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Abstract

We obtain explicit estimates for the incomplete exponential sum

Sp(f,B) :=

B∑
x=1

ep(f(x)),

where ep(u) = e2πiu/p, f(x) is a polynomial over Z/(p), and 1 ≤ B ≤ p, such as the
following. For any f of degree at least 2,

|Sp(f,B)| ≤ min{ 2
π2 log p+ 3.29 + B

p ,
4
π2 log p+

B
p + .35}Φ,

where Φ = max0≤y≤p−1

∣∣∣∑p
x=1 ep(f(x) + yx)

∣∣∣. For any quadratic polynomial f

and B with
√
p < B < p/2, we have |Sp(f,B)| <

√
2
πp log(16.6B

2/p). For any

monic cubic polynomial, and B with 4p
1
3 < B <

√
p/12, we have |Sp(f,B)| <

(Bp)
1
4

√
log p.

1. Introduction

Let p be a prime, Zp = {0, 1, 2, . . . , p− 1} denote the finite field Z/(p), and ep(·) :=
e2πi·/p. For any polynomial f(x) over Z or Zp, and positive integer B with 1 ≤ B ≤
p, let Sp(f,B) denote the incomplete exponential sum

Sp(f,B) :=

B∑
x=1

ep(f(x)),
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and put Sp(f) := Sp(f, p) for the complete sum. Let dp = dp(f) denote the degree

of f viewed as a polynomial over Zp. Define

Φ = Φ(f, p) := max
0≤y≤p−1

∣∣∣ p∑
x=1

ep(f(x) + yx)
∣∣∣. (1.1)

A standard estimate for Sp(f,B), dating back to the work of Davenport and

Heilbronn [5, 6], is the bound

|Sp(f,B)| ≪ Φ log p. (1.2)

Thus by the Weil bound [28], Φ ≤ (dp − 1)
√
p, we have |Sp(f,B)| ≪ dp

√
p log p for

dp ≥ 2. The first objective of this paper is to make (1.2) explicit.

Theorem 1.1. For any prime p, polynomial f over Z or Zp with dp(f) ≥ 2, and

integer B with 1 ≤ B ≤ p, we have

|Sp(f,B)| ≤ min{ 2
π2 log p+ 3.29 + B

p ,
4
π2 log p+

B
p + .35}Φ. (1.3)

The second expression in (1.3) is less than the first for p < 1.99 · 106, and implies

the following clean bound, first established by Vinogradov [27] for p > 60.

Corollary 1.1. For any prime p ≥ 5, polynomial f over Z or Zp with dp(f) ≥ 2,

and integer B with 1 ≤ B ≤ p, we have

|Sp(f,B)| < Φ log p. (1.4)

The estimate in Theorem 1.1 is trivial for B < 2
π2 (dp − 1)

√
p log p if we employ

the Weil bound for Φ. The second objective of this paper is to obtain an explicit

nontrivial bound on Sp(f,B) for B in this range using the method of Weyl. We

restrict our attention here to second and third degree polynomials.

1.1. Quadratic Polynomials

Korolev [14], improving on earlier works of Hardy and Littlewood [8], Fielder, Jurkat

and Köner [7], and Oskolkov [21], established that for p ∤ a, and 1 ≤ B ≤ p, one has

|Sp(ax
2, B)| ≤ 3.5254

√
p + 1. For a general quadratic f(x) = ax2 + bx with p ∤ a,

by completing the square and expressing Sp(f(x), B) as a sum or difference of two

monomial quadratic sums, one deduces from the Korolev bound that

|Sp(ax
2 + bx,B)| ≤ 7.0508

√
p+ 2, (1.5)

for 1 ≤ B ≤ p. The bound is nontrivial for B > 7.06
√
p, and yields the bound

|Sp(ax
2 + bx,B)| < B/2 for B > 14.11

√
p. Lehmer [16] studied in detail the case

where a = 1, obtaining for 1 ≤ B ≤ p,

∣∣Sp(x
2, B)

∣∣ ≤ {√
p+O(1), if p ≡ 3 (mod 4);

1.0625461
√
p+O(1), if p ≡ 1 (mod 4).

(1.6)
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Moreover, the constants on the
√
p in (1.6) are sharp. We prove the following.

Theorem 1.2. For any quadratic polynomial f(x) = ax2 + bx + c with p ∤ a, and
positive integer B with

√
p < B < p/2, we have

|Sp(f,B)| <
√

2
πp log(16.6B

2/p). (1.7)

This improves on Theorem 1.1 for all p, and improves on (1.5) for all p,B with

B < 2.22 · 1016 √p. The bound in (1.7) is nontrivial for B > 1.53
√
p. We derive

from (1.7), for instance, that if B > 3.73
√
p, then |Sp(f,B)| < B/2. Such a bound

is not possible for B slightly smaller than
√
p; see Example 6.1. For B > p/2, see

Corollary 6.1.

1.2. Cubic Polynomials

We are not aware of any explicit Weyl type estimates for cubic polynomials, but

see [9] for related work. Here we establish the following. Put

δp :=
1.0661

log log p
.

