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Abstract

A bargraph is a sequence of rectangles lying in the first quadrant each of unit width
and positive integral length whose widths are flush with the x-axis starting from
the origin. By the capacity of a bargraph, we mean the amount of a liquid that
would be retained when poured over the bargraph from above by virtue of its shape.
In this paper, we consider the capacity statistic on two classes of words satisfying
certain growth restrictions, represented geometrically as bargraphs. A Catalan word
w = w1 · · ·wn is one with positive integer entries such that wi+1 − wi ≤ 1 for
1 ≤ i ≤ n − 1, with w1 = 1. Let An denote the set of Catalan words of length n,
which are enumerated by the n-th Catalan number Cn for all n ≥ 1. We derive an
explicit formula for the generating function of the capacity distribution on An and
study further properties of this distribution such as the number of members of An

achieving the maximum and minimum capacity. A similar treatment is provided
for the set of smooth words, that is, those satisfying the condition |wi+1 − wi| ≤ 1
for 1 ≤ i ≤ n−1 instead, and also study the distribution of capacity on a restricted
class of smooth words. As special cases of our results in the various cases, we obtain
infinite series identities involving the reciprocals of Chebyshev polynomials.

1. Introduction

Given a word v = v1 · · · vn on the alphabet of positive integers, we represent v as

a bargraph consisting of n columns flush with the x-axis and comprised of unit

squares such that the height of the i-th column is given by vi for 1 ≤ i ≤ n. We will

frequently identify a word with its bargraph representation and use the terms word

and bargraph interchangeably when speaking of a statistic on either. By a water
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cell of column i in v, where 2 ≤ i ≤ n− 1, we mean a unit square in this column at

height p such that vi < p < min{vj , vℓ} for some j < i < ℓ. Let ki for 2 ≤ i ≤ n− 1

denote the number of water cells of column i in v. Then define the capacity of v by∑n−1
i=2 ki, which will be denoted by cap(v). For example, if v = 122341123212323,

then cap(v) = 10 as illustrated below in Figure 1, where the individual water cells

are shaded. We assume any word of length less than three to have capacity zero,

the sum in question being vacuous in this case. It is easy to see that all (weakly)

monotonic words have capacity zero as well.

Figure 1: The bargraph v with cap(v)=10, where the water cells are shaded.

Informally, the capacity of a bargraph B corresponds to the total number of

cells that would be immersed when a large amount of a liquid is poured over the

top of B from above. Here, it is understood that liquid in which there is no basin

for it to collect would flow off of B altogether (with no restriction at the left or

right endpoints of B to stop the flow). Then a water cell corresponds to a square s

that would be immersed in the liquid by virtue of their being a column of strictly

greater height both to the left and to the right of the column of B above which s lies,

thereby forming a basin containing s where water would collect. Thus, in addition to

addressing a new class of restrictions on certain classes of k-ary words, our results

below could be of potential interest from a physical standpoint as bargraphs are

used to model various kinds of surfaces, particularly those satisfying certain growth

restrictions.

The capacity parameter has been considered on a variety of discrete structures

represented sequentially as bargraphs, among them, compositions [7, 15], geometri-

cally distributed words [3], k-ary words [6], permutations [9] and finite set partitions

[15]. In [8], a comparable study was made on the capacity of Dyck paths, repre-

sented graphically as a sequence of diagonal up and down steps. This research

continues work on the subject of bargraph enumeration with respect to various

statistics initiated in [21] and [12], where a formula was found for the bivariate

generating function tracking the number of horizontal and up steps in a bargraph,

viewed as a first quadrant lattice path. Further, there has been some interest in gen-

erating function formulas related to bargraphs in statistical physics [19, 20], where

they are used to model certain kinds of polymers. See also the review paper [14] on

bargraph enumeration and references contained therein.
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By a Catalan word w = w1 · · ·wn, we mean one with positive integer entries

satisfying w1 = 1 with wi+1 − wi ≤ 1 for all i ∈ [n − 1]. Catalan words have been

studied recently in the context of pattern avoidance [4, 5] and the exhaustive gen-

eration of Gray codes for growth-restricted words [17]. The distribution of various

parameters has also been considered on Catalan words, among them, area [10, 16],

semi-perimeter [10, 16] and the number of interior lattice points [13]. Let An denote

the set of Catalan words of length n. For example, if n = 4, we have

A4 = {1111, 1121, 1211, 1221, 1231, 1112, 1122,
1212, 1222, 1232, 1123, 1223, 1233, 1234}.

The cardinality of An is given by the n-th Catalan number Cn = 1
n+1

(
2n
n

)
for all

n ≥ 1; see, for example, [24, Exercise 80].

By a smooth word w = w1 · · ·wn, we mean one where wi ≥ 1 for all i with w1 = 1

such that |wi+1−wi| ≤ 1 for each i ∈ [n−1]. Smooth words were briefly considered

in [16], where the generating function of the joint distribution for the statistics

recording the sums of the ascent tops and level values was found. Let Rn denote

the set of smooth words of length n. For example, we have R4 = A4−{1231}, where
A4 is as given above. Then |Rn| for all n ≥ 1 is given by sequence A005773[n] in

the OEIS [18], which we will denote here by Ln. Note that Ln for n ≥ 1 enumerates

the set Ln of lattice paths from (0, 0) to the line x = n− 1 that never go below the

x-axis and use u = (1, 1), d = (1,−1) and h = (1, 0) steps, the members of which

are known as Motzkin left factors (see, for example, [2, p. 111]). Upon encoding

each difference wi+1−wi for i ∈ [n−1] by u, d or h according to if it equals 1, −1 or

0, respectively, one may identify each w ∈ Rn with a member of Ln, which will be

denoted by ȷ(w). For example, if w = 12322122 ∈ R8, then ȷ(w) = uudhduh ∈ L8.

