ) when ℓ is odd and the maximum value

of S(ℓ) when ℓ is even, where S(ℓ) =: S({a1, a2, . . . , aℓ},m,K). We remark that

they [8] also gave an upper bound of S(ℓ) when ℓ is odd, and a lower bound of S(ℓ)

when ℓ is even, but those bounds were far from being sharp, and so it seemed a

totally new method was required to obtained sharp bounds for the missing cases.

Using a computer and their intuition, Thanatipanonda and Wong [11] predicted

the maximum and minimum values of S(ℓ) in the remaining cases with a proof

for the maximum of S(ℓ) when ℓ = 3. In addition, Onphaeng and Pongsriiam [8]

introduced a new function g and obtained the maximum and minimum values of

g = gn in all cases n ≥ 2. For the reader’s convenience, we recall the definition of

g.

Definition 2. Let g : Rn → Z be given by

g(x1, x2, x3, . . . , xn) =
∑

1≤i≤n

⌊xi⌋ −
∑

1≤i1<i2≤n

⌊xi1 + xi2⌋

+
∑

1≤i1<i2<i3≤n

⌊xi1 + xi2 + xi3⌋ − · · ·

+ (−1)n−1⌊x1 + x2 + x3 + · · ·+ xn⌋.

In other words, we define

g(x1, x2, x3, . . . , xn) =
∑

∅̸=T⊆[1,n]

(−1)|T |−1

⌊∑
i∈T

xi

⌋
.

In this article, we extend the results on the functions g, f , and S defined by

Tverberg [13] and Onphaeng and Pongsriiam [8] to the case of some equally useful

and popular functions, namely, the ceiling and the nearest integer functions r− and

r+. These functions are closely related to the floor function and appear in many

number-theoretic contexts. For example, if Dn is the number of permutations of

n distinct letters that have no fixed points (also called derangement of n distinct
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objects), then

Dn = n!

n∑
k=0

(−1)k/k! = r−(n!/e) = r+(n!/e) for every n ∈ N.

Similarly, the nth Fibonacci number is given by

Fn =
αn − βn

α− β
= r−(αn/

√
5) = r+(αn/

√
5) for all n ∈ N,

where α = (1 +
√
5)/2 and β = (1−

√
5)/2, respectively.

Let us now recall the precise definition of the ceiling and the nearest integer

functions. For each x ∈ R, the ceiling of x, denoted by ⌈x⌉, is defined as the

smallest integer larger than or equal to x, the number r+(x) is the nearest integer

to x with tie breaking towards positive infinity, and r−(x) is the nearest integer

to x with tie breaking towards negative infinity. Therefore, r+(x) = ⌊x + 1
2⌋ and

r−(x) = ⌈x− 1
2⌉.

In general, suppose V is a subset of Z or V is a finite dimensional vector space over

R and F : V → R, where the choice of V is chosen so that the following extension of

g, f, S makes sense. We define the functions g(F ) : V n → R, f (F )(C,m, k) : V → R,
and S(F ) : V → R by

g(F )(x1, x2, . . . , xn) =
∑

∅̸=T⊆[1,n]

(−1)|T |−1F

(∑
i∈T

xi

)
,

f (F )(C,m, k) = f (F ) ({a1, a2, . . . , aℓ},m, k) =
∑

T⊆[1,ℓ]

(−1)ℓ−|T |F

(
k +

∑
i∈T ai

m

)
,

S(F )(C,m,K) = S(F )({a1, a2, . . . , aℓ},m,K) =

K∑
k=0

f (F )(C,m, k),

where n, ℓ ∈ Z+, C is a multiset of ℓ integers or ℓ vectors a1, a2, . . . , aℓ, [1, n] =

{1, 2, 3, . . . , n}, [1, ℓ] = {1, 2, 3, . . . , ℓ}, m is a positive real number, K is a nonnega-

tive integer, and k, x1, x2, . . . , xn are variables in V . For example, if F is the floor

function, V = R, Z, or N∪{0}, then f (F ), S(F ), and g(F ) are the same as f , S, and

g in Definitions 1 and 2. In this article, we will study f (F ), S(F ), and g(F ) when F

is the ceiling and the nearest integer functions.

Definition 3. Let g2 = g(ceiling), g3 = g(r
+), and g4 = g(r

−) be functions defined
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on Rn into Z given by

g2(x1, x2, x3, . . . , xn) =
∑

∅̸=T⊆[1,n]

(−1)|T |−1

⌈∑
i∈T

xi

⌉
,

g3(x1, x2, x3, . . . , xn) =
∑

∅̸=T⊆[1,n]

(−1)|T |−1

⌊(∑
i∈T

xi

)
+

1

2

⌋
,

g4(x1, x2, x3, . . . , xn) =
∑

∅̸=T⊆[1,n]

(−1)|T |−1

⌈(∑
i∈T

xi

)
− 1

2

⌉
.

Similarly, we define f2 = f (ceiling), f3 = f (r+), f4 = f (r−), S2 = S(ceiling), S3 =

S(r+), and S4 = S(r−). We sometimes write f1 = f = f (floor), g1 = g = g(floor), and

S1 = S = S(floor) too.

We therefore replace the study on f , S, g in Definitions 1 and 2 by fj , Sj , and

gj for j = 2, 3, 4 in Definition 3. For example, we have

f4(C,m, k) =
∑

T⊆[1,ℓ]

(−1)ℓ−|T |
⌈
k +

∑
i∈T ai

m
− 1

2

⌉
,

S4(C,m,K) =

K∑
k=0

f4(C,m, k).

We may need to change the starting point of the sum in S2 and S4 from 0 to 1,

so we define similar functions as follows.

Definition 4. With the same meaning of C, m, K, f2, and f4 in Definitions 1 and

3, let

T2(C,m,K) = S2(C,m,K)− f2(C,m, 0) =

K∑
k=1

f2(C,m, k),

T4(C,m,K) = S4(C,m,K)− f4(C,m, 0) =
K∑

k=1

f4(C,m, k).

Combining the old results by Onphaeng and Pongsriiam [8] and our new results

in this article, we obtain sharp bounds for gj and fj for every j = 1, 2, 3, 4, and

for all n, ℓ ≥ 2. We also obtain some sharp bounds for T2, S3, and T4, but only

for certain values of ℓ. In fact, these new results are analogs of those given by

Tverberg [13], Onphaeng and Pongsriiam [8], and Thanatipanonda and Wong [11]

on the bounds for g1, f1, and S1.

Although the basic idea is the same, the new results do not follow directly from

the old ones; we still need some modifications and calculations. For example, if x ∈
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Z, then ⌈x⌉ = ⌊x⌋ and the results concerning the floor function can be immediately

transferred to those on the ceiling function. However, we have n real variables

x1, x2, . . . , xn in the definition of f , g, S, T and there are 2n cases to consider

depending on the integrality or nonintegrality of each xi. Furthermore, even though

we assume x1, x2, . . . , xn /∈ Z, we still do not know whether or not particular sums

such as xi1 +xi2 + · · ·+xij are integral. Hence, the new results cannot be obtained

directly from the application of the old ones.

The generalizations to other functions may be of interest too. In this paper, we

are interested in the ceiling and the nearest integer functions. In previous articles,

Munteanu [7] and Phunphayap et al. [9] considered the norm of four vectors and

the absolute value of n real numbers with n ≤ 6, respectively. In the future, we or

other researchers may consider sums or products such as

f(a) + f(b) + f(c)− f(ab)− f(ac)− f(bc) + f(abc),

or more generally

n∑
i=1

f(ai)−
∑

1≤i<j≤n

f(aiaj) + · · ·+ (−1)n−1f(a1a2 · · · an),

where f is a multiplicative function such as the divisor function τ , the sum of

positive divisors function σ, or Euler’s totient function φ. We do not claim that

these problems are important or challenging; we merely hope that our article might

interest some readers and give them new ideas for some possible research problems.

We need to apply basic properties of the floor and ceiling functions throughout

this article, and we refer the reader to the books by Pongsriiam [10, Chapter 3] and

Graham, Knuth, and Patashnik [4, Chapter 3] for more information.

2. Lemmas

In this section, we recall Onphaeng and Pongsriiam’s results [8], and then provide

analogous lemmas that will be used in the proof of our main theorems. We begin

with the periodicity and basic relations between functions fj and gj .

Lemma 1. For each j = 1, 2, 3, 4, let gj be the functions given in Definition 3, and

let n ≥ 2. Then the following statements hold.

(i) g3(x1, x2, . . . , xn) = g1(x1, x2, . . . , xn)− g1 (x1, x2, . . . , xn, 1/2).

(ii) g4(x1, x2, . . . , xn) = g2(x1, x2, . . . , xn)− g2 (x1, x2, . . . , xn,−1/2).

(iii) For each j ∈ {1, 2, 3, 4}, the function gj has period 1 in each variable, that is,

for 1 ≤ j ≤ 4, 1 ≤ i ≤ n, and q ∈ Z, we have

gj(x1, x2, . . . , xi + q, . . . , xn) = gj(x1, x2, . . . , xn). (3)
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Proof. The fact that g1 has period 1 was proved by Onphaeng and Pongsriiam [8,

Lemma 7]. Since ⌈q + x⌉ = q + ⌈x⌉ for every q ∈ Z and x ∈ R, the proof of (iii) for

g2 is similar: we have g2(x1, x2, . . . , xi + q, . . . , xn) is equal to

(
q +

n∑
i=1

⌈xi⌉

)
−

(n− 1

1

)
q +

∑
1≤i1<i2≤n

⌈xi1 + xi2⌉


+

(n− 1

2

)
q +

∑
1≤i1<i2<i3≤n

⌈xi1 + xi2 + xi3⌉


− · · ·+ (−1)n−1

((
n− 1

n− 1

)
q + ⌈x1 + x2 + · · ·+ xn⌉

)
= g2(x1, x2, . . . , xn) + q

∑
0≤k≤n−1

(−1)k
(
n− 1

k

)
. (4)

It is well known that the sum in (4) is zero, and so the total sum is g2(x1, x2, . . . , xn).

Therefore, (iii) is proved when j ∈ {1, 2}.
Before proving (iii) when j ∈ {3, 4}, we first prove (i) and (ii). Let xn+1 = 1/2.

Then we obtain

g1(x1, x2, . . . , xn)− g1 (x1, x2, . . . , xn, 1/2)

=
∑

∅̸=T⊆[1,n]

(−1)|T |−1

⌊∑
i∈T

xi

⌋
−

∑
∅̸=T⊆[1,n+1]

(−1)|T |−1

⌊∑
i∈T

xi

⌋

= −
∑

T⊆[1,n+1]
n+1∈T

(−1)|T |−1

⌊∑
i∈T

xi

⌋
.