Theorem 1.3. For any cubic polynomial f(x) = ax3 + bx2 + cx with p ∤ a, and
positive integer B, we have

|Sp(f,B)| ≤

{
1.1B

1
4 p

1
4+

δp
4 log

1
4 p, for 1 ≤ B <

√
p/2;

1.38(1 + p
B2 )

1
4 B

3
4 p

δp
2 log

1
4 p, for

√
p/2 < B ≤ p.

The estimate is nontrivial for B > 1.14 p
1
3+

δp
3 log

1
3 p and improves on Theorem 1.1

for B ≪ε p
2
3−ε.

For monic cubics we can eliminate the term pδp/4 for small B.

Theorem 1.4. For any cubic polynomial f(x) = x3 + bx2 + cx and positive integer

B with 4p
1
3 < B <

√
p/12, we have

|Sp(f,B)| < (Bp)
1
4 log

1
4 (B3/p) log

1
4 (Bp).

In particular, |Sp(f,B)| < (Bp)
1
4 log

1
2 p for B <

√
p/12. The theorem yields a

nontrivial bound for |Sp(f,B)| for p > 5·108, B > p
1
3 (log

1
3 p) log log p, and improves

on Theorem 1.1 whenever it applies. The theorem also yields bounds of the following

type for sufficiently large p: For B > 2p
1
3 (log

1
3 p) log log p, we have |Sp(f,B)| < B/2.

2. Proof of Theorem 1.1, Part I

To obtain the second bound in (1.3) we use the method of completing a sum, a

method dates back at least to the 1918 work of Polya [23], Vinogradov [26], Landau
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[15] and Schur [24], who used it for estimating the multiplicative character sum∑B
x=1 χ(x), yielding the well known Polya-Vinogradov inequality. For the sum at

hand, the first appearance we know of is the 1936 work of Davenport and Heilbronn

[5, 6], who treated the case of monomials, followed by Hua [10] who treated general

f(x). Let Tp(B) denote the trigonometric sum

Tp(B) :=
1

p

p−1∑
y=1

∣∣∣∣ sin(πBy/p)

sin(πy/p)

∣∣∣∣ .
Lemma 2.1. For any prime p, polynomial f(x) over Z or Zp, and positive integer

B with 1 ≤ B ≤ p, we have

Sp(f,B) =
B

p

p∑
x=1

ep(f(x)) + θ Tp(B) max
1≤y≤p−1

∣∣∣ p∑
x=1

ep(f(x) + yx)
∣∣∣, (2.1)

for some θ with |θ| ≤ 1,

Proof. Let I = {1, 2, . . . , B} ⊆ Zp, and 1I be the characteristic function of I with

Fourier expansion

1I(x) =

p−1∑
y=0

a(y)ep(yx),

where a(0) = B/p, and for 1 ≤ y ≤ p− 1,

a(y) =
1

p

B∑
x=1

ep(−yx) =
1

p
ep

(−B − 1

2
y
) sin(πBy/p)

sin(πy/p)
.

Then

B∑
x=1

ep(f(x)) =

p−1∑
x=0

1I(x)ep(f(x)) =

p−1∑
x=0

p−1∑
y=0

a(y)ep(yx)ep(f(x))

= a(0)

p−1∑
x=0

ep(f(x)) +

p−1∑
y=1

a(y)

p−1∑
x=0

ep(f(x) + yx),

and so ∣∣∣∣∣
B∑

x=1

ep(f(x))−
B

p

p−1∑
x=0

ep(f(x))

∣∣∣∣∣ ≤ Φ′
p−1∑
y=1

|a(y)| = Φ′Tp(B),

where Φ′ := max1≤y≤p−1

∣∣∣∑p−1
x=0 ep(f(x) + yx)

∣∣∣.
It is elementary to show Tp(B) < log p; see, e.g., [11, Theorem 7.3]. Improve-

ments were made by Vinogradov [27], Lidl and Neiderreiter [17], Cochrane [3],
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Kongting [13], Peral [22], and Cochrane and Peral [4]. Presently, the best bound is

that of Bourgain, Cochrane, Paulhus and Pinner [2, Lemma 11.1], a slight improve-

ment on [3, Theorem 1]: For any prime p ≥ 5 and 1 ≤ B ≤ p,

Tp(B) ≤ 4
π2 log p+ .35. (2.2)

The constant 4/π2 on the log p term is best possible.

Let Φ = Φ(f, p) be as defined in (1.1).

Lemma 2.2. For any prime p, and polynomial f over Z, we have

Φ(f, p) ≥ √
p.

Proof. This is immediate from the identity

p−1∑
y=0

∣∣∣ p−1∑
x=0

ep(f(x) + yx)
∣∣∣2 =

p−1∑
u=0

p−1∑
v=0

ep(f(u)− f(v))

p−1∑
y=0

ep(y(u− v)) = p2.

Proof of Theorem 1.1, Part I. From (2.2) and (2.1) we get for p ≥ 5,

|Sp(f,B)| ≤ B
p Φ+ |Tp(B)|Φ ≤ B

p Φ+ ( 4
π2 log p+ .35)Φ,

yielding the second bound in (1.3). For p = 2, 3, we note that using |Sp(f,B)| ≤ B

and the bound Φ ≥ √
p from Lemma 2.2, it suffices to show that

B ≤
(

4
π2 log p+

B
p + .35

)√
p,

that is,

B
(
1− 1√

p

)
≤

(
4
π2 log p+ .35

)√
p.