Note that the final letter of w corresponds to one more than the final height of ȷ(w)

for all w. At times, we will identify members of Rn with their corresponding lattice

paths in Ln under ȷ.

In this paper, we study the distribution of the capacity statistic on An and Rn.

This extends not only recent work concerning the capacity distribution on other

discrete structures but also work pertaining to the distribution of various statistics

on An or Rn. Further, one obtains apparently new polynomial generalizations of

the underlying counting sequences Cn and Ln as a result. Indeed, we consider the

joint distribution of capacity with the final letter statistic on the respective struc-

tures leading to a bivariate generalization. Note that by restricting the distribution

polynomial for capacity on Rn for n ≥ 1 to those members that end in 1, one

obtains the corresponding distribution on a subset of the smooth words that are

equinumerous with the Motzkin paths of length n − 1. In this way, one obtains a

q-generalization of the Motzkin number sequence as well.

The organization of this paper is as follows. In the next section, we consider

the capacity distribution on Catalan words and compute a formula for its gener-
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ating function. To do so, we make use of a system of recurrences satisfied by the

distribution on An and two auxiliary arrays, which leads to a linear system in the

associated generating functions that can be solved explicitly using Cramer’s rule.

We also determine the degree of the distribution polynomial on An and find that it

depends upon n mod 3. A simple formula in terms of Fibonacci numbers is given

for the number of members of An with zero capacity and also for the number of

such members ending in a fixed letter. Algebraic and combinatorial proofs are pro-

vided for this result. In the third section, a comparable treatment is presented for

the set of smooth words of length n. We remark that a similar system of linear

recurrences can be found for the associated arrays, though a somewhat different

technique–one involving direct iteration–is needed to ascertain the formula for the

generating function of the distribution in this case. As a consequence of our results,

we obtain a pair of infinite series identities involving the reciprocals of Chebyshev

polynomials (see Corollary 5 below).

In the final section, we consider the capacity distribution on restricted smooth

words wherein no two adjacent 1’s are allowed. Note that the cardinality of the

set of such smooth words of length n is given by the grand Motzkin number Gn−1

for all n ≥ 1, whereas the subset of these words ending in 1 is enumerated by the

Riordan number Rn−1. Thus, one obtains q-generalizations for these sequences in

terms of the capacity distribution. Further, as a consequence of our results, we

obtain, in the case q = 1, new infinite series expansions for the generating functions

of Gn and Rn in terms of Chebyshev polynomials (Theorem 8). Finally, an explicit

bijection is found between the set of Motzkin left factors with no horizontal steps

on the x-axis and the set of grand Motzkin paths of the same length (Theorem

11), which establishes the cardinality of the restricted class of smooth words under

consideration.

2. Distribution of Capacity on Catalan Words

Given n ≥ 1 and 1 ≤ i ≤ n, let An,i denote the set of Catalan words of length

n ending in i and hence An = ∪n
i=1An,i. Let a(n, i; q) denote the distribution

(polynomial) of the capacity statistic on An,i, that is,

a(n, i; q) =
∑

π∈An,i

qcap(π),

and let a(n; q) =
∑n

i=1 a(n, i; q) be the corresponding distribution on An. The q

argument in the counting functions a(n, i; q) and a(n; q) (and also in others that

follow) will often be suppressed in cases where the usual meaning is understood.

We wish to determine information on a(n) and a(n, i). The problem of finding a

recurrence for a(n, i) by itself seems difficult, if not intractable. Alternatively, it is



INTEGERS: 25 (2025) 5

possible to write a system of recurrences satisfied by a(n, i) and two other arrays as

follows by considering the restriction of the capacity distribution to a certain subset

of An,i.

Given n ≥ 1 and 1 ≤ i ≤ n, let Bn,i denote the subset of An,i containing

those members whose largest letter is also i and let Bn = ∪n
i=1Bn,i. Let b(n, i; q)

and b(n; q) denote the respective distributions of the capacity statistic on Bn,i and

Bn. In order to write a system of recurrences for a(n, i) and b(n, i), we need to

consider a further array enumerating a certain class of words that satisfy the Catalan

growth restriction. Given m, j ≥ 1, let Cm,j denote the set of words w = w1 · · ·wm

with positive integer letters that both end in and have greatest letter j such that

wi+1 ≤ wi+1 for each i ∈ [m−1]. Given ℓ ∈ [j], let Cm,j,ℓ denote the subset of Cm,j

consisting of those members starting with ℓ. Let c(m, j, ℓ; q) denote the distribution

of the area statistic on Cm,j,ℓ, where the area is that of the corresponding bargraphs,

and let c(m, j; q) =
∑j

ℓ=1 c(m, j, ℓ; q) be the area distribution on Cm,j .

Considering cases based on the second letter within a member of Cm,j,ℓ where

m ≥ 2 yields the following recurrence for c(m, j, ℓ), where it is assumed c(m, j, ℓ) = 0

if ℓ > j.