In the above sum, we can write T = {n + 1} ∪ T0 where T0 ⊆ [1, n], and the sum

can be rewritten as

−
∑

T0⊆[1,n]

(−1)|T0|

⌊(∑
i∈T0

xi

)
+ xn+1

⌋

= −
∑

T0⊆[1,n]

(−1)|T0|

⌊(∑
i∈T0

xi

)
+

1

2

⌋

=

 ∑
∅̸=T0⊆[1,n]

(−1)|T0|−1

⌊(∑
i∈T0

xi

)
+

1

2

⌋
= g3(x1, x2, . . . , xn),
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which proves (i). Letting xn+1 = −1/2 and calculating

g2(x1, x2, . . . , xn)− g2(x1, x2, . . . , xn, xn+1)

in a similar way, we obtain (ii). By (i) and the fact that g1 has period 1, we see

that the left-hand side of (3) when j = 3 is equal to

g1(x1, x2, . . . , xi + q, . . . , xn)− g1 (x1, x2, . . . , xi + q, . . . , xn, 1/2)

= g1(x1, x2, . . . , xi, . . . , xn)− g1 (x1, x2, . . . , xi, . . . , xn, 1/2)

= g3(x1, x2, . . . , xn).

Similarly, we obtain (iii) for j = 4 from (ii) and the fact that g2 has period 1. This

completes the proof.

Lemma 2. Let ℓ ≥ 2. Then the following statements hold for every j = 1, 2, 3, 4.

(i) fj ({a1, a2, . . . , aℓ},m, 0) = (−1)ℓ−1gj
(
a1

m , a2

m , . . . , aℓ

m

)
,

(ii) fj ({a1, a2, . . . , aℓ},m, k) = (−1)ℓgj
(
a1

m , a2

m , . . . , aℓ

m , k
m

)
+(−1)ℓ−1gj

(
a1

m , a2

m , . . . , aℓ

m

)
.

Proof. Since the proof for each j is similar, we give a complete proof only for f2 and

g2 and leave the other cases to the interested reader. When j = 2, the left-hand

side of (i) is equal to∑
T⊆[1,ℓ]

(−1)ℓ−|T |

⌈∑
i∈T

ai
m

⌉
=

∑
∅̸=T⊆[1,ℓ]

(−1)ℓ−|T |

⌈∑
i∈T

ai
m

⌉

= (−1)ℓ−1
∑

∅̸=T⊆[1,ℓ]

(−1)1−|T |

⌈∑
i∈T

ai
m

⌉

= (−1)ℓ−1g2

(a1
m

,
a2
m

, . . . ,
aℓ
m

)
.

This proves (i) when j = 2.

Next, let aℓ+1 = k. Then the right-hand side of (ii) when j = 2 is equal to

(−1)ℓ

 ∑
∅̸=T⊆[1,ℓ+1]

(−1)|T |−1

⌈∑
i∈T

ai
m

⌉
−

∑
∅̸=T⊆[1,ℓ]

(−1)|T |−1

⌈∑
i∈T

ai
m

⌉
= (−1)ℓ

∑
T⊆[1,ℓ+1]
ℓ+1∈T

(−1)|T |−1

⌈∑
i∈T

ai
m

⌉

= (−1)ℓ
∑

T⊆[1,ℓ]

(−1)|T |
⌈
k +

∑
i∈T ai

m

⌉
= f2 ({a1, a2, . . . , aℓ},m, k) .
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The proof of (i) and (ii) for j = 1, 3, 4 is similar.

Lemma 3. For each j = 1, 2, 3, 4, the function fj has period m in each variable

a1, a2, . . . , aℓ, k, that is, for 1 ≤ i ≤ ℓ, 1 ≤ j ≤ 4, and q ∈ Z, we have

fj ({a1, a2, . . . , ai + qm, . . . , aℓ},m, k) = fj ({a1, a2, . . . , aℓ},m, k)

= fj ({a1, a2, . . . , aℓ},m, k + qm) .

Proof. By Lemmas 1 and 2, we see that the left most term in the left-hand side of

the above equation is

(−1)ℓgj

(
a1
m

,
a2
m

, . . . ,
ai
m

+ q, . . . ,
aℓ
m

,
k

m

)
+ (−1)ℓ−1gj

(a1
m

,
a2
m

, . . . ,
ai
m

+ q, . . . ,
aℓ
m

)
= (−1)ℓgj

(
a1
m

,
a2
m

, . . . ,
aℓ
m

,
k

m

)
+ (−1)ℓ−1gj

(a1
m

,
a2
m

, . . . ,
aℓ
m

)
= fj ({a1, a2, . . . , aℓ},m, k) .

The other equality is similar.

We will apply the bounds for f1 obtained by Onphaeng and Pongsriiam [8] to

prove our main results, so we recall them for the reader’s convenience.

Lemma 4 ([8], Theorem 8). For each ℓ ≥ 2, a1, a2, . . . , aℓ, k ∈ Z, and m ∈ Z+, we

have

−2ℓ−2 ≤ f1({a1, a2, . . . , aℓ},m, k) ≤ 2ℓ−2.

The lower and upper bounds are best possible in the sense that there are a1, a2, . . .,

aℓ, m, k for which equality is achieved. More precisely, the following statements

hold.

(i) If ℓ is odd, m is even, and ai = m/2 for every i = 1, 2, . . . , ℓ, then

f1({a1, a2, . . . , aℓ},m, 0) = −2ℓ−2 and f1 ({a1, a2, . . . , aℓ},m,m/2) = 2ℓ−2.

(ii) If ℓ is even, m is even, and ai = m/2 for every i = 1, 2, . . . , ℓ, then

f1({a1, a2, . . . , aℓ},m, 0) = 2ℓ−2 and f1 ({a1, a2, . . . , aℓ},m,m/2) = −2ℓ−2.

Lemma 5 ([8], Theorem 4). For each n ≥ 2, the function g1 has maximum value

2n−2 − 1 and minimum value −2n−2. Furthermore, when xk = 1
2 for all k =

1, 2, . . . , n, this minimum occurs, and when xk = 1
2 − 1

n2 for all k = 1, 2, . . . , n, the

maximum occurs.
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To prove Lemma 7, it is useful to extend the well known Hermite identity to the

case of the ceiling function. Recall that for each x ∈ R and n ∈ N, we have∑
0≤k≤n−1

⌊
x+

k

n

⌋
= ⌊nx⌋ . (5)

For the proof of (5) and various generalizations, we refer the reader to Aursuka-

ree, Khemaratchatakumthorn, and Pongsriiam [1]. Hermite’s identity, generaliza-

tions, and applications are also collected in Pongsriiam’s book [10, Section 3.2].

Extending it for the ceiling function, we obtain the next lemma.

Lemma 6 (An analog of Hermite’s identity for the ceiling function). For each

x ∈ R and n ∈ N, we have ∑
1≤k≤n

⌈
x+

k

n

⌉
= ⌈nx⌉+ n.

Proof. For 1 ≤ k ≤ n, we have 0 < k
n ≤ 1, and so

⌈
k
n

⌉
= 1. Therefore, if x ∈ Z,

then ∑
1≤k≤n

⌈
x+

k

n

⌉
=

∑
1≤k≤n

(x+ 1) = nx+ n = ⌈nx⌉+ n.

So assume that x /∈ Z. We write x = ⌊x⌋+ {x}, where {x} is the fractional part of

x. Then∑
1≤k≤n

⌈
x+

k

n

⌉
=

∑
1≤k≤n

⌈
⌊x⌋+ {x}+ k

n

⌉
= n⌊x⌋+

∑
1≤k≤n

⌈
{x}+ k

n

⌉
. (6)

Since 0 < {x} < 1, there exists j ∈ {1, 2, . . . , n} such that

j − 1

n
< {x} ≤ j

n
. (7)

Therefore,

0 < {x}+ k

n
≤ 1 for 1 ≤ k ≤ n− j

and

1 < {x}+ k

n
≤ 2 for n− j + 1 ≤ k ≤ n.

So (6) and (7) imply that∑
1≤k≤n

⌈
x+

k

n

⌉
= n⌊x⌋+

∑
1≤k≤n

⌈
{x}+ k

n

⌉

= n⌊x⌋+
∑

1≤k≤n−j

⌈
{x}+ k

n

⌉
+

∑
n−j+1≤k≤n

⌈
{x}+ k

n

⌉
= n⌊x⌋+ (n− j) + 2j = n⌊x⌋+ n+ j.
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So it remains to show that n⌊x⌋+ j = ⌈nx⌉. By (7), we see that j − 1 < n{x} ≤ j,

and so ⌈nx⌉ = ⌈n⌊x⌋+ n{x}⌉ = n⌊x⌋+ ⌈n{x}⌉ = n⌊x⌋+ j, as required.

Lemma 7. Let K, m, ℓ be integers, K ≥ 0, m ≥ 1, ℓ ≥ 2, [1, ℓ] = {1, 2, 3, . . . , ℓ},
and C a multiset of ℓ integers a1, a2, . . . , aℓ. Then the following statements hold.

(i) Sj (C,m,m− 1) = 0 for each j = 1, 2, 3, 4.

(ii) Tj (C,m,m) = 0 for each j = 2, 4.

(iii) For each j = 1, 2, 3, 4, the function Sj has period m in the variables a1, a2,

. . ., aℓ, K, that is, for 1 ≤ j ≤ 4, 1 ≤ i ≤ ℓ, and q ∈ Z, we have

Sj (C,m,K + qm) = Sj (C,m,K) = Sj ({a1, a2, . . . , ai + qm, . . . , aℓ},m,K) .

(iv) For each j = 2, 4, the function Tj has period m in the variables a1, a2, . . .,

aℓ, K, that is, for j = 2, 4, 1 ≤ i ≤ ℓ, and q ∈ Z, we have

Tj (C,m,K + qm) = Tj (C,m,K) = Tj ({a1, a2, . . . , ai + qm, . . . , aℓ},m,K) .

Proof. The periodicity of Sj in the variables a1, a2, . . . , aℓ follows from that of fj ,

which is proved in Lemma 3. So it remains to prove (i), (ii), and the periodicity

of Sj and Tj in the variable K. Since the proof for each j is similar, we give a

complete proof only for S1, S2, and T2. By (5), we see that the left-hand side of (i)

when j = 1 is equal to

m−1∑
k=0

f1(C,m, k) =

m−1∑
k=0

∑
T⊆[1,ℓ]

(−1)ℓ−|T |
⌊
k +

∑
i∈T ai

m

⌋

=
∑

T⊆[1,ℓ]

(−1)ℓ−|T |

(
m−1∑
k=0

⌊
k +

∑
i∈T ai

m

⌋)
=

∑
T⊆[1,ℓ]

(−1)ℓ−|T |

⌊∑
i∈T

ai

⌋

=
∑

∅≠T⊆[1,ℓ]

(−1)ℓ−|T |

(∑
i∈T

ai

)
=

∑
∅≠T⊆[1,ℓ]

∑
i∈T

(−1)ℓ−|T |ai

=

ℓ∑
i=1

∑
T⊆[1,ℓ]
i∈T

(−1)ℓ−|T |ai =

ℓ∑
i=1

ai
∑

T⊆[1,ℓ]
i∈T

(−1)ℓ−|T |. (8)

Next, we will show that the inner sum of the last term in (8) is equal to zero.