Computation confirms this for p = 2, 3, and B ≤ p.

To prove the first bound in (1.3), we need a number of lemmas on trigonometric

sums.

3. Lemmas on Trigonometric Sums

Lemma 3.1. ([3, Lemma 2.2]). For 0 < x < 1, we have

1

sinπx
<

1

π

(
1

x
+

2x

1− x2

)
.
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Lemma 3.2. If p is a prime, 1 ≤ B < p/2, and p ∤ a, we have

B∑
h=1

1

| sin(πah/p)|
<

p

π

(
logB + γ +

1

2B

)
+

pB(B + 1)

π(p2 −B2)
.

Proof. We first show that the maximum value of the sum occurs when a = 1. Since

B < p/2, we have 0 < sin(π/p) < sin(2π/p) < · · · < sin(Bπ/p). If there is a value

of a where the sum exceeds
∑B

h=1
1

| sin(πh/p)| , then there must exist an integer b and

distinct values h, h′ with 1 ≤ h, h′ ≤ B, such that ah ≡ ±b mod p and ah′ ≡ ±b

mod p. Then either ah ≡ ah′ mod p, or ah ≡ −ah′ mod p. In the first case we have

h = h′, a contradiction. In the second case, p|a(h+h′). Since 2 ≤ h+h′ ≤ 2B < p,

we again have a contradiction. Thus, the maximum value is attained when a = ±1.

By Lemma 3.1 and the Euler-Maclaurin estimate
∑

1≤n≤x
1
n < log x+ γ + 1

2x ,

B∑
h=1

1

| sin(πh/p)|
<

p

π

B∑
h=1

(
1

h
+

2h

p2 − h2

)

<
p

π
(logB + γ +

1

2B
) +

2p

π(p2 −B2)

B∑
h=1

h

=
p

π
(logB + γ +

1

2B
) +

pB(B + 1)

π(p2 −B2)
.

Lemma 3.3. If p is a prime and
√
p/π < B < p/2, then for any a with p ∤ a, we

have

B∑
h=1

min
{
B, 1

| sin(πah/p)|

}
< p

π

(
log(πB2/p) + 1 + πB

p

)
+ pB(B+1)

π(p2−B2) .

Proof. As in the preceding proof, we may assume that a = 1. By Lemma 3.1, the

estimate
∑

u<h≤v
1
h < log(v/u) + 1

u for real u, v with v ≥ u ≥ 1, and noting that

p/(πB) < B by assumption, we have

B∑
h=1

min

{
B,

1

| sin(πh/p)|

}
≤

∑
1≤h≤p/(πB)

B +
∑

p/(πB)<h≤B

p

π

(
1

h
+

2h

p2 − h2

)

≤ p

π
+

p

π

∑
p/(πB)<h≤B

1

h
+

2p

π(p2 −B2)

B∑
h=1

h

≤ p

π
+

p

π

(
log(πB2/p) +

πB

p

)
+

pB(B + 1)

π(p2 −B2)
.
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Lemma 3.4. ([3, Lemma 2.1]). For any positive integer K and real number ξ,

K∑
y=1

| sin(yξ)|
y < 2

π

(
log(K + 1) + γ + log 2

)
+ 3

π(K+1) .

In particular, since log(K + 1) < logK + 1
K ,

K∑
y=1

| sin(yξ)|
y < 2

π logK + 2
π (γ + log 2) + 5

πK . (3.1)

Lemma 3.5. For any positive integers q,K,B, with K < q, we have

K∑
k=1

| sin(πBk/q)|
| sin(πk/q)| < 2

π2 q logK + 2q
π2 (γ + log 2) + q

π
K

q−K + 5q
π2K .

Proof. By Lemma 3.1, and then (3.1),

K∑
k=1

| sin(πBk/q)|
| sin(πk/q)| < q

π

K∑
k=1

| sin(πBk/q)|
k + q

π

K∑
k=1

| sinπBk/q|
q−k

≤ q
π

(
2
π logK + 2

π (γ + log 2) + 5
πK

)
+ q

π
K

q−K .

4. Proof of Theorem 1.1, Part II

We make use of the Beurling–Selberg majorizing and minorizing functions. The

following comes from the work of Vaaler [25, Theorem 19], but is stated here in the

form appearing in [19].

Lemma 4.1. For any interval J = [a, b] in T with length b − a < 1, and for any

positive integer K, there are trigonometric polynomials

S±(x) =

K∑
k=−K

α±(k)e
2πikx,

such that α±(0) = b− a± 1
K+1 and

S−(x) ≤ 1J(x) ≤ S+(x), for all x ∈ T .

