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Abstract

This note provides probabilistic proofs of the original Pascal’s recurrence formula

and the version involving the alternating sum.

1. Introduction

Let n ≥ 1 and k ≥ 0 be integers. Putting Sk(n) = 1k + 2k + · · · + nk, we see

that S0(n) = n, S1(n) = n(n+ 1)/2, S2(n) = n(n+ 1)(2n+ 1)/6, and S3(n) =

{n(n+ 1)/2}2 . The sum has been studied for a long time (see Edwards [2], Bear-

don [1], and references therein). It is known that Faulhaber’s formula provides a

concrete expression for Sm(n) (see, e.g., Beardon [1, Equation (2.2)], Knuth [6]).

While it involves Bernoulli numbers, we do not need to use it in recurrence formulas.

We call the equation

Sm(n) =
(n+ 1)m+1 − 1

m+ 1
− 1

m+ 1

m−1∑
r=0

(
m+ 1

r

)
Sr(n) for m ≥ 1 (1)

the original Pascal’s recursion formula (see Farhadian [3, Equation (4)]). A modi-

fied one,

Sm(n) =
n(n+ 1)m

m+ 1
− 1

m+ 1

m−1∑
r=1

(
m

r − 1

)
Sr(n) for m ≥ 1, (2)

was given by Farhadian [3, Equation (6)]. Moreover, Hu and Zhong [5, Equation (5)]

and [3, Equation (5)] wrote the recursion formula involving the alternating sum

Sm(n) =
nm+1

m+ 1
+

m−1∑
r=0

(
m

r

)
(−1)m−r+1

m− r + 1
Sr(n) for m ≥ 1. (3)
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For example, for m = 4, calculating each of Equations (1), (2), and (3) using

S0(n), . . . , S3(n) yields

S4(n) =
n5

5
+

n4

2
+

n3

3
− n

30
=

n(n+ 1)(2n+ 1)(3n2 + 3n− 1)

30
.

We provide notes on Equations (1), (2), and (3) as follows.

Remark 1. We note Equation (1). As stated by Edwards [2, p. 23] and Beardon

[1, Section 2, p. 202], Pascal’s identity

(n+ 1)m+1 − 1 =

m∑
r=0

(
m+ 1

r

)
Sr(n) for m ≥ 1 (4)

was found by Pascal himself in 1654. Equation (4) is proved by summing over

(l + 1)m+1 − lm+1 =

m∑
r=0

(
m+ 1

r

)
lr for l = 1, . . . , n.

Solving Equation (4) for Sm(n) gives us Equation (1).

Remark 2. We note Equation (2). A simple calculation shows that Equations (1)

and (2) are equivalent. In fact, the difference between the right-hand side of Equa-

tions (1) and (2) times (m+ 1) is

(n+ 1)m+1 − 1− n(n+ 1)m −
m−1∑
r=1

{(
m+ 1

r

)
−

(
m

r − 1

)}
Sr(n)− n

= (n+ 1)m − 1−
m−1∑
r=0

(
m

r

)
Sr(n) = 0,

where the last equality follows from Equation (4).

Remark 3. We note Equation (3). Pascal’s identity involving the alternating sum

is

nm+1 =

m∑
r=0

(
m+ 1

r

)
(−1)m−rSr(n) for m ≥ 1, (5)

which is proved by summing over

lm+1 − (l − 1)m+1 =

m∑
r=0

(
m+ 1

r

)
(−1)m−rlr for l = 1, 2, . . . , n.

Thus, since it follows that

nm+1 =

m−1∑
r=0

m+ 1

m− r + 1

(
m

r

)
(−1)m−rSr(n) + (m+ 1)Sm(n),

solving for Sm(n) gives us Equation (3).
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Farhadian [3] showed Equation (2) using the tail sum formula for the moment of a

non-negative integer-valued random variable. Hu and Zhong [5] proved Equation (3)

using a probabilistic method involving the convolution of independent random vari-

ables, which is somewhat technical.

In this short note, motivated by Farhadian [3] and Hu and Zhong [5], we also

provide probabilistic proofs of both Equations (1) and (3). Due to Remark 2, our

probabilistic proof may be considered alternative one of Equation (2). These proofs

are carried out by calculating the expected values of random variables. Let Y be a

random variable, and let {Ai : i ∈ I} be a countable partition of the sample space.

Then,

E(Y ) =
∑
l∈I

E(Y |Al)P(Al),

a result sometimes referred to as the partition theorem (see, e.g., Grimmett and

Stirzaker [4, Theorem 3.7.4, p. 72]). We apply this theorem to the restricted and

unrestricted moments of the standard discrete uniform random variable.