If we fix i, n ∈ [1, ℓ], then the number of sets T such that T ⊆ [1, ℓ], i ∈ T , and
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|T | = n is
(
ℓ−1
n−1

)
. Therefore,

∑
T⊆[1,ℓ]
i∈T

(−1)ℓ−|T | =

ℓ∑
n=1

∑
T⊆[1,ℓ]

i∈T,|T |=n

(−1)ℓ−|T | =

ℓ∑
n=1

(
ℓ− 1

n− 1

)
(−1)ℓ−n

=

ℓ−1∑
i=0

(
ℓ− 1

i

)
(−1)ℓ−1−i = (−1)ℓ−1

ℓ−1∑
i=0

(−1)i
(
ℓ− 1

i

)
= 0, (9)

where the last equality is a well known identity. Thus, (8) is zero and (i) is proved

when j = 1. The proof of (i) when j = 3 is similar.

Next, we prove (i) when j = 2. By Lemma 3, we have

f2(C,m, 0) = f2(C,m,m).

Then by (8), (9), and Lemma 6, we see that the left-hand side of (i) when j = 2 is

equal to

m−1∑
k=0

f2(C,m, k) =

m∑
k=1

f2(C,m, k) =

m∑
k=1

∑
T⊆[1,ℓ]

(−1)ℓ−|T |
⌈
k +

∑
i∈T ai

m

⌉

=
∑

T⊆[1,ℓ]

(−1)ℓ−|T |

(
m∑

k=1

⌈
k +

∑
i∈T ai

m

⌉)

=
∑

T⊆[1,ℓ]

(−1)ℓ−|T |

(⌈∑
i∈T

ai

⌉
+m

)

=
∑

∅̸=T⊆[1,ℓ]

∑
i∈T

(−1)ℓ−|T |ai +m
∑

T⊆[1,ℓ]

(−1)ℓ−|T |

= m
∑

T⊆[1,ℓ]

(−1)ℓ−|T |. (10)

Next, we will show that the last sum in (10) is equal to zero. For 0 ≤ i ≤ ℓ, the

number of sets T such that T ⊆ [1, ℓ] and |T | = i is
(
ℓ
i

)
. Therefore,

∑
T⊆[1,ℓ]

(−1)ℓ−|T | =

ℓ∑
i=0

(
ℓ

i

)
(−1)ℓ−i = (−1)ℓ

ℓ∑
i=0

(
ℓ

i

)
(−1)i = 0.

So the last sum in (10) is zero, and (i) is proved when j = 2. The proof of (i) when

j = 4 is similar.

Next, we prove (ii) when j = 2. By (i) and Lemma 3, we see that the left-hand

side of (ii) when j = 2 is equal to

S2 (C,m,m)− f2 (C,m, 0) = S2 (C,m,m)− f2 (C,m,m)

= S2 (C,m,m− 1) = 0.
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This proves (ii) when j = 2 and the proof of (ii) when j = 4 is similar.

Next, by (i) and Lemma 3, we see that the left-hand side of (iii) when j = 2 is

equal to

K+qm∑
k=0

f2(C,m, k) =

q−1∑
i=0

(i+1)m−1∑
j=im

f2(C,m, j) +

K+qm∑
k=qm

f2(C,m, k)

=

q−1∑
i=0

m−1∑
j=0

f2(C,m, j + im) +

K∑
k=0

f2(C,m, k + qm)

=

q−1∑
i=0

m−1∑
j=0

f2(C,m, j) +

K∑
k=0

f2(C,m, k). (11)

The inner sum of the first term in (11) is S2 (C,m,m− 1), which is zero by (i). The

second sum in (11) is S2 (C,m,K), which proves (iii) when j = 2. The proof of (iii)

when j = 1, 3, 4 is similar. By (iii) and Lemma 3, we see that the left-hand side of

(iv) when j = 2 is equal to

S2 (C,m,K + qm)− f2 (C,m, 0) = S2 (C,m,K)− f2 (C,m, 0) = T2 (C,m,K) .

The proof of (iv) when j = 4 is also similar. So the proof is complete.

Lemma 8. For each q ∈ Z and m ∈ N, we have⌊
q

m
+

1

2

⌋
=

⌊
q + ⌊m/2⌋

m

⌋
and

⌈
q

m
+

1

2

⌉
=

⌈
q + ⌈m/2⌉

m

⌉
.

Proof. This is clear when m is even. So assume that m is odd. By the division

algorithm, there are q1, r ∈ Z such that 2q +m = 2mq1 + r where 0 ≤ r < 2m. If

r = 0, then 2 | m contradicting the assumption that m is odd. So 1 ≤ r ≤ 2m− 1.

Therefore,

0 < r/2m < 1, 0 ≤ (r − 1)/2m < 1, and 0 < (r + 1)/2m ≤ 1.

Thus, ⌊
q

m
+

1

2

⌋
=

⌊
2q +m

2m

⌋
=
⌊
q1 +

r

2m

⌋
= q1,⌊

q + ⌊m/2⌋
m

⌋
=

⌊
q + (m− 1)/2

m

⌋
=

⌊
2q +m− 1

2m

⌋
=

⌊
q1 +

r − 1

2m

⌋
= q1,⌈

q

m
+

1

2

⌉
=

⌈
2q +m

2m

⌉
=
⌈
q1 +

r

2m

⌉
= q1 + 1,

and⌈
q + ⌈m/2⌉

m

⌉
=

⌈
q + (m+ 1)/2

m

⌉
=

⌈
2q +m+ 1

2m

⌉
=

⌈
q1 +

r + 1

2m

⌉
= q1 + 1.

This completes the proof.
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3. Main Results

We begin with the results for g2, g3, g4, and then prove the inequality for f2, f3,

and f4, respectively.

Theorem 1. For each n ≥ 2, the function g2 given in Definition 3 has maximum

value 2n−2 and minimum value −2n−2 +1. Furthermore, when xk = 1
2 +

1
n2 for all

k = 1, 2, . . . , n, this minimum occurs, and when xk = 1
2 for all k = 1, 2, . . . , n, the

maximum occurs.

Proof. If n = 2, then the result is the well known inequality

0 ≤ ⌈x⌉+ ⌈y⌉ − ⌈x+ y⌉ ≤ 1, (12)

which holds for all x, y ∈ R. The inequality (12) is sharp: if x = y = 3/4, then

the left inequality in (12) becomes equality, and if x = y = 1/2, then the right

inequality in (12) becomes equality. The result when n ≥ 3 is obtained from the

case n = 2 and a careful selection of pairs.

For illustration purposes, we first give a proof for the case n = 3 and n = 4.

Recall that

g2(x1, x2, x3) = ⌈x1⌉+⌈x2⌉+⌈x3⌉−⌈x1+x2⌉−⌈x1+x3⌉−⌈x2+x3⌉+⌈x1+x2+x3⌉.

We obtain by (12) that

−1 ≤ ⌈x1 + x2 + x3⌉ − ⌈x1 + x2⌉ − ⌈x3⌉ ≤ 0, (13)

0 ≤ −⌈x2 + x3⌉+ ⌈x2⌉+ ⌈x3⌉ ≤ 1, (14)

0 ≤ −⌈x1 + x3⌉+ ⌈x1⌉+ ⌈x3⌉ ≤ 1. (15)

Summing (13), (14), and (15), the middle term is g2(x1, x2, x3). So

−1 ≤ g2(x1, x2, x3) ≤ 2.

Next, we obtain by (12) the following inequalities:

0 ≤ −⌈x1 + x2 + x3 + x4⌉+ ⌈x1 + x2 + x3⌉+ ⌈x4⌉ ≤ 1, (16)

−1 ≤ ⌈x1 + x2 + x4⌉ − ⌈x1 + x2⌉ − ⌈x4⌉ ≤ 0, (17)

−1 ≤ ⌈x1 + x3 + x4⌉ − ⌈x1 + x3⌉ − ⌈x4⌉ ≤ 0, (18)

−1 ≤ ⌈x2 + x3 + x4⌉ − ⌈x2 + x3⌉ − ⌈x4⌉ ≤ 0, (19)

0 ≤ −⌈x1 + x4⌉+ ⌈x1⌉+ ⌈x4⌉ ≤ 1, (20)

0 ≤ −⌈x2 + x4⌉+ ⌈x2⌉+ ⌈x4⌉ ≤ 1, (21)
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0 ≤ −⌈x3 + x4⌉+ ⌈x3⌉+ ⌈x4⌉ ≤ 1. (22)

Summing (16) to (22), we see that −3 ≤ g3(x1, x2, x3, x4) ≤ 4.

Next, we prove the general case n ≥ 5. The expression of the form

⌈xi1 + xi2 + · · ·+ xik⌉

will be called a k-bracket. So for each 1 ≤ k ≤ n, there are
(
n
k

)
k-brackets appearing

in the sum defining g2(x1, x2, . . . , xn). We first pair up the n-bracket with an

(n− 1)-bracket and a 1-bracket as follows:

s1 = (−1)n−1⌈x1+x2+· · ·+xn⌉+(−1)n−2⌈x1+x2+· · ·+xn−1⌉+(−1)n−2⌈xn⌉. (23)

We notice that the sign of ⌈xn⌉ in (23) may or may not be the same as that

appearing in the sum defining g2(x1, x2, . . . , xn) but it is the same as the sign of

⌈x1 + x2 + · · ·+ xn−1⌉ so that we can apply (12) to obtain the bound for s1. Next,

we pair up the remaining (n− 1)-brackets with (n− 2)-brackets and 1-brackets as

follows:

(−1)n−2⌈xi1 +xi2 + · · ·+xin−1
⌉+(−1)n−3⌈xi1 +xi2 + · · ·+xin−2

⌉+(−1)n−3⌈xin−1
⌉,

(24)

where 1 ≤ i1 < i2 < · · · < in−1 ≤ n. We note again that the sign of

⌈xi1 + xi2 + · · ·+ xin−1
⌉ and ⌈xi1 + xi2 + · · ·+ xin−2

⌉

in (24) are the same as those appearing in the sum defining g2(x1, x2, . . . , xn) while

the sign of ⌈xin−1⌉ in (24) may or may not be the same, but we can apply (12) to

obtain the bound of (24). Since ⌈x1 + x2 + · · · + xn−1⌉ appears in (23), the term

xin−1 appearing in the (n− 1)-brackets in (24) is always xn. So in fact (24) is

(−1)n−2⌈xi1+xi2+· · ·+xin−2
+xn⌉+(−1)n−3⌈xi1+xi2+· · ·+xin−2

⌉+(−1)n−3⌈xn⌉.
(25)

Then we sum (25) over all possible 1 ≤ i1 < i2 < · · · < in−2 < n, and call it s2.