Let I = {1, 2, . . . , B} ⊆ Zp. We apply Lemma 4.1 with J = [ 1
2p ,

B
p + 1

2p ], so that,

1J(
n
p ) = 1I(n) for n ∈ Z, and α±(0) =

B
p ± 1

K+1 . Set

T±(x) := S±(
x
p ) =

K∑
k=−K

α±(k)ep(kx). (4.1)
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If K < p
2 , then we can view T± as functions on Zp with Fourier expansions as given

in (4.1). Let 1I(x) =
∑p−1

k=0 a(k)ep(kx) be the Fourier expansion for 1I(x). Then

for |k| ≤ K,

α±(k) =
1

p

p−1∑
x=0

T±(x)ep(−kx), a(k) =
1

p

p−1∑
x=0

1I(x)ep(−kx).

Also, by design, for any x ∈ Zp,

T−(x) ≤ 1I(x) ≤ T+(x).

Thus for |k| ≤ K, we have

|a(k)− α−(k)| ≤ 1
p

p−1∑
x=0

|1I(x)− T−(x)| = 1
p

p−1∑
x=0

(
1I(x)− T−(x)

)
= 1

p

p−1∑
x=0

1I(x)− 1
p

p−1∑
x=0

T−(x) = a(0)− α(0) = 1
K+1 , (4.2)

and the same for |a(k)− α+(k)|.
Set T = T±, α = α± with a fixed ± choice. We have

B∑
x=1

ep(f(x)) =

p−1∑
x=0

1I(x)ep(f(x)) =

p−1∑
x=0

T (x)ep(f(x)) +

p−1∑
x=0

(1I(x)− T (x))ep(f(x))

= Σ1 +Σ2,

say. Now, as seen in (4.2), |Σ2| ≤ p
K+1 and for |k| ≤ K, we have |α(k)| ≤ |a(k)| +

1
K+1 . Using the Fourier expansion for T , we have

Σ1 =

K∑
k=−K

α(k)

p−1∑
x=0

ep(f(x) + kx),

and so with Φ denoting a uniform upper bound on the exponential sum over x,

|Σ1| ≤ Φ

K∑
k=−K

|α(k)| ≤ Φ
(
|α(0)|+

∑
1≤|k|≤K

(
|a(k)|+ 1

K+1

))
.

Now α(0) = B
p ± 1

K+1 and by Lemma 3.5,

∑
1≤|k|≤K

|a(k)| = 2

p

K∑
k=1

| sin(πkB/p)|
| sin(πk/p)|

≤ 4

π2
logK +

4

π2
(γ + log 2) +

2

π

K

p−K
+

10

π2K
.
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Thus, for T = T−,

|Σ1| ≤ Φ
(

B
p − 1

K+1

)
+Φ

(
4
π2 logK + 4

π2 (γ + log 2) + 2
π

K
p−K + 10

π2K + 2K
K+1

)
= Φ

(
4
π2 logK + C1 − 3

K+1 + 2
π

K
p−K + 10

π2K

)
,

where C1 = 2 + 4
π2 (γ + log 2) + B

p < 2.51486 + B
p , and

|Σ1|+ |Σ2| ≤ p
K+1 +Φ

(
4
π2 logK + C1 +

2
π

K
p−K + 10

π2K − 3
K+1

)
.

Let K := ⌊π2

4

√
p⌋. Noting that the coefficient on Φ is increasing with K, we have

|Σ1|+ |Σ2| ≤ 4
π2

√
p+Φ

(
4
π2 log

π2

4

√
p+ C1 +

2π
4
√
p−π2 + 40

π4√p − 12
π2√p

)
≤ 2

π2Φ log p+ 4
π2

√
p+Φ

(
4
π2 log

π2

4 + C1 +
2π

4
√
p−π2 − .805√

p

)
.

Using
√
p ≤ Φ we get

|Σ1|+ |Σ2| ≤ 2
π2Φ log p+Φ

(
C2 +

2π
4
√
p−π2 − .805√

p

)
,

with

C2 = 4
π2 + 4

π2 log
π2

4 + C1 ≤ 3.28619 + B
p .

Thus for p > 43000 we have

|Sp(f,B)| ≤ |Σ1|+ |Σ2| ≤ 2
π2Φ log p+Φ(3.29 + B

p ).

For p < 43000, the same holds by the second bound in (1.3), already established.

5. Proof of Corollary 1.1

In this section we establish Corollary 1.1.

Proof of Corollary 1.1. For p ≥ 11, the corollary follows immediately from Theorem

1.1, that is, 4
π2 log p + 1.35 < log p. For p = 7, we use Lemma 2.2 to get Φ log p ≥√

7 log 7 > 5.148, and so (1.4) is immediate for B ≤ 5, that is, |Sp(f,B)| ≤ B <

5.148 < Φ log p. For B = 7, the sum is a complete sum, and so the result again is

immediate. For B = 6, we have

|Sp(f, 6)| ≤ |Sp(f)|+ 1 ≤ Φ+ 1 < Φ log 7.

For p = 5 the same argument holds, that is, for B ≤ 3 or B = 5, the result is

immediate, while for B = 4, we can use |Sp(f, 4)| ≤ Φ+ 1 to get the result.

