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Abstract

Given a positive rational number n/d, its odd greedy expansion starts with the
largest odd denominator unit fraction at most n/d, adds the largest odd denomi-
nator unit fraction so the sum is at most n/d, and continues as long as the sum is
less than n/d. We find all rational numbers whose odd greedy expansion has two
terms.

1. Introduction

Every positive rational number can be written as a sum of unit fractions, i.e. frac-

tions of the form 1/x where x is a positive integer. Such expressions have a history

dating to the ancient Egyptians, who wrote rational numbers as sums of distinct

unit fractions (see [8]). Given a positive rational number, its greedy Egyptian expan-

sion begins with the largest unit fraction at most this number, adds the largest unit

fraction so the sum is at most the original number, and continues as long as the sum

is less than the original number. This expansion was described by Fibonacci (see [4,

pp. 123–124]) and later rediscovered by Sylvester [10] and others. The odd greedy

expansion of a positive rational number is obtained through the same procedure but

where only unit fractions with odd denominators are used. These two expansions

may differ; for example, the greedy Egyptian expansion gives 4/15 = 1/4 + 1/60

while the odd greedy expansion gives 4/15 = 1/5 + 1/15.

It is well known that the greedy Egyptian expansion of a positive rational num-

ber always has finitely many terms. In contrast, the odd greedy expansion of a

positive rational number may have finitely many or infinitely many terms. Since
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the reduced form of a finite sum of unit fractions with odd denominators has odd

denominator, every reduced fraction with even denominator has odd greedy expan-

sion with infinitely many terms. It is known that every positive fraction with odd

denominator is a sum of finitely many unit fractions with odd denominators [1, 9],

but it is an open question whether the odd greedy expansion of such a fraction

always has finitely many terms. This question is recorded by Erdős–Graham [3,

Chapter 4] (who attribute it to Stein), Guy [5, Section D11], and Klee–Wagon [6,

Problem 15]. Several interesting examples of fractions whose odd greedy expansions

have many terms or very large denominators have been found; see [2, 7, 11] and the

references therein.

We focus on the number of terms of odd greedy expansions. Theorem 3 finds

all fractions whose odd greedy expansion has two terms. More specifically, it shows

that, for a given numerator n, all denominators d for which n/d has odd greedy

expansion with two terms arise from certain arithmetic sequences. Corollary 5 finds

all reduced fractions whose odd greedy expansion has two terms.

One can define an odd greedy expansion by either allowing or prohibiting the

term 1/1 and either allowing or prohibiting repetition of terms; there is some vari-

ation in the literature in these regards. We choose to permit the term 1/1 and

permit repetition of terms. Precisely, given a positive fraction n/d, we construct xi

recursively by letting xi = 1 when

n

d
−

i−1∑
j=1

xj ≥ 1

and otherwise letting xi be the unique odd positive integer for which

1

xi
≤ n

d
−

i−1∑
j=1

xj <
1

xi − 2
.

Since the term 1/1 can only occur when n/d ≥ 1 and repeated terms can only

occur when n/d ≥ 2/3, the various notions of odd greedy expansion coincide for

rational numbers less than 2/3, which is the case of primary interest to us. Changing

these conventions would only impact Theorem 3 and Corollary 5 in whether 2/3

and numbers of the form (k + 1)/k for odd positive integers k have odd greedy

expansion with two terms.

2. Results

Before finding the rational numbers whose odd greedy expansion has two terms, we

observe that a rational number that is the sum of an even number of unit fractions

with odd denominators can only be represented by a fraction with even numerator.
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Proposition 1. Let m be an even nonnegative integer. If a rational number is the

sum of m unit fractions with odd denominators, then every fraction representing

this rational number has even numerator.

Proof. If a rational number is the sum of unit fractions with odd denominators

x1, . . . , xm, then it is
m∑
i=1

1

xi
=

σm−1(x1, . . . , xm)

x1 . . . xm
,

where σm−1(x1, . . . , xm) is the elementary symmetric polynomial of degree m − 1

in x1, . . . , xm. The numerator σm−1(x1, . . . , xm) is a sum of m terms, each of which

is odd, so hence it is even. The denominator x1 . . . xm is a product of odd integers,

so it is odd. Since the denominator is odd, factors of 2 can never be canceled

from the numerator, so every fraction representing this rational number has even

numerator.

We next establish a lemma that characterizes when an odd integer is the first

denominator in the odd greedy expansion of a fraction.

Lemma 2. Let n, d, and x1 be positive integers with x1 odd, and let r = nx1 − d.

The integer x1 is the first denominator of the odd greedy expansion of n/d if and

only if 0 ≤ r < 2n.

Proof. When x1 = 1, by definition 1/x1 is the first term of the odd greedy expansion

of n/d if and only if n/d ≥ 1. When x1 ≥ 3, by definition 1/x1 is the first term of

the odd greedy expansion of n/d if and only if

1

x1
≤ n

d
<

1

x1 − 2
.

In both cases, the condition is equivalent to

x1 − 2 <
d

n
≤ x1.

Since d = nx1 − r, this is equivalent to

x1 − 2 < x1 −
r

n
≤ x1,

and hence to 0 ≤ r < 2n.