Lemma 1. If m ≥ 2, j ≥ 1 and ℓ ∈ [j], then

c(m, j, ℓ) = qℓ
ℓ+1∑
i=1

c(m− 1, j, i), (1)

with c(1, j, ℓ) = qℓ · δj,ℓ.

Then a(n, i) and b(n, i) satisfy the following system of recurrences in terms of

c(m, j).

Lemma 2. The arrays a(n, i) and b(n, i) are given recursively by

a(n, i) = b(n− 1, i− 1) +

n−1∑
j=i

a(n− 1, j)

+

n−i−1∑
m=1

n−m−1∑
j=i

qmia(n−m− 1, j)c(m, i− 1; 1/q), 1 < i < n, (2)

and

b(n, i) = b(n− 1, i) + b(n− 1, i− 1)

+

n−i−1∑
m=1

qmib(n−m− 1, i)c(m, i− 1; 1/q), 1 < i < n, (3)

where c(m, j) is as given in Lemma 1, a(n, 1) = a(n−1) for all n ≥ 2 and a(n, n) =

b(n, 1) = b(n, n) = 1 for all n ≥ 1.
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Proof. The boundary conditions when i = 1 or i = n follow from observing that

each of the sets An,n, Bn,1 and Bn,n are singletons whose sole member has capacity

zero, whereas the members of An,1 arise by appending 1 to members of An−1 with

this operation leaving the capacity unchanged. To show (2), let π ∈ An,i where

1 < i < n and we consider cases based on the penultimate letter j of π. If j ≥ i,

then deleting the terminal i results in an arbitrary member of An−1,j of equal

capacity, which accounts for the first summation on the right side of (2). So assume

j = i − 1, the only other option. If no other letter ≥ i exists in π, then we have

π = π′i, where π′ ∈ Bn−1,i−1 with cap(π) = cap(π′). Hence, there are b(n−1, i−1)

possibilities for π in this case. Otherwise, there exists some letter ≥ i other than the

last, the rightmost of which must occur in position n−m−1 for some m ∈ [n−i−1].

That is, we have π = π′jπ′′i, where |π′′| = m, j ∈ [i, n−m− 1] and max(π′′) =

i− 1 with the final letter of π′′ also equal to i− 1. Hence, we have π′j ∈ An−m−1,j

and π′′ ∈ Cm,i−1, with cap(π) = cap(π′j) + cap(jπ′′i). Note that since max(π′′) <

i ≤ j, we have cap(jπ′′i) = cap(iπ′′i) = mi − area(π′′). Hence, the weight of all

members π ∈ An,i of the stated form for a fixed m and j is given by the product

a(n−m−1, j)·qmic(m, i−1; 1/q). Considering all possiblem and j then accounts for

the second summation on the right side and completes the proof of (2). A similar

argument applies to (3), the principle differences being that the first summation

on the right is replaced by b(n − 1, i) and j = i is required in the decomposition

π = π′jπ′′i above with π′i belonging to Bn−m−1,i. Figure 2 below illustrates a

particular case of the decomposition π = π′jπ′′i ∈ An,i used above, where n = 14,

m = 4, i = 3 and j = 4.

π = 12343453421123 π′j = 123434534

+=

jπ′′i = 421123

Figure 2: The Catalan word π = 12343453421123 ∈ A14,3, with cap(π) given by
cap(π′j) + cap(jπ′′i) = 2 + 6 = 8.

We have the following expression for the generating functions

Cj,i(x; q) =
∑
n≥1

c(n, j, i; q)xn and Cj(x; q) =
∑
n≥1

j∑
i=1

c(n, j, i; q)xn,

where j ≥ 1 and i ∈ [j].

Lemma 3. Let dj = dj(x; q) be defined recursively by

dj = (1− xqj)dj−1 − x2q2j−1dj−3, j ≥ 3, (4)
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with initial values d0 = 1, d1 = 1− xq and d2 = 1− xq − xq2. Then we have

Cj,i(x; q) =
xj−i+1q(

j+1
2 )−(i2)di−1(x; q)

dj(x; q)
, 1 ≤ i ≤ j, (5)

and hence

Cj(x; q) =
1

dj(x; q)

j∑
i=1

xj−i+1q(
j+1
2 )−(i2)di−1(x; q), j ≥ 1. (6)

Proof. Formula (6) follows from (5) and the definitions, and hence we need only

prove (5). Multiplying both sides of (1) by xm and summing over all m ≥ 2, we

obtain

Cj,ℓ(x; q) = xqℓ · δj,ℓ + xqℓ
ℓ+1−δj,ℓ∑

i=1

Cj,i(x; q), (7)

for ℓ = 1, . . . , j. Define the matrix A = (Aab)1≤a,b≤j , where

Aab =

 1− xqa, a = b;
−xqa, b = 1, 2, . . . , a− 1, a+ 1, with a < j, or if b < a = j;
0, otherwise.

Let ej = ej(x; q) denote the determinant of the matrix A. By applying Cramer’s

rule to the linear j × j system (7) in the quantities Cj,i(x; q) for a fixed j ≥ 1, one

has

Cj,i(x; q) =
xj+1−iq(

j+1
2 )−(i2)ei−1

ej
, 1 ≤ i ≤ j,

where e0 = 1. Thus, to complete the proof of (5), we need to show ej = dj for all

j ≥ 1.