Remark 5.1. For p = 3, inequality (1.4) is immediate for B = 1 or 3, while for

B = 2, if f is not constant mod 3 on [1, 2], we have |Sp(f,B)| = |1 + e2πi/3| = 1,

yielding the inequality. For p = 2, (1.4) is immediate for B = 1, while for B = 2, if

f is not constant mod 2, then Sp(f,B) = Sp(f) = 0.
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6. Proof of Theorem 1.2

Let γ denote Euler’s constant, γ := .577215664... , and

R :=
2pB(B + 1)

π(p2 −B2)
.

Proposition 6.1. For any quadratic polynomial f(x) = ax2 + bx + c with p ∤ a,
and positive integer B with

√
p < B < p/2, we have

|Sp(f,B)|2 ≤ min

{
2p

π
log(B2/p) + 1.366 p+ 3B +R,

2p

π
logB + .368 p+B +

p

πB
+R

}
. (6.1)

Proof. Let f(x) = ax2 + bx+ c with p ∤ a, and B be an integer with 1 ≤ B < p/2.

Following the method of Weyl, letting y = x+ h, we have

|Sp(f,B)|2 =

B∑
x=1

B∑
y=1

ep(f(y)− f(x)) = B + 2R
∑

1≤x<y≤B

ep(f(y)− f(x))

= B + 2R
B−1∑
h=1

B−h∑
x=1

ep(2hax+ ah2 + bh) ≤ B + 2

B−1∑
h=1

∣∣∣∣∣
B−h∑
x=1

ep(2hax)

∣∣∣∣∣ ,
(6.2)

and so

|Sp(f,B)|2 ≤ B + 2

B−1∑
h=1

min

{
B − h,

1

| sin(2πha/p)|

}
. (6.3)

We deduce from Lemma 3.3 that for
√
p < B < p/2, we have

|Sp(f,B)|2 ≤ B +
2p

π

(
log(πB2/p) + 1 +

πB

p

)
+R

=
2p

π
log(B2/p) +

2p

π
log(πe) + 3B +R

<
2p

π
log(B2/p) + 1.366 p+ 3B +R.

Similarly, by Lemma 3.2,

|Sp(f,B)|2 ≤ B +
2p

π

(
logB + γ +

1

2B

)
+R

=
2p

π
logB +

2γ

π
p+B +

p

πB
+R

<
2p

π
logB + .368 p+B +

p

πB
+R.
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We can now establish Theorem 1.2.

Proof of Theorem 1.2. If B < 1.52
√
p, we have trivially

|Sp(f,B)|2 ≤ B2 <
2p

π
log(16.6B2/p),

since letting u := B2

p , we have u ≤ 2
π log(16.6u) for u < (1.52)2. Thus, we may

assume that B ≥ 1.52
√
p. Using this restriction on B and computer computation,

we can readily verify the theorem for p < 2000 using (6.3). Suppose now that

p > 2000. If B < .136 p so that R < .0121 p, we use the first bound in (6.1) to get

the result provided that

2p
π log(B2/p) + 1.366p+ 3B + .0121p ≤ 2p

π log(16.6B2/p),

that is,

1.3781p+ 3B ≤ 2p
π log(16.6).

Since B < .136p, the latter holds.

Suppose now that B = λp with .136 ≤ λ < .5. The second bound in (6.1) gives

the result provided that

2p
π logB + .368 p+B + p

πB +R < 2p
π log(16.6B2/p),

that is,

.368 + λ+ 1
πλp + 2λ

π
λ+1/p
1−λ2 ≤ 2

π log(16.6λ),

which is the case for p > 2000 and λ ≥ .136.

For intervals of length 1 ≤ B ≤ p, we have the following uniform bound.

Corollary 6.1. For any quadratic polynomial f(x) = ax2 + bx+ c with p ∤ a, and
positive integer B with 1 ≤ B ≤ p, we have

|Sp(f,B)| < √
p+

√
2
πp log p+

1
2 p.

This improves on (1.5) for p < 4.31 · 1024.

Proof. Inserting B = p−1
2 into the second expression in (6.1), we get for p ≥ 31,

|Sp(f,
p−1
2 )|2 < 2p

π log p
2 + .368p+ p

2 + 2
π + p

2π
p−1
3p−1 < 2

πp log p+ .5 p.

The same can be verified by computer computation for p < 31. Now, it is easy to

see that the second expression in (6.1) is increasing with B, and so |Sp(f,B)| ≤√
2
πp log p+ .5 p, for any B ≤ p−1

2 . If B > p/2, we can write Sp(f(x), B) =

Sp(f)−Sp(f(−x), p−B) = χ2(a)Gp −Sp(f(−x), p−B) with Gp =
√
p or

√
p i, and

apply the bound from the preceding sentence to the latter sum.
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Example 6.1. A nontrivial bound of the sort |Sp(f,B)| < B/2 is not possible in

general for B slightly smaller than
√
p, as the following example illustrates. For

B < p and B, p sufficiently large, we claim that∣∣∣ B∑
x=1

ep(x
2)
∣∣∣ > B

(
1− 4B4

p2

)
. (6.4)

Thus in order to have |Sp(f,B)| < B/2, we need 4B4

p2 ≥ 1
2 , that is B > 1

23/4
√
p. To

establish (6.4), note that cos(2x) ≥ 1− 2x2, and so the real part of the sum is

B∑
x=1

cos(2πx2/p) ≥ B − 2π2

p2

B∑
x=1

x4 = B − 2π2

p2

B(B+1)(2B+1)(3B2+3B−1)
30

≥ B − 2π2

5
B5

p2

(
1 +O( 1

B )
)
.