We now find all fractions whose odd greedy expansion has two terms. In the

following, vp(r) denotes the p-adic valuation of r, i.e. the exponent of the largest

power of p that divides r.
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Theorem 3. The positive fractions whose odd greedy expansion has two terms are

exactly those of the form

n

n
(∏s

i=1
pai
i

)
(1 + 2t)− r

,

where n is an even positive integer, where r is any integer satisfying both 0 < r < 2n

and v2(2r) ≤ v2(n), where p1, . . . , ps are the prime divisors of r, where

ai = max

{⌈
vpi(2r)− vpi(n)

2

⌉
, 0

}
,

and where t is any nonnegative integer.

Proof. Proposition 1 allows us to only consider fractions with even numerator.

Given positive integers n, d, and x1 with n even and x1 odd, let r = nx1 − d,

which also means d = nx1 − r. Since

n

d
− 1

x1
=

nx1 − d

dx1
=

r

dx1
,

we have that
n

d
=

1

x1
+

r

dx1
.

This is the odd greedy expansion of n/d if and only if 1/x1 is the first term of the

odd greedy expansion, r ̸= 0, and dx1/r is an odd integer.

Using Lemma 2, the first two of these conditions are together equivalent to

0 < r < 2n. Under the assumption r ̸= 0, the third condition is satisfied exactly

when
dx1

r
=

(nx1 − r)x1

r
=

nx2
1

r
− x1

is an odd integer. Since x1 is an odd integer, this is equivalent to nx2
1/r being an

even integer and hence to nx2
1/2r being an integer. This is equivalent to requiring

that v2(2r) ≤ v2(nx
2
1) = v2(n) and, for all i ∈ {1, . . . , s}, that

vpi
(2r) ≤ vpi

(nx2
1) = vpi

(n) + 2vpi
(x1).

The latter condition is equivalent to

vpi(x1) ≥
vpi(2r)− vpi(n)

2
,

and, since vpi
(x1) must be a nonnegative integer, to

vpi(x1) ≥ max

{⌈
vpi(2r)− vpi(n)

2

⌉
, 0

}
= ai.
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This is true for all i ∈ {1, . . . , s} if and only if x1 is divisible by
∏s

i=1
pai
i . Under

the assumption v2(2r) ≤ v2(n), we have that
∏s

i=1
pai
i is odd, so this last condition

is equivalent to saying

x1 =

(
s∏

i=1

pai
i

)
(1 + 2t)

for some nonnegative integer t. Substituting into d = nx1 − r, this means n/d has

odd greedy expansion with two terms if and only if it is of the form

n

n
(∏s

i=1
pai
i

)
(1 + 2t)− r

.

Theorem 3 may be thought of as saying that for a given numerator n there are at

most 2n− 1 arithmetic sequences of denominators for which the resulting fraction

has odd greedy expansion with two terms. Since the condition v2(2r) ≤ v2(n) does

not hold when r = n, there are in fact always at most 2n − 2 such arithmetic

sequences.

Example 4. Suppose n = 4. The possible values of r in Theorem 3 are 1, 2, 3, 5,

6, and 7, and each of these gives a family of fractions with numerator 4 whose odd

greedy expansion has two terms. In the case r = 1, we obtain the following family

of fractions whose odd greedy expansion has two terms:

4

4(1)(1 + 2t)− 1
=

4

3 + 8t
.

In the case r = 2, we obtain the following family of fractions whose odd greedy

expansion has two terms:

4

4(1)(1 + 2t)− 2
=

4

2 + 8t
.

In Example 4, fractions in the first family are always in reduced form while

those in the second family are never reduced. By determining when the fractions

in Theorem 3 are in reduced form, we can characterize the reduced fractions whose

odd greedy expansion has two terms.

Corollary 5. The positive fractions in reduced form whose odd greedy expansion

has two terms are exactly those of the form

n

n
(∏s

i=1
p
⌈vpi (r)/2⌉
i

)
(1 + 2t)− r

,

where n is an even positive integer, where r is any positive integer that is less than

2n and coprime to 2n, where p1, . . . , ps are the prime divisors of r, and where t is

any nonnegative integer.
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Proof. A fraction whose odd greedy expansion has two terms must be of the form

in Theorem 3, so we only need to determine when such fractions are in reduced

form. By the Euclidean algorithm, we have

gcd

(
n, n

(
s∏

i=1

pai
i

)
(1 + 2t)− r

)
= gcd(n, r),

meaning these fractions are reduced exactly when r is coprime to n (which is only

possible when v2(2r) ≤ v2(n)). Because n is even, this is equivalent to requiring that

r is coprime to 2n. In this case, we also have that vpi(n) = 0 and vpi(2r) = vpi(r)

for all i ∈ {1, . . . , s}, so the expression for ai in Theorem 3 reduces to

ai =

⌈
vpi

(r)

2

⌉
.

As a consequence of Corollary 5, for a given even numerator n, there are ϕ(2n)

arithmetic sequences of denominators for which the resulting fraction is reduced

and has odd greedy expansion with two terms, where ϕ is Euler’s totient function.

Example 6. Suppose n = 2. The possible values of r in Corollary 5 are 1 and 3,

and each of these gives a family of reduced fractions with numerator 2. In the

case r = 1, we obtain the following family of reduced fractions whose odd greedy

expansion has two terms:

2

2(1)(1 + 2t)− 1
=

2

1 + 4t
.

In the case r = 3, we have ⌈
v3(3)

2

⌉
=

⌈
1

2

⌉
= 1

and so obtain the following family of reduced fractions whose odd greedy expansion

has two terms:
2

2(31)(1 + 2t)− 3
=

2

3 + 12t
.
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