One may assume j ≥ 4, since the equality is readily verified for 1 ≤ j ≤ 3. For

j ≥ 4, define the matrices B = (Bab)1≤a,b≤j−1 and C = (Cab)1≤a,b≤j−2 by

Bab =


1− xqa, a = b < j − 1;
−xqa, b = 1, 2, . . . , a− 1, a+ 1, with a < j − 1;
−xqj , a = j − 1;
0, otherwise,

and

Cab =


1− xqa, a = b < j − 2;
−xqa, b = 1, 2, . . . , a− 1, a+ 1, with a < j − 2;
−xqj , a = j − 2;
0, otherwise.

Expanding along the final column of A and B gives

ej = (1− xqj)ej−1 + xqj−1 det(B) and det(B) = −xqjej−2 + xqj−2 det(C).
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By the linearity of the determinant in the last row, we have

1

q2
det(C) + det(D) = ej−2,

where D = (Dab)1≤a,b≤j−2 is obtained from C by replacing the final row with the

vector (0, . . . , 0, 1) of size j − 2. From the definitions, we have det(D) = ej−3 and

thus

det(B) = −xqjej−2 + xqj(ej−2 − ej−3) = −xqjej−3, j ≥ 4.

Hence, ej satisfies the same recurrence as dj for j ≥ 4, which implies ej = dj for all

j ≥ 1, as desired.

Let Un = Un(x) denote the n-th Chebyshev polynomial of the second kind (see,

for example, [22]) given by Un = 2xUn−1 − Un−2 for n ≥ 2, with U0 = 1 and

U1 = 2x. We have the following explicit formulas for Cj,i(x; q) and Cj(x; q) at

q = 1 in terms of Chebyshev polynomials.

Corollary 1. For all j ≥ 1 and i ∈ [j],

Cj,i(x; 1) =
x(j−i+1)/2Ui(t)

Uj+1(t)
and Cj(x; 1) =

Uj−1(t)

Uj+1(t)
, (8)

where t := 1
2
√
x
.

Proof. Note dj(x; 1) = (1− x)dj−1(x; 1)− x2dj−3(x; 1) for j ≥ 3, with d0(x; 1) = 1,

d1(x; 1) = 1 − x and d2(x; 1) = 1 − 2x, by (4). By induction on j, we have

dj(x; 1) = x(j+1)/2Uj+1(t) for all j ≥ 0. Hence, by Lemma 3, we get

Cj,i(x; 1) =
x(j−i+1)/2Ui(t)

Uj+1(t)

and

Cj(x; 1) =
1

Uj+1(t)

j∑
i=1

x(j−i+1)/2Ui(t) =
Uj−1(t)

Uj+1(t)
,

where in the last equality we used
∑j

i=1 x
(j−i+1)/2Ui(t) = Uj−1(t), which can be

shown by induction on j.

Define the generating function Bi(x; q) =
∑

n≥i b(n, i; q)x
n for i ≥ 1.

Lemma 4. If i ≥ 1, then

Bi(x; q) =
xi

i∏
j=1

(
1− x− x

dj−1(qjx;1/q)

j−1∑
m=1

xj−mqj(j−m)+(m2 )−(
j
2)dm−1(qjx; 1/q)

) ,

(9)

where dj(x; q) is given by (4).
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Proof. Multiplying both sides of (3) by xn and summing over n ≥ i+ 1, we obtain

Bi(x; q) = xBi(x; q) + xBi−1(x; q) +
∑
m≥1

∑
n≥i

qmib(n, i)c(m, i− 1; 1/q)xn+m+1

= xBi(x; q) + xBi−1(x; q) + xBi(x; q)
∑
m≥1

qmic(m, i− 1; 1/q)xm,

which leads to

Bi(x; q) =
xBi−1(x; q)

1− x− xCi−1(qix; 1/q)
, i ≥ 2, (10)

with B1(x; q) = x
1−x . Iteration of (10), together with use of (6), completes the

proof.

Corollary 2. If i ≥ 1, then

Bi(x; 1) =
x(i−1)/2

Ui+1(t)
, (11)

where t := 1
2
√
x
.

Proof. Let us assume C0(x; q) = U−1(x) = 0. By (10) at q = 1 and (8), we then get

Bi(x; 1) =

i−1∏
j=0

x

1− x− xCj(x; 1)
=

i−1∏
j=0

xUj+1(t)

(1− x)Uj+1(t)− xUj−1(t)

=

i−1∏
j=0

xUj+1(t)

Uj+1(t)− x1/2Uj(t)
=

i−1∏
j=0

x1/2Uj+1(t)

Uj+2(t)
=

x(i−1)/2

Ui+1(t)
,

where we have used the fact Uj+1(t) = x−1/2Uj(t)− Uj−1(t).

We can now establish explicit formulas for the generating functions of the dis-

tribution of the capacity statistic on An. Let Ai(x; q) =
∑

n≥i a(n, i; q)x
n and

A(x; q) =
∑

n≥1

∑n
i=1 a(n, i; q)x

n. For convenience, we will take B0(x; q) = 1 and

C0(x; q) = 0.

Theorem 1. We have

Ai(x; q) = x

i∑
m=1

(−x)m−1
∑

1≤i1<···<im−1<im=i

(
(1 + Ci1−1(q

i1x; 1/q))A(x; q)

+Bi1−1(x; q)

) m∏
j=2

(1 + Cij−1(q
ijx; 1/q)) (12)
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and

A(x; q) =
x
∑

m≥1(−x)m−1
∑

1≤i1<···<im
Bi1−1(x; q)

∏m
j=2(1 + Cij−1(q

ijx; 1/q))

1− x
∑

m≥1(−x)m−1
∑

1≤i1<···<im

∏m
j=1(1 + Cij−1(qijx; 1/q))

,

(13)

where Bi(x; q) and Ci(x, q) are as given in Lemmas 3 and 4.