Remark 6.1. One can also make use of van der Corput’s Lemma, see, e.g., [18, pg.

18], to prove a result similar to Proposition 6.1. In this case, the analog of the sum

over h in (6.3) can be restricted to an interval 1 ≤ h ≤ H with H < B, yielding a

bound for |Sp(f,B)|2 with dominant term 2p
π

B+H
H+1 log(BH/p). Unfortunately, the

slight increase in the factor in front of the logarithm (in comparison to 2p
π ) prevents

any numeric improvement in our results.

7. Lemmas for the Divisor Function

To prove Theorems 1.3 and 1.4, we need the following results about the divisor

function τ(n).

7.1. Upper Bound for τ (n)

Nicolas and Robin [20] established the uniform upper bound

τ(n) ≤ n
1.066018...
log log n ,

for n ≥ 2 with equality at n = 6983776800 = 25 · 33 · 52 · 7 · 11 · 13 · 17 · 19.

7.2. Average Value of τ (n)

Next, for any positive real x, write∑
1≤n≤x

τ(n) = x log x+ (2γ − 1)x+∆(x).

Dirichlet established that ∆(x) = O(
√
x) and many improvements in the order

of magnitude of ∆(x) have been given since. It is widely believed that ∆(x) =
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Oε(x
1
4+ε) with the fraction 1/4 being best possible. Little work has been done

on obtaining explicit upper bounds for ∆(x). The standard textbook proof of

∆(x) = O(
√
x), gives with a little extra care, |∆(x)| ≤

√
x for x ≥ 1. This was

improved to

|∆(x)| ≤ .961
√
x, (7.1)

for x ≥ 1 by Berkane, Bordellès and Ramaré [1]. They also established the explicit

estimate [1, Theorem 1.2],

∆(x) < .764x1/3 log x, for x ≥ 9995. (7.2)

7.3. Average Value of τ (n)/n

Finally, consider the sum
∑∞

n=1
τ(n)
n . The Laurent expansion

∞∑
n=1

τ(n)

ns
= ζ2(s) = 1

(s−1)2 + 2γ
(s−1) + C + · · · ,

with C = γ2 − 2γ1 = .478809..., where γ = .577215... is Euler’s constant and

γ1 = −.0728158... is the first Stieltjes constant, gives the asymptotic
∑x

n=1
τ(n)
n ∼

1
2 log

2 x + 2γ log x + C as x → ∞. This was made explicit in [1, Corollary 2.2]. In

the next lemma, we correct and refine their result.

Lemma 7.1. For real x ≥ 2, we have∑
n≤x

τ(n)
n = 1

2 log
2 x+ 2γ log x+ C +O∗

(
2.1 log x
x2/3

)
.

As noted earlier, the O∗ means the constant in the big-oh can be taken to be 1. In

[1], the constant C was stated as γ2 − γ1 and the big-oh term was O∗( 1.16
x1/3 ).

Proof. Let x be a positive real number and c a constant such that for t ≥ x,

∆(t) ≤ ct1/3 log t. We have∑
n≤x

τ(n)
n =

∑
n≤x

τ(n)
(

1
x +

∫ x

n

dt
t2

)
= 1

x

∑
n≤x

τ(n) +

∫ 2

1

τ(1)dtt2 +

∫ 3

2

(τ(1) + τ(2))dtt2 + · · ·

= 1
x

∫ x

1

τ(n) +

∫ x

1

(∑
n≤t

τ(n)
)

dt
t2

= 1
x

∑
n≤x

τ(n) +

∫ x

1

1
t2

(
t log t+ (2γ − 1)t+∆(t)

)
dt

= 1
x

∑
n≤x

τ(n) + 1
2 log

2 x+ (2γ − 1) log x+

∫ ∞

1

∆(t)
t2 dt−

∫ ∞

x

∆(t)
t2 dt.
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Now, ∫ ∞

1

∆(t)
t2 = γ2 − 2γ − 2γ1 + 1;

see, e.g., [12, (33)]. Using |∆(x)| ≤ cx1/3 log x, we get

1
x

∑
n≤x

τ(n) = 1
x

(
x log x+ (2γ − 1)x+O∗(cx1/3 log x)

)
= log x+ 2γ − 1 +O∗

(
c log x
x2/3

)
.

Again, using |∆(t)| ≤ ct1/3 log t for t ≥ x and integrating by parts,∣∣∣ ∫ ∞

x

∆(t)
t2 dt

∣∣∣ ≤ c

∫ ∞

x

log t
t5/3

dt = 3c log x
2x2/3 + 3c

2

∫ ∞

x

dt
t5/3

= 3c log x
2x2/3 + 9c

4x2/3 .

Putting together the above, we get∑
n≤x

τ(n)
n = 1

2 log
2 x+ 2γ log x+ γ2 − 2γ1 +O∗

(
5c log x
2x2/3 + 9c

4x2/3

)
.