2. Probabilistic Proofs

In this section, we use a random variable X, which is discrete and uniformly dis-

tributed over {1, . . . , n} with P(X = l) = 1/n for l = 1, . . . , n. Let I{A} denote the

indicator function of an event A (see [4, Example 2.1.9, p. 31]). We now provide

proofs of Equations (1) and (3).

Proof of Equation (1): Let us assume n ≥ 2. We firstly consider the (m + 1)th

moment of X as follows:

E(Xm+1) =

n∑
l=1

lm+1P(X = l) =
1

n

n∑
l=1

lm+1 =
1

n
Sm+1(n). (6)

Let ν ≥ 1 be an integer and p ∈ (0, 1). Let Bin(ν, p) be a binomial random

variable, independent of X, with parameters ν and p. Consider the event Ar(ν, p) =

{Bin(ν, p) = r} for r = 0, . . . , ν. We then see I{∪m+1
r=0 Ar(ν, p)} = 1. Use the

partition theorem on the events {X = l}l=1,2,...,n to obtain

E(Y ) =

n∑
l=1

E(Y |X = l)P(X = l),
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where Y = Xm+1I{∪m+1
r=0 Ar(m+ 1, 1/X)}. We then have

E(Xm+1) = E(Xm+1I{∪m+1
r=0 Ar(m+ 1, 1/X)})

=

n∑
l=1

E(Xm+1I{∪m+1
r=0 Ar(m+ 1, 1/X)}|X = l)P(X = l)

=
1

n

n∑
l=1

lm+1E(I{∪m+1
r=0 Ar(m+ 1, 1/l)}|X = l)

=
1

n

n∑
l=1

m+1∑
r=0

lm+1P (Bin(m+ 1, 1/l) = r) .

The last equality holds from the independence of X and Bin(m+1, 1/l). Now write

the term corresponding to l = 1 separately from the rest to obtain

E(Xm+1) =
1

n

{
m+1∑
r=0

n∑
l=2

lm+1P (Bin(m+ 1, 1/l) = r) +

m+1∑
r=0

P (Bin(m+ 1, 1) = r)

}

=
1

n

{
m+1∑
r=0

(
m+ 1

r

) n∑
l=2

(l − 1)r + 1

}
=

1

n

{
m+1∑
r=0

(
m+ 1

r

)
Sr(n− 1) + 1

}
.

(7)

Using Equations (6), (7), and

m+1∑
r=0

(
m+ 1

r

)
Sr(n−1) =

m−1∑
r=0

(
m+ 1

r

)
Sr(n−1)+(m+1)Sm(n−1)+Sm+1(n)−nm+1,

we have

m−1∑
r=0

(
m+ 1

r

)
Sr(n− 1) + (m+ 1)Sm(n− 1)− nm+1 + 1 = 0.

Solving for Sm(n− 1) yields

Sm(n− 1) =
nm+1 − 1

m+ 1
−

∑m−1
r=0

(
m+1
r

)
Sr(n− 1)

m+ 1
,

which completes the proof of Equation (1).

Proof of Equation (3): Consider continuous independent random variable U1, . . . , Um+1,

uniformly distributed over [0, 1] (see, e.g., [4, Section 4.4.1, p. 106]) and also assume

these are independent of X. Let Vm+1 = min1≤i≤m+1 Ui. Therefore,

P (Vm+1 ≤ t) = 1− P (Vm+1 > t) = 1− (1− t)m+1 for t ∈ (0, 1), (8)
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(see also [7, Equation (2)]). Expand the right-hand side of Equation (8) gives

P (Vm+1 ≤ t) =

m∑
r=0

(
m+ 1

r

)
(−1)m−rtm−r+1. (9)

It follows from the partition theorem for the events {X = l}l=1,2,...,n that

E(Xm+1I{XVm+1 ≤ 1})

=

n∑
l=1

E(Xm+1I{XVm+1 ≤ 1}|X = l)P(X = l)

=
1

n

n∑
l=1

lm+1P(Vm+1 ≤ l−1). (10)

Substituting Equation (8) into Equation (10) gives

E(Xm+1I{XVm+1 ≤ 1}) = 1

n

n∑
l=1

{
lm+1 − (l − 1)m+1

}
= nm.

Similarly, substituting Equation (9) into Equation (10) gives

E(Xm+1I{XVm+1 ≤ 1}) = 1

n

m∑
r=0

(
m+ 1

r

)
(−1)m−rSr(n).

Hence we have Equation (5), which completes the proof of Equation (3).
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