Proof. Multiplying both sides of (2) by xn and summing over n ≥ i+ 1, we obtain

Ai(x; q) =
∑

n≥i+1

n−1∑
j=i

a(n− 1, j)xn + xBi−1(x; q)

+
∑

n≥i+2

n−i−1∑
m=1

n−m−1∑
j=i

qmia(n−m− 1, j)c(m, i− 1; 1/q)xn

= x
∑
j≥i

Aj(x; q) + xBi−1(x; q)

+ x
∑
n≥1

n∑
m=1

n+i−m∑
j=i

qmia(n+ i−m, j)c(m, i− 1; 1/q)xn+i

= x
∑
j≥i

Aj(x; q) + xBi−1(x; q)

+ x
∑
m≥1

∑
n≥i

n∑
j=i

qmia(n, j)c(m, i− 1; 1/q)xn+m

= x
∑
j≥i

Aj(x; q) + xBi−1(x; q)

+ x
∑
j≥i

∑
m≥1

qmiAj(x; q)c(m, i− 1; 1/q)xm,

which leads to

Ai(x; q) = x(1 + Ci−1(q
ix; 1/q))

∑
j≥i

Aj(x; q) + xBi−1(x; q), i ≥ 2. (14)

Since B0(x; q) = 1 and C0(x; q) = 0, we have that (14) is seen to hold also for i = 1,

as a(n, 1) = a(n − 1) for n ≥ 2 with a(1, 1) = 1 implies A1(x; q) = x + xA(x; q).

Since A(x; q) =
∑

i≥1 Ai(x; q), one may rewrite (14) as

Ai(x; q) = x(1 + Ci−1(q
ix; 1/q))A(x; q)

+ xBi−1(x; q)− x(1 + Ci−1(q
ix; 1/q))

i−1∑
j=1

Aj(x; q), i ≥ 1. (15)
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To determine Ai(x; q), consider, more generally, a recurrence of the form

ui = ki + ℓi

i−1∑
j=1

uj , i ≥ 1,

where ki and ℓi denote arbitrary sequences. By induction on i, one can show

ui =

i∑
m=1

∑
1≤i1<···<im−1<im=i

ki1

m∏
j=2

ℓij , i ≥ 1. (16)

Applying formula (16) to (15) yields (12). Summing (12) over i ≥ 1 implies

A(x; q) = x
∑
m≥1

(−x)m−1
∑

1≤i1<···<im

(
(1 + Ci1−1(q

i1x; 1/q))A(x; q)

+Bi1−1(x; q)

) m∏
j=2

(1 + Cij−1(q
ijx; 1/q)),

and solving for A(x; q) in the last equality gives (13) and completes the proof.

Let C = C(x) denote the Catalan number generating function
∑

n≥0 Cnx
n =

1−
√
1−4x
2x .

Corollary 3. For all i ≥ 1, we have Ai(x; 1) = xiCi(x).

Proof. We provide two proofs, the first of which will show how the equality follows

from the preceding results. By (14), we have that vi = Ai(x; 1) satisfies

vi = x(1 + Ci−1(x; 1))
∑
j≥i

vj + xBi−1(x; 1), i ≥ 1, (17)

where
∑

j≥1 vj = C − 1. We demonstrate that (xC)i also satisfies (17), whence the

result follows. By Corollaries 1 and 2, in order to do so, we must show

(xC)i = x

(
1 +

Ui−2(t)

Ui(t)

)∑
j≥i

(xC)j +
xi/2

Ui(t)
,

which is equivalent to

(xC)iUi(t) = (xC)i+1(Ui(t) + Ui−2(t)) + xi/2, i ≥ 1. (18)

We prove (18) by induction on i, the i = 1 case reading xC/
√
x = (xC)2/

√
x+x1/2,

which is true by C = 1 + xC2. Let us assume the result for some i ≥ 1 and prove

it for i+ 1:

(xC)i+1Ui+1(t) = (xC)i+2(Ui+1(t) + Ui−1(t)) + x(i+1)/2.



INTEGERS: 25 (2025) 12

Applying Ui+1(t) =
1√
x
Ui(t)− Ui−1(t), we have

(xC)i+1 1√
x
Ui(t)(1− xC) = (xC)i+1Ui−1(t) + x(i+1)/2,

which, by the fact 1− xC = 1
C , is equivalent to

(xC)iUi(t) = (xC)i+1 1√
x
Ui−1(t) + xi/2.

Thus, by Ui(t) =
1√
x
Ui−1(t)− Ui−2(t), we obtain

(xC)iUi(t) = (xC)i+1(Ui(t) + Ui−2(t)) + xi/2,

which holds by the induction hypothesis.

Alternatively, this formula may also be explained combinatorially as follows.

Decompose π ∈ An,i according to the last occurrence of each letter j ∈ [i]; that

is, write π = π(1)1π(2)2 · · ·π(i)i, where the section π(j) for 1 ≤ j ≤ i contains only

letters in {j, j + 1, . . .}. Note that for each π(j), the sequence π(j) − (j − 1) is a

possibly empty Catalan word. By the definitions and the fact that |An| = Cn for

all n ≥ 0, we have Ai(x; 1) =
∑

n≥i |An,i|xn = (xC)i, as desired.