By (7.2) we can take c = .764 for x > 9995, and thus the error term is bounded by

2.1 log x/x2/3 for x > 9995. Computer computation shows that the same holds for

2 ≤ x ≤ 9995.

8. Proof of Theorem 1.3

Let C(x) = ax3 + bx2 + cx. Following the method of Weyl as in (6.2), we have

|Sp(f,B)|2 = B + 2R
B−1∑
h=1

B−h∑
x=1

ep(f(x+ h)− f(x))

≤ B + 2

B−1∑
h=1

∣∣∣∣∣
B−h∑
x=1

ep(3ahx
2 + (3ah2 + 2bh)x)

∣∣∣∣∣ = B + 2C, (8.1)

say, with

C :=

B−1∑
h=1

∣∣∣∣∣
B−h∑
x=1

ep(3ahx
2 + (3ah2 + 2bh)x)

∣∣∣∣∣ . (8.2)

i) Suppose that B <
√
p/2 and put δ = δp = 1.0661

log log p . We may assume that

B + 2C > 1.21B
1
2 p

1
2+

δ
2 log

1
2 p, else we are already done. Then

B

2C
≤ B

1.21B
1
2 p

1
2+

δ
2 log

1
2 p−B

≤ 1

1.43p
δ
2 p

1
4 log

1
2 p− 1

:= λp,
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and

|Sp(f,B)|2 ≤ B + 2C ≤ 2λpC + 2C = 2(1 + λp)C.

Now, by Cauchy’s inequality,

C2 ≤ (B − 1)

B−1∑
h=1

∣∣∣∣∣
B−h∑
x=1

ep(3ahx
2 + (3ah2 + 2bh)x)

∣∣∣∣∣
2

.

Applying (6.3) to the quadratic sum over x gives

C2 ≤ (B − 1)

B−1∑
h=1

B − h+ 2

B−h∑
j=1

min
{
B − h,

1

| sin(6ajhπ/p)|

}
≤ (B − 1)

B(B − 1)

2
+ 2

B−1∑
h=1

B−1∑
j=1

min
{
B − 1,

1

| sin(6ajhπ/p)|

}
= 1

2B(B − 1)2 + 2(B − 1)
∑

1≤n<p

N(n)min
{
B − 1,

1

| sin(6anπ/p)|

}
, (8.3)

where

N(n) = #{(h, j) ∈ Z2 : hj ≡ n (mod p), 1 ≤ h, j ≤ B − 1}. (8.4)

Note that for p/2 < n < p, we have N(n) = 0 since (B − 1)2 < p/2, while for

n < p/2, we have N(n) < τ(n) < p
1.0661

log(log p) = pδ. Thus,

C2 ≤ 1
2B(B − 1)2 + 2(B − 1)pδ

(p−1)/2∑
n=1

min
{
B − 1,

1

| sin(6anπ/p)|

}
.

Now, as in the proof of Lemma 3.2, the sum over n is maximized when 6a ≡ 1 mod

p, where it is bounded by

(p−1)/2∑
n=1

min
{
B − 1,

1

| sin(nπ/p)|

}
≤

∑
n<p/(πB)

B +
∑

p/(πB)<n<p/2

p

π

( 1
n
+

2n

p2 − n2

)
<

p

π
+

p

π
log πB

2 +B +
2p

π(p2 − (p/2)2)

∑
1≤n≤(p−1)/2

n

=
p

π
logB +

p

π
(1 + log(π/2)) +B +

p

3π

p2 − 1

p2

≤ p

π
logB + .5682 p+B. (8.5)

Thus for B <
√
p/2,

C2 ≤ 1
2B(B − 1)2 + 2(B − 1)pδ

( p

π
logB + .5682 p+B

)
≤ 1

4pB + 2Bpδ
(

p
2π log p+ .4579 p+B

)
,
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and

|Sp(f,B)|4 ≤ 4(1 + λp)
2
(
1
4pB + 2Bpδ

(
p
2π log p+ .4579 p+B

))
≤ (1.1)4 Bp1+δ log p,

for p > 109. For p < 109 and B <
√
p/2, we trivially have |Sp(f,B)|4 ≤

B4 < (1.1)4Bp1+δ log p. Thus in all cases, if B <
√
p/2, then |Sp(f,B)| ≤

1.1 (Bp)
1
4 pδ/4 log

1
4 p.

ii) Suppose that B >
√

p/2. If B > p2/3, then by (1.4),

|Sp(f,B)| < Φ log p ≤ 2
√
p log p < 1.38B

3
4 pδ/2 log

1
4 p.

Assume now that B < p2/3. We have trivially

|Sp(f,B)| ≤ B ≤ 1.38B
3
4 p

δ
2 log

1
4 p,

for B < (1.38)4p2δ log p. Since B < p
2
3 , it suffices to have p < 1.27 · 1020.

Suppose now that p > 1.27 · 1020. Using the notation in (8.1), we may assume

that B + 2C > (1.38)2B
3
2 pδ log

1
2 p, and so

|Sp(f,B)|2 ≤ B + 2C ≤ 2(1 + λ′
p)C,

with

λ′
p :=

1

1.6 p
1
4+δ log

1
2 p− 1

.