That is

s2 = (−1)n−2
∑

1≤i1<i2<···<in−2<n

⌈xi1 + xi2 + · · ·+ xin−2
+ xn⌉

+ (−1)n−3
∑

1≤i1<i2<···<in−2<n

⌈xi1 + xi2 + · · ·+ xin−2
⌉

+ (−1)n−3

(
n− 1

n− 2

)
⌈xn⌉.

We continue doing this process as follows. For each 0 ≤ ℓ ≤ n − 1, let cℓ be

the sum of all ⌈xi1 + xi2 + · · · + xin−ℓ
⌉ with 1 ≤ i1 < i2 < · · · < in−ℓ ≤ n, aℓ
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the sum of all such terms with in−ℓ = n, and bℓ the sum of all such terms with

in−ℓ < n. Therefore, cℓ = aℓ + bℓ. Since b0 is the empty sum, we have b0 = 0. The

number of (n − ℓ)-brackets appearing in the sum defining cℓ is
(

n
n−ℓ

)
, the number

of (n− ℓ)-brackets appearing in the sum defining aℓ is
(

n−1
n−ℓ−1

)
, and the number of

(n− ℓ)-brackets appearing in the sum defining bℓ is
(
n−1
n−ℓ

)
. In addition, we have

g2(x1, x2, . . . , xn) = cn−1 − cn−2 + cn−3 − · · ·+ (−1)n−1c0

=
∑

0≤ℓ≤n−1

(−1)n−1−ℓcℓ,

s1 = (−1)n−1a0 + (−1)n−2b1 + (−1)n−2⌈xn⌉,

s2 = (−1)n−2a1 + (−1)n−3b2 + (−1)n−3

(
n− 1

n− 2

)
⌈xn⌉.

In general, for each 1 ≤ ℓ ≤ n− 1, we let

sℓ = (−1)n−ℓaℓ−1 + (−1)n−ℓ−1bℓ + (−1)n−ℓ−1

(
n− 1

n− ℓ

)
⌈xn⌉.

Then∑
1≤ℓ≤n−1

sℓ = (−1)n−1a0 +
∑

2≤ℓ≤n−1

(−1)n−ℓaℓ−1 +
∑

1≤ℓ≤n−2

(−1)n−ℓ−1bℓ + bn−1

+ ⌈xn⌉
∑

1≤ℓ≤n−1

(−1)n−ℓ−1

(
n− 1

n− ℓ

)
. (26)

Recall the well known identity
∑

0≤ℓ≤n(−1)ℓ
(
n
ℓ

)
= 0 for all n ≥ 1. Then the last

sum on the right-hand side of (26) is

−
∑

1≤ℓ≤n−1

(−1)n−ℓ

(
n− 1

n− ℓ

)
= −

∑
1≤ℓ≤n−1

(−1)ℓ
(
n− 1

ℓ

)

= −
∑

0≤ℓ≤n−1

(−1)ℓ
(
n− 1

ℓ

)
+ 1 = 1.

Therefore, the last term in (26) is ⌈xn⌉. Replacing ℓ by ℓ + 1 in the first sum on

the right-hand side of (26), we see that∑
1≤ℓ≤n−1

sℓ = (−1)n−1a0 +
∑

1≤ℓ≤n−2

(−1)n−ℓ−1(aℓ + bℓ) + bn−1 + ⌈xn⌉

= (−1)n−1c0 +
∑

1≤ℓ≤n−2

(−1)n−ℓ−1cℓ + bn−1 + ⌈xn⌉

= (−1)n−1c0 +
∑

1≤ℓ≤n−2

(−1)n−ℓ−1cℓ + cn−1 (27)

=
∑

0≤ℓ≤n−1

(−1)n−ℓ−1cℓ = g2(x1, x2, . . . , xn),
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where (27) can be obtained from the definition of cn−1, bn−1, and an−1. By (12)

and (23) we obtain −1 ≤ s1 ≤ 0 if n is odd, and 0 ≤ s1 ≤ 1 if n is even. Similarly,

the sum (25) lies in [0, 1] if n is odd, and lies in [−1, 0] if n is even. Therefore,

0 ≤ s2 ≤
(
n− 1

n− 2

)
if n is odd

and

−
(
n− 1

n− 2

)
≤ s2 ≤ 0 if n is even.

In general, for each 1 ≤ ℓ ≤ n− 1, we have

0 ≤ sℓ ≤
(
n− 1

n− ℓ

)
if n and ℓ have different parity

and

−
(
n− 1

n− ℓ

)
≤ sℓ ≤ 0 if n and ℓ have the same parity.

Since g2(x1, x2, . . . , xn) =
∑

1≤ℓ≤n−1 sℓ, we obtain, for odd n,

−
∑

1≤ℓ≤n−1
ℓ is odd

(
n− 1

n− ℓ

)
≤ g2(x1, x2, . . . , xn) ≤

∑
1≤ℓ≤n−1
ℓ is even

(
n− 1

n− ℓ

)
,

and for even n,

−
∑

1≤ℓ≤n−1
ℓ is even

(
n− 1

n− ℓ

)
≤ g2(x1, x2, . . . , xn) ≤

∑
1≤ℓ≤n−1
ℓ is odd

(
n− 1

n− ℓ

)
.

Recall the well known identity∑
0≤k≤n
k is even

(
n

k

)
=

∑
0≤k≤n
k is odd

(
n

k

)
= 2n−1. (28)

Therefore, if n is odd, then∑
1≤ℓ≤n−1
ℓ is odd

(
n− 1

n− ℓ

)
=

∑
1≤ℓ≤n−1
ℓ is even

(
n− 1

ℓ

)
= 2n−2 − 1

and ∑
1≤ℓ≤n−1
ℓ is even

(
n− 1

n− ℓ

)
=

∑
1≤ℓ≤n−1
ℓ is odd

(
n− 1

ℓ

)
=

∑
0≤ℓ≤n−1
ℓ is odd

(
n− 1

ℓ

)
= 2n−2.
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Similarly, if n is even, then∑
1≤ℓ≤n−1
ℓ is odd

(
n− 1

n− ℓ

)
= 2n−2 and

∑
1≤ℓ≤n−1
ℓ is even

(
n− 1

n− ℓ

)
= 2n−2 − 1.

Hence, −2n−2 + 1 ≤ g2(x1, x2, . . . , xn) ≤ 2n−2, as required.

Next, we show that the lower bound −2n−2 + 1 and the upper bound 2n−2 are

actually the minimum and the maximum of g2(x1, x2, . . . , xn), respectively. Let

xk = 1/2 for every k = 1, 2, . . . , n. Then

g2(x1, x2, . . . , xn) =
∑

1≤k≤n

(−1)k−1

⌈
k

2

⌉(
n

k

)
(29)

=
∑

1≤k≤n
k is even

(−1)k−1 k

2

(
n

k

)
+

∑
1≤k≤n
k is odd

(−1)k−1 k + 1

2

(
n

k

)

=
1

2

∑
1≤k≤n
k is even

(−1)k−1k

(
n

k

)
+

1

2

∑
1≤k≤n
k is odd

(−1)k−1k

(
n

k

)
+

1

2

∑
1≤k≤n
k is odd

(−1)k−1

(
n

k

)

=
1

2

∑
1≤k≤n

(−1)k−1k

(
n

k

)
+

1

2

∑
1≤k≤n
k is odd

(
n

k

)
. (30)

Recall the well known identity

n∑
k=1

(−1)k−1k

(
n

k

)
= 0, which holds for all n ≥ 2. (31)

Then (28), (30), and (31) imply that

g2(x1, x2, . . . , xn) =
1

2

(
2n−1

)
= 2n−2. (32)

Next, let xk = 1
2 + 1

n2 for every k = 1, 2, . . . , n. Then

g2(x1, x2, . . . , xn) =
∑

1≤k≤n

(−1)k−1

⌈
k

2
+

k

n2

⌉(
n

k

)
. (33)

Recall that n ≥ 2. If 1 ≤ k ≤ n and k is even, then
⌈
k
2 + k

n2

⌉
= k

2 +1. If 1 ≤ k ≤ n

and k is odd, then
⌈
k
2 + k

n2

⌉
= k+1

2 . Therefore, the left-hand side of (33) is equal
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to ∑
1≤k≤n
k is even

(−1)k−1

(
k

2
+ 1

)(
n

k

)
+

∑
1≤k≤n
k is odd

(−1)k−1 k + 1

2

(
n

k

)

=
1

2

∑
1≤k≤n
k is even

(−1)k−1k

(
n

k

)
−

∑
1≤k≤n
k is even

(
n

k

)
+

1

2

∑
1≤k≤n
k is odd

(−1)k−1k

(
n

k

)

+
1

2

∑
1≤k≤n
k is odd

(
n

k

)

=
1

2

∑
1≤k≤n

(−1)k−1k

(
n

k

)
−

∑
1≤k≤n
k is even

(
n

k

)
+

1

2

∑
1≤k≤n
k is odd

(
n

k

)
. (34)

Then (28), (31), and (34) imply that

g2(x1, x2, . . . , xn) = −
∑

1≤k≤n
k is even

(
n

k

)
+

1

2

∑
1≤k≤n
k is odd

(
n

k

)

= −
(
2n−1 − 1

)
+ 2n−2 = −2n−2 + 1.

This completes the proof.

The proof of the next theorem follows the same idea as that of Theorem 1, but

we still need to adjust some calculations.

Theorem 2. For each n ≥ 2, the function g3 given in Definition 3 has maximum

value 2n−2 and minimum value −2n−2. Furthermore, when xk = 1
2 − 1

n2 for all

k = 1, 2, . . . , n, this minimum occurs, and when xk = 1
2 for all k = 1, 2, . . . , n, the

maximum occurs.

Proof. By Lemma 1, we can assume that 0 ≤ xk < 1 for every 1 ≤ k ≤ n. First, we

give a proof for the case n = 2. Recall the well known inequality that

−1 ≤ ⌊x⌋+ ⌊y⌋ − ⌊x+ y⌋ ≤ 0,

which holds for all x, y ∈ R. Therefore,

−1 ≤
⌊
x+

1

2

⌋
+ ⌊y⌋ −

⌊(
x+

1

2

)
+ y

⌋
≤ 0.