Remark 1. The q = 1 cases of the array a(n, i) and of the row sum b(n) =∑n
i=1 b(n, i) correspond to the respective entries A033184 and A287709 of the OEIS

[18], which may be realized bijectively.

We have the following result for the maximum capacity achieved by a member

of An.

Theorem 2. If n ≥ 1, then

deg(a(n; q)) =


3
(
m
2

)
, if n = 3m;

m(3m−1)
2 , if n = 3m+ 1;

m(3m+1)
2 , if n = 3m+ 2,

(19)

where deg(f(q)) denotes the degree of a polynomial f(q).

Proof. We first define some terms related to the capacity of w = w1 · · ·wn ∈ An

before proceeding with the proof of (19). Consider a string wxwx+1 · · ·wy within

w such that y ≥ x+ 2 and wx, wy > max{wx+1, . . . , wy−1}. Note that w a Catalan

word implies wx ≥ wy, for otherwise wy−1 ≥ wy − 1 ≥ wx, contrary to the assump-

tion on wx. This prompts the following definition. By a special string of w, we

mean a subsequence of consecutive letters wawa+1 · · ·wb such that b ≥ a + 2 and

wa ≥ wb > max{wa+1, . . . , wb−1}. Note that special strings correspond to sections
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of w capable of holding water within the bargraph representation and hence con-

tribute positively towards the capacity. Let us refer to a special string that is not

strictly contained within any other special strings (that is, is maximal with respect

to containment) as a reservoir.

Note that a reservoir corresponds to a maximal connected region where water

would collect when poured over the bargraph of w from above. Further, it is seen

that two distinct reservoirs of w consist of disjoint strings of letters except for

possibly the last letter of one coinciding with the first of the other. Suppose a

reservoir of w is given by the string α = wa · · ·wb. By an i-reservoir, we mean one

in which wb = i. Define the depth of an entry wr, where a+ 1 ≤ r ≤ b− 1, within

the i-reservoir α as i − wr, that is, the number of water cells of column r. Note

that the capacity of w is given by the sum of the capacities of its various reservoirs

and that the capacity of a reservoir equals the sum of the depths of its intermediate

entries. Let us say that w = w1 · · ·wn ∈ An has height j if the greatest i for which

there exists an i-reservoir in w is j. For example, the word v in Figure 1, which is

a member of A15, has three reservoirs and is of height three. Let A(j)
n denote the

subset of An consisting of its height j members. Note that A(j)
n is nonempty only

when n ≥ 4 and j ∈ [2, n− 2].

We now wish to maximize the capacity over all members of A(j)
n . Note first

that for any π ∈ An, the columns in the bargraph of π corresponding to the initial

occurrence of each i ∈ [ℓ], where ℓ = max(π), all fail to contain any water cells.

Further, if π contains a reservoir, at least one other column will not contain any

water cells as well, namely, one forming the right boundary of a reservoir. Thus, if

π ∈ A(j)
n , there are at least j + 1 columns that do not contain a water cell. Of the

remaining entries of π, there must be one of depth d for each d ∈ [j−2], by the growth

restriction on members of An. This leaves at most n− (2j−1) entries of π that can

have the greatest possible depth of j−1. From the preceding observations, it follows

that if 2 ≤ j ≤ ⌊n/2⌋, then the maximum capacity of a member of A(j)
n is achieved

(only) by π = 12 · · · j1n−2j+123 · · · j. On the other hand, if ⌊n/2⌋ < j ≤ n−2, then

it is seen that the maximal π is given (only) by π = 12 · · · j(2j−n+1)(2j−n+2) · · · j
in this case. Let us denote the uniquely determined π for which the capacity statistic

is maximized over A(j)
n by π(j). Then, to ascertain the degree of the polynomial

a(n; q), it suffices to find max{cap(π(j)) : 2 ≤ j ≤ n − 2}, where we may assume

n ≥ 4. Since cap(π(t)) < cap(π⌊n/2⌋) for t = ⌊n/2⌋+1, . . . , n−2, as one may verify,

we need only find M := max{cap(π(j)) : 2 ≤ j ≤ ⌊n/2⌋}.
Note that cap(π(j)) =

(
j
2

)
+ (j − 1)(n− 2j) for 2 ≤ j ≤ ⌊n/2⌋. So to determine

M , let us consider the function f(x) of a real variable given by f(x) = x2−x
2 + (x−

1)(n − 2x). Then we have that f(x) achieves its maximum value at x0 = n
3 + 1

2 .

We now consider cases on n mod 3. If n = 3m for some m ≥ 2, then we have that

M is achieved both when j = m and j = m + 1, since x0 = m + 1
2 and hence the

graph of f(x) is symmetric with respect to the vertical line x = m+ 1
2 in this case.
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This implies M = 3
(
m
2

)
, which yields the first formula in (19). If n = 3m + 1 for

some m ≥ 1, then x0 = m+ 5
6 in this case and M is achieved only by j = m+1, as

it is the value of j that is closest to the x-coordinate of the vertex in the graph of

f(x). This gives M =
(
m+1
2

)
+m(m− 1) = m(3m−1)

2 , and hence the second formula

of (19). Finally, if n = 3m + 2, then x0 = m + 7
6 and again M is achieved only

when j = m + 1. One then gets M = m(3m+1)
2 in this case, which yields the third

formula in (19) and completes the proof.