For any n ≤ p there are at most B2

p +1 integers m with 1 ≤ m ≤ B2 and m ≡ n

mod p, and thus with N(n) as defined in (8.4),

N(n) ≤ (B
2

p + 1) max
m≤B2

τ(m) ≤ (B
2

p + 1)p2δ.

Thus from the analog of (8.3), allowing n > p/2, we have

C2 ≤ 1
2B(B − 1)2 + 2(B − 1)

∑
1≤n<p

N(n)min
{
B − 1,

1

| sin(6anπ/p)|

}
≤ 1

2B(B − 1)2 + 2(B − 1)(B
2

p + 1)p2δ
∑

1≤n<p

min
{
B − 1,

1

| sin(6anπ/p)|

}
≤ 1

2B(B − 1)2 + 4(B − 1)(B
2

p + 1)p2δ
∑

1≤n<p/2

min
{
B − 1,

1

| sin(nπ/p)|

}
.

By (8.5), it follows that

C2 ≤ 1
2B

3 + 4B(B
2

p + 1)p2δ
(
p
π logB + .5682 p+B

)
,
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and so for p > 1.27 · 1020, noting that λ′
p < 10−10 and B < p2/3, we have

|Sp(f,B)|4 ≤ 4(1 + λ′
p)

2
(

1
2B

3 + 4B(B
2

p + 1)p2δ
(
p
π logB + .5682 p+B

))
≤ 4.0001

(
4
π

2
3p

2δB3 log p (1 + p
B2 )

(
1 + 3π(.5682)

2 log p + 3π

2p
1
3 log p

+ 3π
16p2δ log p(1+1/p1/3)

))
≤ (1.38)4B3

(
1 + p

B2

)
p2δ log p,

as one can confirm by computation.

9. Proof of Theorem 1.4

Let f(x) = x3 + bx2 + cx and suppose that 4p
1
3 < B <

√
p/12. In particular,

p > 7 · 106. Our goal is to show

|Sp(f,B)| < (Bp)
1
4 log

1
4 (B3/p) log

1
4 (Bp).

We have |Sp(f,B)|2 ≤ B + 2C with C as given in (8.2), and so we are done if

B + 2C ≤ (Bp)
1
2 . Suppose now that 2C > (Bp)

1
2 −B, implying

B

2C
≤ 1

(p/B)
1
2 − 1

.

From B <
√
p/12, we have p/B >

√
12p, and thus

B

2C
≤ βp :=

1

(12p)
1
4 − 1

< .0106.

Then B + 2C ≤ 2(1 + βp)C and

|Sp(f,B)|4 ≤ (B + 2C)2 ≤ 4(1 + βp)
2C2,

where by (8.3),

C2 ≤ 1
2B(B − 1)2 + 2(B − 1)

∑
1≤n<p

N(n)min
{
B − 1,

1

| sin(6nπ/p)|

}
.

Noting that N(n) = 0 for n > (B− 1)2 and N(n) ≤ τ(n) for n ≤ (B− 1)2, the sum

over n is at most

(B − 1)
∑

1≤n≤ p
6B

τ(n) +
∑

p
6B<n≤B2

τ(n)

| sin(6nπ/p)|
= Σ1 +Σ2
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say. By (7.1),

Σ1 ≤ (B − 1)
(

p
6B log p

6B + (2γ − 1) p
6B +

√
p
6B

)
< p

6 log
p
6B + p

6 (2γ − 1) +
√
pB/6,

and by Lemmas 3.1, 7.1, (7.2) and the fact that 6n
p < 6B2

p < 1
2 , we have

Σ2 ≤
∑

p
6B<n≤B2

τ(n)

π

(
p

6n
+

2(6n)/p

1− (6n/p)2

)
≤

∑
p

6B<n≤B2

τ(n)

π

(
p

6n
+

4

3

)

=
p

6π

∑
p

6B<n≤B2

τ(n)

n
+

4

3π

∑
p

6B<n≤B2

τ(n)

≤ p
6π

(
1
2 log

2 B2 − 1
2 log

2 p
6B + 2γ log 6B3

p + 4.2 log(p/6B)
(p/6B)2/3

)
+ 4

3π

(
B2 logB2 − p

6B log p
6B + (2γ − 1)(B2 − p

6B ) + 2B
)
.

The dominant term in Σ1 +Σ2 is

p
12π (log

2 B2 − log2 p
6B ) = p

12π log 6B3

p log Bp
6 .

By computer computation, we find that for 4p
1
3 < B <

√
p/12, we have

Σ1 +Σ2

p log(6B3/p) log(Bp/6)
< .0437.

Thus, for B in this range,

|Sp(f,B)|4 ≤ 4(1 + βp)
2C2 ≤ 4(1.0106)2C2

≤ 4.086
(

1
2B(B − 1)2 + 2(B − 1)(.0437)p log(6B3/p) log(Bp/6)

)
≤ 4.086

(
1
24Bp+ (.0874)Bp log(6B3/p) log(Bp/6)

)
< .358Bp log(6B3/p) log(Bp/6),

yielding the desired bound.
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