Since 0 ≤ y < 1, we obtain

−1 ≤
⌊
x+

1

2

⌋
−
⌊
x+ y +

1

2

⌋
≤ 0 (35)
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and

0 ≤
⌊
y +

1

2

⌋
≤ 1. (36)

Summing (35) and (36), the middle term is g3(x, y), and so

−1 ≤ g3(x, y) ≤ 1. (37)

The inequality (37) is sharp: if x = y = 1/4, then the left inequality in (37)

becomes equality, and if x = y = 1/2, then the right inequality in (37) becomes

equality. The result when n ≥ 3 is based on a careful selection of pairs and the case

n = 2.

For illustration purposes, we first give a proof for the case n = 3 and n = 4. By

a similar idea as in the proof of Theorem 1, we have

0 ≤
⌊
x1 + x2 + x3 +

1

2

⌋
−
⌊
x1 + x2 +

1

2

⌋
≤ 1, (38)

−1 ≤ −
⌊
x2 + x3 +

1

2

⌋
+

⌊
x2 +

1

2

⌋
≤ 0, (39)

−1 ≤ −
⌊
x1 + x3 +

1

2

⌋
+

⌊
x1 +

1

2

⌋
≤ 0, (40)

0 ≤
⌊
x3 +

1

2

⌋
≤ 1. (41)

Summing (38), (39), (40), and (41) gives −2 ≤ g3(x1, x2, x3) ≤ 2. Similarly, we

have

−1 ≤ −
⌊
x1 + x2 + x3 + x4 +

1

2

⌋
+

⌊
x1 + x2 + x3 +

1

2

⌋
≤ 0, (42)

0 ≤
⌊
x1 + x2 + x4 +

1

2

⌋
−
⌊
x1 + x2 +

1

2

⌋
≤ 1, (43)

0 ≤
⌊
x1 + x3 + x4 +

1

2

⌋
−
⌊
x1 + x3 +

1

2

⌋
≤ 1, (44)

0 ≤
⌊
x2 + x3 + x4 +

1

2

⌋
−
⌊
x2 + x3 +

1

2

⌋
≤ 1, (45)

−1 ≤ −
⌊
x1 + x4 +

1

2

⌋
+

⌊
x1 +

1

2

⌋
≤ 0, (46)

−1 ≤ −
⌊
x2 + x4 +

1

2

⌋
+

⌊
x2 +

1

2

⌋
≤ 0, (47)

−1 ≤ −
⌊
x3 + x4 +

1

2

⌋
+

⌊
x3 +

1

2

⌋
≤ 0, (48)
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0 ≤
⌊
x4 +

1

2

⌋
≤ 1. (49)

Summing (42) to (49), we see that −4 ≤ g3(x1, x2, x3, x4) ≤ 4.

In general, we let n ≥ 5, call the expression of the form
⌊
xi1 + xi2 + · · ·+ xiℓ +

1
2

⌋
an ℓ-bracket, and follow closely the method used in the proof of Theorem 1. For

each 1 ≤ ℓ ≤ n, let cℓ be the sum of all ℓ-brackets with 1 ≤ i1 < i2 < · · · < iℓ ≤ n,

aℓ the sum of all such terms with iℓ = n, and bℓ the sum of all such terms with

iℓ < n. Therefore, cℓ = aℓ + bℓ, the number of summands of cℓ is
(
n
ℓ

)
, the number

of summands of aℓ is
(
n−1
ℓ−1

)
, and the number of summands of bℓ is

(
n−1
ℓ

)
. As usual,

the empty sum is defined to be zero, so bn = 0. Let

sℓ = (−1)n−ℓan−ℓ+1 + (−1)n−ℓ−1bn−ℓ

for each 1 ≤ ℓ ≤ n− 1, and let sn = a1. Then for 1 ≤ ℓ ≤ n− 1, we have

0 ≤ sℓ ≤
(
n− 1

n− ℓ

)
if n− ℓ is even

and

−
(
n− 1

n− ℓ

)
≤ sℓ ≤ 0 if n− ℓ is odd.

In addition, we have∑
1≤ℓ≤n

sℓ = (−1)n−1an +
∑

2≤ℓ≤n−1

(−1)n−ℓan−ℓ+1

+
∑

1≤ℓ≤n−2

(−1)n−ℓ−1bn−ℓ + b1 + sn

= (−1)n−1an +
∑

1≤ℓ≤n−2

(−1)n−ℓ−1(an−ℓ + bn−ℓ) + b1 + a1

= (−1)n−1cn +
∑

1≤ℓ≤n−2

(−1)n−ℓ−1cn−ℓ + c1

=
∑

0≤ℓ≤n−1

(−1)n−ℓ−1cn−ℓ

= g3(x1, x2, . . . , xn).

Therefore,

−
∑

1≤ℓ≤n
n − ℓ is odd

(
n− 1

n− ℓ

)
≤ g3(x1, x2, . . . , xn) ≤

∑
1≤ℓ≤n

n − ℓ is even

(
n− 1

n− ℓ

)
.

Replacing ℓ by ℓ+ 1, we see that∑
1≤ℓ≤n

n − ℓ is even

(
n− 1

n− ℓ

)
=

∑
0≤ℓ≤n−1

n − ℓ is odd

(
n− 1

n− 1− ℓ

)
= 2n−2.
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Similarly, we have

−
∑

1≤ℓ≤n
n − ℓ is odd

(
n− 1

n− ℓ

)
= −2n−2.

Hence,

−2n−2 ≤ g3(x1, x2, . . . , xn) ≤ 2n−2, (50)

as required.

Next we show that the lower and upper bounds in (50) are the minimum and the

maximum of g3(x1, x2, . . . , xn). Let xk = 1/2 for every k = 1, 2, . . . , n. By Lemmas

1 and 5, we obtain

g3(x1, x2, . . . , xn) = g1(x1, x2, . . . , xn)− g1(x1, x2, . . . , xn, 1/2)

= −2n−2 −
(
−2n−1

)
= 2n−2.

This shows that 2n−2 is the maximum value of g3. Next let xk = 1
2 − 1

n2 for every

k = 1, 2, . . . , n. Then

g3(x1, x2, . . . , xn) =
∑

1≤k≤n

(−1)k−1

⌊
k + 1

2
− k

n2

⌋(
n

k

)
. (51)

If 1 ≤ k ≤ n and k is even, then
⌊
k+1
2 − k

n2

⌋
= k

2 =
⌊
k
2

⌋
. If 1 ≤ k ≤ n and k is odd,

then
⌊
k+1
2 − k

n2

⌋
= k−1

2 =
⌊
k
2

⌋
. Writing

⌊
k
2

⌋
= k

2 +
{

k
2

}
, we see that (51) is

g3(x1, x2, . . . , xn) =
1

2

∑
1≤k≤n

(−1)k−1k

(
n

k

)
−
∑

1≤k≤n

(−1)k−1

{
k

2

}(
n

k

)

=
1

2

∑
1≤k≤n

(−1)k−1k

(
n

k

)
− 1

2

∑
1≤k≤n
k is odd

(
n

k

)
,

where the last equality is obtained from the fact that
{

k
2

}
= 0 if k is even and{

k
2

}
= 1

2 if k is odd. By (28) and (31), we obtain g3(x1, x2, . . . , xn) = −2n−2. This

completes the proof.

Theorem 3. For each n ≥ 2, the function g4 given in Definition 3 has maximum

value 2n−2 and minimum value −2n−2. Furthermore, when xk = 1
2 for all k =

1, 2, . . . , n, this minimum occurs, and when xk = 1
2 + 1

n2 for all k = 1, 2, . . . , n, the

maximum occurs.

Proof. Since the proof of this theorem is similar to those of Theorems 1 and 2, we

give less details. By Lemma 1, we can assume that 0 < xk ≤ 1 for every 1 ≤ k ≤ n.

For n = 2, we let x1 = x, x2 = y, and recall that

g4(x, y) =

⌈
x− 1

2

⌉
+

⌈
y − 1

2

⌉
−
⌈
x+ y − 1

2

⌉
.
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By (12) and the inequality 0 < y ≤ 1, we obtain

−1 ≤
⌈
x− 1

2

⌉
−
⌈
x+ y − 1

2

⌉
≤ 0 (52)

and

0 ≤
⌈
y − 1

2

⌉
≤ 1. (53)

Summing (52) and (53), the middle term is g4(x, y). Therefore,

−1 ≤ g4(x, y) ≤ 1. (54)

The inequality (54) is sharp: if x = y = 1/2, then the left inequality in (54) becomes

equality, and if x = y = 3/4, then the right inequality in (54) becomes equality.

The result when n ≥ 3 is based on a careful selection of pairs and the case n = 2.

The illustration for the case n = 3 and n = 4 is left to the reader.

Let n ≥ 5, call the expression of the form
⌈
xi1 + xi2 + · · ·+ xiℓ − 1

2

⌉
an ℓ-bracket,

and follow closely the method used in the proof of Theorem 2. For each 1 ≤ ℓ ≤ n,

let cℓ be the sum of all ℓ-brackets with 1 ≤ i1 < i2 < · · · < iℓ ≤ n, aℓ the sum of all

such terms with iℓ = n, bℓ the sum of all such terms with iℓ < n, and let

sℓ = (−1)n−ℓan−ℓ+1 + (−1)n−ℓ−1bn−ℓ

for 1 ≤ ℓ ≤ n− 1 and sn = a1. Then

0 ≤ sℓ ≤
(
n− 1

n− ℓ

)
if n− ℓ is even,

−
(
n− 1

n− ℓ

)
≤ sℓ ≤ 0 if n− ℓ is odd,

and ∑
1≤ℓ≤n

sℓ = g4(x1, x2, . . . , xn).

Therefore,

−
∑

1≤ℓ≤n
n − ℓ is odd

(
n− 1

n− ℓ

)
≤ g4(x1, x2, . . . , xn) ≤

∑
1≤ℓ≤n

n − ℓ is even

(
n− 1

n− ℓ

)
.