It is also possible to deduce from the preceding argument the leading two coeffi-

cients in the polynomial a(n; q).

Corollary 4. Let α = deg(a(n; q)) and cn and dn denote the coefficients of qα and

qα−1 in a(n; q), respectively. If n ≥ 4, then cn = 2 if n is divisible by 3, with cn = 1,

otherwise. If n ≥ 7, then

dn =


2m, if n = 3m;

m+ 1, if n = 3m+ 1;

m+ 2, if n = 3m+ 2,

(20)

with d4 = 13, d5 = 7 and d6 = 8.

Proof. We will draw upon the notation and terminology used in the proof of The-

orem 2. The first statement is apparent from the preceding proof since we saw

that both π(m) and π(m+1) and no others achieved the maximum capacity α when

n = 3m, with only π(m+1) doing so otherwise. For the second statement, let us

refer to π ∈ An for which cap(π) = α− 1 as being near maximal. If n = 3m where

m ≥ 3, then a near maximal member of A3m cannot occur in A(j)
3m for j ̸= m,m+1

as

cap(π(m−1)) =

(
m− 1

2

)
+ (m− 2)(n− 2m+ 2) =

3(m+ 1)(m− 2)

2
< 3

(
m

2

)
− 1

and since cap(π(j)) ≤ cap(π(m−1)) for all j ∈ [2, 3m − 2] − {m,m + 1}, by the

symmetry of the graph of y = f(x) with respect to the line x = m+ 1
2 in this case.

Further, m ≥ 3 implies a near maximal member of A3m belonging to A(m)
3m ∪A(m+1)

3m

cannot contain two or more reservoirs. To realize this, note that by observations

made in the third paragraph of the proof of Theorem 2, if ρ ∈ A(m)
3m ∪A(m+1)

3m where

m ≥ 3 were to contain two or more reservoirs, then the sum of the depths of ρ,

that is, cap(ρ), would be at least m − 1 less than cap(π(m)) if ρ ∈ A(m)
3m and at

least m less than cap(π(m+1)) if ρ ∈ A(m+1)
3m . In either case, ρ would fail to be near

maximal.

Thus, a near maximal π ∈ A(m)
3m ∪ A(m+1)

3m where m ≥ 3 must contain a single

reservoir. It is then seen that the only way in which one can achieve cap(π) = α−1
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is for one of the 1’s within the interior string of 1’s in π(j) = 12 · · · j1n−2j+123 · · · j
to be changed to a 2, with all other entries remaining the same. This yields m+ 1

near maximal π in A(m)
3m , and m− 1 in A(m+1)

3m , for a total of 2m altogether, which

implies the first case of (20). If n = 3m + 1 with m ≥ 2, then similar reasoning

applies and a near maximal member belonging to A(m+1)
3m+1 is one obtained from

π(m+1) = 12 · · · (m + 1)1m23 · · · (m + 1) by again changing an intermediate 1 to a

2, yielding m possibilities. In addition, one must also check if π(m) is near maximal

as cap(π(j)) < cap(π(m)) < cap(π(m+1)) for all j ∈ [2, 3m− 1]−{m,m+1}, by the

symmetry of f(x) with respect to the line x = m+ 5
6 in this case. Note

cap(π(m)) =

(
m

2

)
+ (m− 1)(n− 2m) =

(m− 1)(3m+ 2)

2
=

m(3m− 1)

2
− 1,

and indeed π(m) is near maximal. Since there are no other possibilities for a near

maximal member of A3m+1, the second case of (20) is established. Finally, a similar

argument applies if n = 3m + 2 with m ≥ 2, the near maximal π in this case

consisting of the m + 1 members of A(m+1)
3m+2 obtained by changing an intermediate

1 within π(m+1) = 12 · · · (m + 1)1m+123 · · · (m + 1) to a 2, together with π(m+2).

This yields the third formula in (20) and completes the proof.

We now consider the case when q = 0 in a(n, i) and a(n). Let Fn denote the

Fibonacci number defined by Fn = Fn−1+Fn−2 for n ≥ 2, with F0 = 0, F1 = 1. We

will need the following pair of Fibonacci identities, where it is assumed F−1 = 1.

Lemma 5. If n ≥ 1 and 2 ≤ i ≤ n+ 1, then

n−i+1∑
m=0

F2m−1

(
n−m− 1

i− 2

)
=

(
n− 1

i− 2

)
+

n∑
j=i

n−j∑
m=0

F2m−1

(
n−m− 2

j − 2

)
, (21)

and for all n ≥ 1, we have

F2n =

n∑
j=1

n−j∑
m=0

F2m−1

(
n−m− 1

j − 1

)
. (22)

Proof. To show (21), we compute the generating function of both sides over n ≥ i−1

for a fixed i ≥ 2. Now

∑
n≥i−1

n−i+1∑
m=0

F2m−1

(
n−m− 1

i− 2

)
xn =

∑
m≥0

F2m−1

∑
n≥i+m−1

(
n−m− 1

i− 2

)
xn

=
∑
m≥0

F2m−1x
m+1

∑
n≥i−2

(
n

i− 2

)
xn =

1− 2x

1− 3x+ x2
·
(

x

1− x

)i−1

,



INTEGERS: 25 (2025) 16

upon recalling
∑

m≥0 F2m−1x
m = 1−2x

1−3x+x2 . As for the right side of (21), we have

∑
n≥i−1

(
n− 1

i− 2

)
xn +

∑
n≥i

n∑
j=i

n−j∑
m=0

F2m−1

(
n−m− 2

j − 2

)
xn

=

(
x

1− x

)i−1

+
∑
j≥i

∑
n≥0

n∑
m=0

F2m−1

(
n−m+ j − 2

j − 2

)
xn+j .