This implies

−2n−2 ≤ g4(x1, x2, . . . , xn) ≤ 2n−2,

as required. If xk = 1/2 for every k = 1, 2, . . . , n, then we apply Lemma 1 and

Theorem 1 to obtain

g4(x1, x2, . . . , xn) = g2(x1, x2, . . . , xn)− g2(x1, x2, . . . , xn,−1/2)

= g2(x1, x2, . . . , xn)− g2(x1, x2, . . . , xn, 1/2)

= 2n−2 − 2n−1 = −2n−2.
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Next, let xk = 1
2 + 1

n2 for every k = 1, 2, . . . , n. Then

g4(x1, x2, . . . , xn) =
∑

1≤k≤n

(−1)k−1

⌈
k − 1

2
+

k

n2

⌉(
n

k

)
. (55)

If 1 ≤ k ≤ n and k is even, then
⌈
k−1
2 + k

n2

⌉
= k

2 =
⌈
k
2

⌉
. If 1 ≤ k ≤ n and k is odd,

then
⌈
k−1
2 + k

n2

⌉
= k+1

2 =
⌈
k
2

⌉
. Therefore, (55) becomes

g4(x1, x2, . . . , xn) =
∑

1≤k≤n

(−1)k−1

⌈
k

2

⌉(
n

k

)
.

By (29) and (32), we obtain g4(x1, x2, . . . , xn) = 2n−2. This completes the proof.

Collecting Theorems 1 to 3 and that by Onphaeng and Pongsriiam [8, Theorem

4], we obtain the following corollary.

Corollary 1. Let g1, g2, g3, g4 be the functions defined in Definitions 2 and 3, and

n ≥ 2. Then the following inequalities hold:

− 2n−2 ≤ g1 ≤ 2n−2 − 1,

− 2n−2 + 1 ≤ g2 ≤ 2n−2,

and

−2n−2 ≤ g3, g4 ≤ 2n−2.

In addition, if xk = 1/2 for every k ≤ n, then

g1 = −2n−2 = g4 and g2 = 2n−2 = g3;

if xk = 1
2 − 1

n2 for every k ≤ n, then

g1 = 2n−2 − 1 = −g3 − 1;

if xk = 1
2 + 1

n2 for every k ≤ n, then

g2 = −2n−2 + 1 = −g4 + 1.

Next, we give a sharp inequality for f2, f3, and f4, respectively. The proof for

f2 closely follows those of Theorems 1 to 3 while the proofs for f3 and f4 are much

shorter.

Theorem 4. For each ℓ ≥ 2, a1, a2, . . . , aℓ, k ∈ Z, and m ∈ Z+, we have

−2ℓ−2 ≤ f2({a1, a2, . . . , aℓ},m, k) ≤ 2ℓ−2.

Moreover, the upper and lower bounds are best possible in the sense that there are

a1, a2, . . . , aℓ, m, k for which equality is achieved. More precisely, the following

statements hold.
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(i) If ℓ is odd, m is even, and ai = m/2 for every i = 1, 2, . . . , ℓ, then

f2({a1, a2, . . . , aℓ},m, 0) = 2ℓ−2 and f2 ({a1, a2, . . . , aℓ},m,m/2) = −2ℓ−2.

(ii) If ℓ is even, m is even, and ai = m/2 for every i = 1, 2, . . . , ℓ, then

f2({a1, a2, . . . , aℓ},m, 0) = −2ℓ−2 and f2 ({a1, a2, . . . , aℓ},m,m/2) = 2ℓ−2.

Proof. By Lemma 3, we can assume that 0 ≤ ai < m for every 1 ≤ i ≤ ℓ. It is not

difficult to see that for x, y ∈ R, if 0 ≤ y < 1, then 0 ≤ ⌈x+ y⌉ − ⌈x⌉ ≤ 1. So if

ℓ = 2, then

0 ≤
⌈
a1 + a2 + k

m

⌉
−
⌈
a1 + k

m

⌉
≤ 1 (56)

and

−1 ≤ −
⌈
a2 + k

m

⌉
+

⌈
k

m

⌉
≤ 0. (57)

Summing (56) and (57), we obtain −1 ≤ f2({a1, a2},m, k) ≤ 1. The result when

ℓ ≥ 3 is based on a careful selection of pairs and the case ℓ = 2. Let ℓ ≥ 3, call

the expression of the form
⌈
ai1

+ai2
+···+air+k

m

⌉
an r-bracket, and follow closely the

method used in the proof of Theorems 1, 2, and 3. For each 1 ≤ r ≤ ℓ, let cr be the

sum of all r-brackets with 1 ≤ i1 < i2 < · · · < ir ≤ ℓ, ar the sum of all such terms

with ir = ℓ, br the sum of all such terms with ir < ℓ, and

sr = (−1)r+1aℓ−r+1 + (−1)rbℓ−r for r < ℓ, and sℓ = (−1)ℓ+1a1 + (−1)ℓ
⌈

k
m

⌉
.

Then, for 1 ≤ r ≤ ℓ, we have cr = ar + br, bℓ = 0,

0 ≤ sr ≤
(
ℓ− 1

ℓ− r

)
if r is odd

and

−
(
ℓ− 1

ℓ− r

)
≤ sr ≤ 0 if r is even.



INTEGERS: 25 (2025) 26

In addition, we obtain∑
1≤r≤ℓ

sr = aℓ +
∑

2≤r≤ℓ−1

(−1)r+1aℓ−r+1 +
∑

1≤r≤ℓ−2

(−1)rbℓ−r + (−1)ℓ−1b1 + sℓ

= aℓ +
∑

1≤r≤ℓ−2

(−1)r(aℓ−r + bℓ−r) + (−1)ℓ−1b1 + (−1)ℓ+1a1 + (−1)ℓ
⌈
k

m

⌉

= cℓ +
∑

1≤r≤ℓ−2

(−1)rcℓ−r + (−1)ℓ−1c1 + (−1)ℓ
⌈
k

m

⌉

=
∑

0≤r≤ℓ−1

(−1)rcℓ−r + (−1)ℓ
⌈
k

m

⌉
= f2({a1, a2, . . . , aℓ},m, k).

Therefore,

−
∑

1≤r≤ℓ
r is even

(
ℓ− 1

ℓ− r

)
≤ f2({a1, a2, . . . , aℓ},m, k) ≤

∑
1≤r≤ℓ
r is odd

(
ℓ− 1

ℓ− r

)
.

This implies

−2ℓ−2 ≤ f2({a1, a2, . . . , aℓ},m, k) ≤ 2ℓ−2, (58)

as required. If ℓ is odd, m is even, and ai = m/2 for every 1 ≤ i ≤ ℓ, we obtain by

Lemma 2 and Theorem 1 that

f2({a1, a2, . . . , aℓ},m, 0) = g2

(
1

2
,
1

2
, . . . ,

1

2

)
= 2ℓ−2

and

f2({a1, a2, . . . , aℓ},m,m/2) = (−1)ℓg2

(
1

2
,
1

2
, . . . ,

1

2

)
+ (−1)ℓ−1g2

(
1

2
,
1

2
, . . . ,

1

2

)
= −2ℓ−2.

If ℓ is even, m is even, and ai = m/2 for every 1 ≤ i ≤ ℓ, we obtain similarly that

f2({a1, a2, . . . , aℓ},m, 0) = −2ℓ−2 and f2({a1, a2, . . . , aℓ},m,m/2) = 2ℓ−2.

So 2ℓ−2 and −2ℓ−2 in (58) cannot be improved. This completes the proof.

Theorem 5. For each ℓ ≥ 2, a1, a2, . . . , aℓ, k ∈ Z, and m ∈ Z+, we have

−2ℓ−2 ≤ f3({a1, a2, . . . , aℓ},m, k) ≤ 2ℓ−2.

Moreover, the lower and upper bounds are best possible in the sense that there are

a1, a2, . . . , aℓ, m, k for which equality is achieved. More precisely, the following

statements hold.
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(i) If ℓ is odd, m is even, and ai = m/2 for every i = 1, 2, . . . , ℓ, then

f3({a1, a2, . . . , aℓ},m, 0) = 2ℓ−2 and f3 ({a1, a2, . . . , aℓ},m,m/2) = −2ℓ−2.

(ii) If ℓ is even, m is even, and ai = m/2 for every i = 1, 2, . . . , ℓ, then

f3({a1, a2, . . . , aℓ},m, 0) = −2ℓ−2 and f3 ({a1, a2, . . . , aℓ},m,m/2) = 2ℓ−2.

Proof. By the definition of f1 and f3, we have

f3({a1, a2, . . . , aℓ},m, k) =
∑

T⊆[1,ℓ]

(−1)ℓ−|T |
⌊
k +

∑
i∈T ai

m
+

1

2

⌋

=
∑

T⊆[1,ℓ]

(−1)ℓ−|T |
⌊
m+ 2k +

∑
i∈T 2ai

2m

⌋
= f1({2a1, 2a2, . . . , 2aℓ}, 2m, 2k +m).

From this and Lemma 4, we obtain the desired lower and upper bounds for f3. For

(i), we obtain by Lemma 2 and Theorem 2 that

f3({a1, a2, . . . , aℓ},m, 0) = 2ℓ−2 and f3({a1, a2, . . . , aℓ},m,m/2) = −2ℓ−2.

For (ii), we obtain similarly that

f3({a1, a2, . . . , aℓ},m, 0) = −2ℓ−2 and f3({a1, a2, . . . , aℓ},m,m/2) = 2ℓ−2.

So 2ℓ−2 and −2ℓ−2 are best possible. This completes the proof.

Theorem 6. For each ℓ ≥ 2, a1, a2, . . . , aℓ, k ∈ Z, and m ∈ Z+, we have

−2ℓ−2 ≤ f4({a1, a2, . . . , aℓ},m, k) ≤ 2ℓ−2.

Moreover, the bounds are best possible in the sense that there are a1, a2, . . . , aℓ, m,

k for which equality is achieved. More precisely, the following statements hold.

(i) If ℓ is odd, m is even, and ai = m/2 for every i = 1, 2, . . . , ℓ, then

f4({a1, a2, . . . , aℓ},m, 0) = −2ℓ−2 and f4 ({a1, a2, . . . , aℓ},m,m/2) = 2ℓ−2.

(ii) If ℓ is even, m is even, and ai = m/2 for every i = 1, 2, . . . , ℓ, then

f4({a1, a2, . . . , aℓ},m, 0) = 2ℓ−2 and f4 ({a1, a2, . . . , aℓ},m,m/2) = −2ℓ−2.
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Proof. By Lemma 3 and the definition of f2 and f4, we have

f4({a1, a2, . . . , aℓ},m, k) = f4({a1, a2, . . . , aℓ},m, k +m)

=
∑

T⊆[1,ℓ]

(−1)ℓ−|T |
⌈
k +m+

∑
i∈T ai

m
− 1

2

⌉

=
∑

T⊆[1,ℓ]

(−1)ℓ−|T |
⌈
2k +m+

∑
i∈T 2ai

2m

⌉
= f2({2a1, 2a2, . . . , 2aℓ}, 2m, 2k +m).

By Theorem 4, we obtain the desired lower and upper bounds for f4.

For (i), we obtain by Lemma 2 and Theorem 3 that

f4({a1, a2, . . . , aℓ},m, 0) = −2ℓ−2 and f4({a1, a2, . . . , aℓ},m,m/2) = 2ℓ−2.

For (ii), we obtain similarly that f4({a1, a2, . . . , aℓ},m, 0) is equal to 2ℓ−2 and

f4({a1, a2, . . . , aℓ},m,m/2) is −2ℓ−2. So 2ℓ−2 and −2ℓ−2 are best possible. This

completes the proof.

Recall that T2(C,m,K) =
∑K

k=1 f2(C,m, k). In the next two theorems, we give

sharp bounds for Tℓ for ℓ = 2, and then for ℓ ≥ 3, respectively.

Theorem 7. For each a, b ∈ Z, and m,K ∈ N, we have

0 ≤ T2({a, b},m,K) ≤ ⌊m/2⌋ .

The inequality is sharp in the sense that there are a, b, m, K for which equality is

achieved. More precisely, if m is even and a = b = m/2, then

T2({a, b},m,m) = 0 and T2 ({a, b},m,m/2) = ⌊m/2⌋ .

Proof. Since the permutation of a, b does not change the value of T2, we can assume

that a ≤ b. In addition, by Lemma 7, we can assume that 0 ≤ a, b < m and

1 ≤ K ≤ m. Let

A = T2({a, b},m,K), X1 =

K∑
k=1

⌈
a+ b+ k

m

⌉
, X2 =

K∑
k=1

⌈
a+ k

m

⌉
,

X3 =

K∑
k=1

⌈
b+ k

m

⌉
, X4 =

K∑
k=1

⌈
k

m

⌉
.

Then A = X1−X2−X3+X4. Since K ≤ m, we have ⌈k/m⌉ = 1 for k = 1, 2, . . . ,K,

and so X4 = K. If a+K ≤ m, then
⌈
a+k
m

⌉
= 1 for k = 1, 2, . . . ,K, and so

X2 =

K∑
k=1

⌈
a+ k

m

⌉
= K.
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Similarly, if b+K ≤ m, then X3 = K. For convenience, we record this as follows.

if a+K ≤ m, then X2 = K; if b+K ≤ m, then X3 = K. (59)

Since a < m, we see that K ≤ m < 2m− a. Therefore, if a+K > m, then⌈
a+ k

m

⌉
=

{
1, for 1 ≤ k ≤ m− a;

2, for m− a < k ≤ K,

and thus

X2 =

K∑
k=1

⌈
a+ k

m

⌉
= (m− a) + 2(K + a−m) = 2K + a−m. (60)

Similarly,

if b+K > m, then X3 = 2K + b−m. (61)

To obtain the value of X1, we separate the calculation into several cases.

Case 1: a+ b < m. Since a ≤ b, we have a < m/2. Therefore,

a ≤ ⌊m/2⌋ . (62)

If a+b+K ≤ m, then similar to (59), we obtain X1 = X2 = X3 = K, which implies

A = 0 and we are done. So we assume that a + b +K > m. Since a + b < m and

K ≤ m, we see that K ≤ 2m− a− b. Then⌈
a+ b+ k

m

⌉
=

{
1, for 1 ≤ k ≤ m− a− b;

2, for m− a− b < k ≤ K.

Therefore, we obtain

X1 = (m− a− b) + 2(K −m+ a+ b) = 2K −m+ a+ b. (63)

If b+K ≤ m, then (59), (62), and (63) imply that X2 = X3 = K, A = a+b+K−m,

and 0 ≤ A ≤ a ≤ ⌊m/2⌋. If a+K ≤ m < b+K, then (59), (61), (62), and (63) imply

that X2 = K, X3 = 2K+ b−m, A = a, and so 0 ≤ A ≤ ⌊m/2⌋. If m < a+K, then

(60), (61), (62), and (63) imply that A = m−K, and therefore 0 ≤ A < a ≤ ⌊m/2⌋.
In any case, we obtain 0 ≤ A ≤ ⌊m/2⌋.

Case 2: a+ b ≥ m. Since a ≤ b, we have b ≥ ⌈m/2⌉, and therefore

m− b ≤ ⌊m/2⌋ . (64)

We separate the calculation into two subcases, namely, a+ b+K ≤ 2m and a+ b+

K > 2m.
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Case 2.1: a+ b+K ≤ 2m. Then
⌈
a+b+k

m

⌉
= 2 for k = 1, 2, . . . ,K, and so

X1 = 2K. (65)

If b+K ≤ m, then we obtain by (59), (64), and (65) that A = K ≤ m−b ≤ ⌊m/2⌋. If
a+K ≤ m < b+K, then by (59), (61), (64), and (65), we obtain A = m−b ≤ ⌊m/2⌋.
If m < a+K, then (60), (61), (64), and (65) give

A = m− (a+K) +m− b < m− b ≤ ⌊m/2⌋

and A = 2m− (a+ b+K) ≥ 0 by the assumption of this case.

Case 2.2: a+ b+K > 2m. Then we obtain⌈
a+ b+ k

m

⌉
=

{
2, for 1 ≤ k ≤ 2m− a− b;

3, for 2m− a− b < k ≤ K.

Then

X1 = 2(2m− a− b) + 3(a+ b+K − 2m) = 3K − 2m+ a+ b. (66)

Since m < a+K ≤ b+K, we obtain from (60), (61), and (66) that A = 0.

Thus, in any case, we have

0 ≤ T2({a, b},m,K) ≤ ⌊m/2⌋ .

If m ≥ 4 and a = b = K = 1, then T2({a, b},m,K) = 0. If m is even and

a = b = K = m/2, we obtain

T2({a, b},m,K) =

m/2∑
k=1

⌈
1 +

k

m

⌉
− 2

m/2∑
k=1

⌈
1

2
+

k

m

⌉
+

m/2∑
k=1

⌈
k

m

⌉
.

Since
⌈
1 + k

m

⌉
= 2,

⌈
1
2 + k

m

⌉
= 1, and

⌈
k
m

⌉
= 1 for k = 1, 2, . . . ,m/2, we have

T2({a, b},m,K) = 2 (m/2)− 2 (m/2) + (m/2) = ⌊m/2⌋ .

This completes the proof.

Theorem 8. For each ℓ ≥ 2, a1, a2, . . . , aℓ ∈ Z, and m,K ∈ N, we have

−2ℓ−2 ⌊m/2⌋ ≤ T2({a1, a2, . . . , aℓ},m,K) ≤ 2ℓ−2 ⌊m/2⌋ . (67)

The inequality is sharp in the sense that there are a1, a2, . . . , aℓ, m, k for which

equality is achieved. More precisely, the following statements hold.

(i) If ℓ is odd, m is even, and ai = m/2 for every i = 1, 2, . . . , ℓ, then

T2({a1, a2, . . . , aℓ},m,K) = −2ℓ−2 ⌊m/2⌋ .
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(ii) If ℓ is even, m is even, and ai = m/2 for every i = 1, 2, . . . , ℓ, then

T2({a1, a2, . . . , aℓ},m,K) = 2ℓ−2 ⌊m/2⌋ .

Proof. If ℓ = 2, then the result follows immediately from Theorem 7. For easy

reference, we state it again here as follows:

0 ≤ T2({a, b},m,K) ≤ ⌊m/2⌋ . (68)

The result when ℓ ≥ 3 is based on the case ℓ = 2 and a careful selection of pairs,

and we first illustrate the idea by giving the proof for the case ℓ = 3. Recall that

f2({a1, a2, a3},m, k) =

⌈
a1 + a2 + a3 + k

m

⌉
−
⌈
a1 + a2 + k

m

⌉
−
⌈
a1 + a3 + k

m

⌉
−
⌈
a2 + a3 + k

m

⌉
+

⌈
a1 + k

m

⌉
+

⌈
a2 + k

m

⌉
+

⌈
a3 + k

m

⌉
−
⌈
k

m

⌉
.

We have

f2({a1 + a2, a3},m, k) =

⌈
a1 + a2 + a3 + k

m

⌉
−
⌈
a1 + a2 + k

m

⌉
−
⌈
a3 + k

m

⌉
+

⌈
k

m

⌉
, (69)

−f2({a1, a3},m, k) = −
⌈
a1 + a3 + k

m

⌉
+

⌈
a1 + k

m

⌉
+

⌈
a3 + k

m

⌉
−
⌈
k

m

⌉
, (70)

−f2({a2, a3},m, k) = −
⌈
a2 + a3 + k

m

⌉
+

⌈
a2 + k

m

⌉
+

⌈
a3 + k

m

⌉
−
⌈
k

m

⌉
. (71)

Summing (69), (70), and (71), we see that

f2({a1, a2, a3},m, k) = f2({a1 + a2, a3},m, k)− f2({a1, a3},m, k)

− f2({a2, a3},m, k). (72)

Summing (72) over k = 1, 2, . . . ,K and applying (68), we obtain that

T2({a1, a2, a3},m,K) = T2({a1 + a2, a3},m,K)− T2({a1, a3},m,K)

− T2({a2, a3},m,K)

≥ −2 ⌊m/2⌋ .

Similarly, we have

T2({a1, a2, a3},m,K) ≤ ⌊m/2⌋ ≤ 2 ⌊m/2⌋ .
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In general, we let ℓ ≥ 4, call the expression of the form
⌈
ai1+ai2+···+air+k

m

⌉
an r-

bracket, and follow closely the method used in the proof of Theorems 1, 2, 3, and 4.

The well known identities previously recalled will be applied without reference. For

each 1 ≤ r ≤ ℓ, let cr(k) be the sum of all r-brackets with 1 ≤ i1 < i2 < · · · < ir ≤ ℓ,

ar(k) the sum of all such terms with ir = ℓ, and br(k) the sum of all such terms

with ir < ℓ, and for 1 ≤ r ≤ ℓ− 1, let

sr(k) = (−1)r+1aℓ−r+1(k) + (−1)rbℓ−r(k) + (−1)r
(
ℓ− 1

ℓ− r

)
a1(k)

+ (−1)r+1

(
ℓ− 1

ℓ− r

)⌈
k

m

⌉
.

For convenience, we write cr, ar, br, sr instead of cr(k), ar(k), br(k), sr(k), re-

spectively. Then bℓ = 0 and cℓ = aℓ. In addition, for 1 ≤ r ≤ ℓ − 1, we have

cr = ar + br,

sr = (−1)r+1
∑

1≤i1<i2<···<iℓ−r<ℓ

f2({ai1 + ai2 + · · ·+ aiℓ−r
, aℓ},m, k),

and

K∑
k=1

sr = (−1)r+1
∑

1≤i1<i2<···<iℓ−r<ℓ

T2({ai1 + ai2 + · · ·+ aiℓ−r
, aℓ},m,K).

So by (68), we see that

0 ≤
K∑

k=1

sr ≤
(
ℓ− 1

ℓ− r

)
⌊m/2⌋ if r is odd

and

−
(
ℓ− 1

ℓ− r

)
⌊m/2⌋ ≤

K∑
k=1

sr ≤ 0 if r is even.
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In addition, we obtain∑
1≤r≤ℓ−1

sr = aℓ +
∑

2≤r≤ℓ−1

(−1)r+1aℓ−r+1 +
∑

1≤r≤ℓ−2

(−1)rbℓ−r + (−1)ℓ−1b1

+ (−1)ℓ+1a1 + (−1)ℓ
⌈
k

m

⌉
= aℓ +

∑
1≤r≤ℓ−2

(−1)r(aℓ−r + bℓ−r) + (−1)ℓ−1b1 + (−1)ℓ+1a1 + (−1)ℓ
⌈
k

m

⌉

= cℓ +
∑

1≤r≤ℓ−2

(−1)rcℓ−r + (−1)ℓ−1c1 + (−1)ℓ
⌈
k

m

⌉

=
∑

0≤r≤ℓ−1

(−1)rcℓ−r + (−1)ℓ
⌈
k

m

⌉
= f2({a1, a2, . . . , aℓ},m, k).

Therefore,

−
∑

1≤r≤ℓ−1
r is even

(
ℓ− 1

ℓ− r

)
⌊m/2⌋ ≤

K∑
k=1

f2({a1, a2, . . . , aℓ},m, k)

≤
∑

1≤r≤ℓ−1
r is odd

(
ℓ− 1

ℓ− r

)
⌊m/2⌋ .

This implies

−2ℓ−2 ⌊m/2⌋ ≤ T2({a1, a2, . . . , aℓ},m,K) ≤ 2ℓ−2 ⌊m/2⌋ ,

as required.

Next, we prove (i) and (ii). Let C = {a1, a2, . . . , aℓ}. If ℓ is odd, m is even, and

ai = m/2 for every 1 ≤ i ≤ ℓ, we obtain by Lemma 2 and Theorem 1 that

f2(C,m,m/2) = (−1)ℓg2

(
1

2
,
1

2
, . . . ,

1

2

)
+ (−1)ℓ−1g2

(
1

2
,
1

2
, . . . ,

1

2

)
= −2ℓ−2.

Let 1 ≤ k ≤ m/2. By the definition of f2(C,m, k), we see that

f2(C,m, k) =
∑

T⊆[1,ℓ]

(−1)ℓ−|T |
⌈
k

m
+

|T |
2

⌉
=

ℓ∑
r=0

(−1)ℓ−r

(
ℓ

r

)⌈
k

m
+

r

2

⌉
.

Since 1 ≤ k ≤ m/2, we have r
2 < k

m + r
2 ≤ r+1

2 . So if r is even, then⌈
k

m
+

r

2

⌉
=

r

2
+ 1 =

⌈
r + 1

2

⌉
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and if r is odd, then ⌈
k

m
+

r

2

⌉
=

r + 1

2
=

⌈
r + 1

2

⌉
.

In any case, we obtain ⌈
k

m
+

r

2

⌉
=

⌈
r + 1

2

⌉
=

⌈
m/2

m
+

r

2

⌉
.

This implies that f2(C,m, k) = f2(C,m,m/2) for every k = 1, 2, . . . ,m/2. Then

T2 (C,m,m/2) =

m/2∑
k=1

f2(C,m, k) = (m/2)f2(C,m,m/2) = −2ℓ−2 ⌊m/2⌋ .

So −2ℓ−2 ⌊m/2⌋ in (67) cannot be improved when ℓ is odd. If ℓ is even, m is even,

and ai = m/2 for every 1 ≤ i ≤ ℓ, we obtain similarly that

f2(C,m, k) = f2(C,m,m/2) = 2ℓ−2

for every k = 1, 2, . . . ,m/2. Then T2 (C,m,m/2) = 2ℓ−2 ⌊m/2⌋. So 2ℓ−2 ⌊m/2⌋ in

(67) cannot be improved when ℓ is even. This completes the proof.

Next, we give upper and lower bounds for S3({a, b},m,K) and T4({a, b},m,K).

Theorem 9. For each a, b ∈ Z, m ∈ N, and K ∈ N ∪ {0}, we have

−⌊m/2⌋ ≤ S3({a, b},m,K) ≤ ⌊m/2⌋ .

Moreover, the lower bound −⌊m/2⌋ is best possible in the sense that there are a, b,

m, K such that S3({a, b},m,K) = −⌊m/2⌋.

Proof. If m = 1, then S3({a, b},m,K) = 0 and the result follows immediately. So

assume that m ≥ 2. Recall that

f3({a, b},m, k) =

⌊
a+ b+ k

m
+

1

2

⌋
−
⌊
a+ k

m
+

1

2

⌋
−
⌊
b+ k

m
+

1

2

⌋
+

⌊
k

m
+

1

2

⌋
.

By Lemma 8, we obtain that f3({a, b},m, k) is equal to⌊
a+ b+ k + ⌊m/2⌋

m

⌋
−
⌊
a+ k + ⌊m/2⌋

m

⌋
−
⌊
b+ k + ⌊m/2⌋

m

⌋
+

⌊
k + ⌊m/2⌋

m

⌋
= f1 ({a, b},m, k + ⌊m/2⌋) .
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In addition, we have

S3({a, b},m,K) =
∑

0≤k≤K

f3({a, b},m, k)

=
∑

0≤k≤K

f1 ({a, b},m, k + ⌊m/2⌋)

=
∑

⌊m/2⌋≤k≤K+⌊m/2⌋

f1 ({a, b},m, k)

=
∑

0≤k≤K+⌊m/2⌋

f1 ({a, b},m, k)−
∑

0≤k<⌊m/2⌋

f1 ({a, b},m, k)

= S1 ({a, b},m,K + ⌊m/2⌋)− S1 ({a, b},m, ⌊m/2⌋ − 1) . (73)

By (2), we obtain

−⌊m/2⌋ ≤ S3({a, b},m,K) ≤ ⌊m/2⌋ . (74)

Next, we show that the lower bound in (74) cannot be improved. Let m be even,

K = (m/2)− 1, and a = b = m/2. Then, for 0 ≤ k ≤ K, we have

f1 ({a, b},m, k) = 1− 2

⌊
1

2
+

k

m

⌋
+

⌊
k

m

⌋
= 1.

By Lemma 7 and (73), we have

S3 ({a, b},m,K) = S1 ({a, b},m,m− 1)− S1 ({a, b},m, (m/2)− 1)

= 0− (m/2) = −⌊m/2⌋ .

This completes the proof.

Theorem 10. For each a, b ∈ Z and m,K ∈ N, we have

−⌊m/2⌋ ≤ T4({a, b},m,K) ≤ ⌊m/2⌋ .

The lower bound −⌊m/2⌋ is best possible in the sense that there are a, b, m, K

such that T4({a, b},m,K) = −⌊m/2⌋.

Proof. Recall that

f4({a, b},m, k) =

⌈
a+ b+ k

m
− 1

2

⌉
−
⌈
a+ k

m
− 1

2

⌉
−
⌈
b+ k

m
− 1

2

⌉
+

⌈
k

m
− 1

2

⌉
.

By Lemmas 3 and 8, we obtain f4({a, b},m, k) = f4({a, b},m, k+m), which is equal

to ⌈
a+ b+ k + ⌈m/2⌉

m

⌉
−
⌈
a+ k + ⌈m/2⌉

m

⌉
−
⌈
b+ k + ⌈m/2⌉

m

⌉
+

⌈
k + ⌈m/2⌉

m

⌉
= f2 ({a, b},m, k + ⌈m/2⌉) .
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In addition, we have

T4({a, b},m,K) =
∑

1≤k≤K

f4({a, b},m, k)

=
∑

1≤k≤K

f2 ({a, b},m, k + ⌈m/2⌉)

=
∑

1+⌈m/2⌉≤k≤K+⌈m/2⌉

f2 ({a, b},m, k)

=
∑

1≤k≤K+⌈m/2⌉

f2 ({a, b},m, k)−
∑

1≤k≤⌈m/2⌉

f2 ({a, b},m, k)

= T2 ({a, b},m,K + ⌈m/2⌉)− T2 ({a, b},m, ⌈m/2⌉) . (75)

By Theorem 7, we obtain

−⌊m/2⌋ ≤ T4({a, b},m,K) ≤ ⌊m/2⌋ . (76)

Next, we show that the lower bound in (76) cannot be improved. Let m be even

and K = a = b = m/2. Then, for 1 ≤ k ≤ K, we have

f2 ({a, b},m, k) = 2− 2

⌈
1

2
+

k

m

⌉
+

⌈
k

m

⌉
= 1.

By Lemma 7, Theorem 7, and (75), we have

T4 ({a, b},m,K) = T2 ({a, b},m,m)− T2 ({a, b},m,K) = −⌊m/2⌋ .

This completes the proof.

Unlike fj and gj for 1 ≤ j ≤ 4, we currently do not have a complete result for

Sj and Tj . We hope we will obtain a better result for Sj and Tj in the future, and

we encourage readers to try to find better results or expand the scope of the topic.
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[6] E. Jacobsthal, Über eine zahlentheoretische Summe, Norske Vid. Selsk. Forh. Trondheim 30
(1957), 35-41.

[7] M. Munteanu, Extensions of Hlawka’s inequality for four vectors, J. Math. Inequal. 13 (2019),
891-901.

[8] K. Onphaeng and P. Pongsriiam, Jacobsthal and Jacobsthal-Lucas numbers and sums intro-
duced by Jacobsthal and Tverberg, J. Integer Seq. 20 (2017), Article 17.3.6.

[9] P. Napp Phunphayap, T. Khemaratchatakumthorn, N. Sothanaphan, K. Onphaeng, W.
Wongcharoenbhorn, P. Sumritnorrapong, and P. Pongsriiam, Combinatorial inequalities aris-
ing from the inclusion-exclusion principle, J. Math. Inequal. 16 (2022), 1455-1475.

[10] P. Pongsriiam, Analytic Number Theory for Beginners, Student Mathematical Library Vol.
103, Second Edition, American Mathematical Society, 2023.

[11] T. Thanatipanonda and E. Wong, Curious bounds for floor function sums, J. Integer Seq. 21
(2018), Article 18.1.8.

[12] The On-Line Encyclopedia of Integer Sequences, https://oeis.org

[13] H. Tverberg, On some number-theoretic sums introduced by Jacobsthal, Acta Arith. 155
(2012), 349-351.