Thus, to complete the proof of (21), we need to show∑
j≥i

∑
n≥0

n∑
m=0

F2m−1

(
n−m+ j − 2

j − 2

)
xn+j

=

(
x

1− x

)i−1(
1− 2x

1− 3x+ x2
− 1

)
=

xi

(1− x)i−2(1− 3x+ x2)
, i ≥ 2.

Now∑
j≥i

∑
n≥0

n∑
m=0

F2m−1

(
n−m+ j − 2

j − 2

)
xn+j =

∑
j≥i

∑
m≥0

F2m−1

∑
n≥j−2

(
n

j − 2

)
xn+m+2

=
∑
j≥i

xj

(1− x)j−1

∑
m≥0

F2m−1x
m =

xi

(1−x)i−1

1− x
1−x

· 1− 2x

1− 3x+ x2

=
xi

(1− x)i−2(1− 3x+ x2)
,

as desired. A similar proof can be given for (22).

Using (5), one can show Cj,i(q
j+1x; 1/q) |q=0= 0 for 1 ≤ i ≤ j and hence

Cj(q
j+1x; 1/q) |q=0= 0 for all j ≥ 1. By (10) at q = 0, we then have Bi(x; 0) =

xi

(1−x)i , whence b(n, i; 0) =
(
n−1
i−1

)
for 1 ≤ i ≤ n. Thus, taking q = 0 in (2) gives

a(n+ 1, i; 0) =

(
n− 1

i− 2

)
+

n∑
j=i

a(n, j; 0), 2 ≤ i ≤ n+ 1, (23)

with a(n+ 1, 1; 0) = a(n; 0) =
∑n

j=1 a(n, j; 0) for n ≥ 1 and a(1, 1; 0) = 1. One can

now establish the following formulas for a(n, i; 0) by induction on n using (23) and

Lemma 5, upon considering separately the cases when i = 1 and i > 1.

Theorem 3. If 2 ≤ i ≤ n, then

a(n, i; 0) =

n−i∑
m=0

F2m−1

(
n−m− 2

i− 2

)
, (24)

with a(n, 1; 0) = F2n−3 for n ≥ 1. Moreover, we have a(n; 0) =
∑n

j=1 a(n, j; 0) =

F2n−1 for all n ≥ 1.
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It is instructive to demonstrate the last result also by a combinatorial argument.

Combinatorial Proof of Theorem 3. We first show a(n; 0) = F2n−1 for n ≥ 1, from

which the formula for a(n, 1; 0) follows as an immediate consequence. Let A′
n denote

the subset of An whose members have zero capacity. It is seen that λ ∈ An belongs

to A′
n if and only if λ can be decomposed (uniquely) as λ = λ′λ′′, where λ′ is weakly

increasing, λ′′ is weakly decreasing with λ′′ possibly empty, and max(λ′′) < max(λ′)

if λ′′ is nonempty. Let kn = |A′
n| for n ≥ 1 and note k1 = 1 = F1 and k2 = 2 = F3.

To show kn = F2n−1 for all n ≥ 1, we then argue kn = 3kn−1−kn−2 for n ≥ 3. First

note that there are clearly kn−1 members of A′
n ending in 1, upon appending 1 to an

arbitrary member of A′
n−1. There are also kn−1 members of A′

n not ending in 1 in

which the maximum letter occurs only once. To see this, suppose λ = λ′λ′′ ∈ A′
n−1,

where λ′ and λ′′ are as described above, and let u = max(λ), which also must be the

final letter of λ′. We then insert a single copy of u+1 between λ′ and λ′′ (or at the

very end of λ if λ′′ = ∅) and increase each letter of λ′′ by one to obtain a member

of A′
n not ending in 1 and whose largest letter occurs once. As this operation is

reversible, it follows that there are kn−1 members of A′
n of the stated form.

Now suppose λ = λ′λ′′ ∈ A′
n−1 is as before, with the further assumption that λ

does not end in 1. Consider in this case inserting an additional copy of u between

λ′ and λ′′ (or at the end of λ if λ′′ = ∅). This operation is seen to yield a bijection

between the subset of A′
n−1 whose members do not end in 1 and the subset of A′

n

whose members have their maximum letter occurring at least twice and do not end

in 1. By subtraction, there are kn−1 − kn−2 members of the former set, and hence

also of the latter. Combining with the previous cases then implies kn = 3kn−1−kn−2

for n ≥ 3, as desired.

The preceding argument can now be extended to show (24) as well. Let A′
n,i =

A′
n ∩ An,i, and we wish to enumerate the members of A′

n,i for 2 ≤ i ≤ n. Suppose

first that the letter i within λ = λ1 · · ·λn ∈ A′
n,i occurs only once (at the end).

Then λ1 · · ·λn−1 is a weakly increasing sequence in [i− 1] where each letter occurs

at least once. By [23, p. 14], the number of possible λ is given by
(
n−2
i−2

)
, which

accounts for the m = 0 term of the summation in (24). So assume i within π ∈ A′
n,i

occurs at least twice. We decompose π as π = π′π′′, where π′ contains no i and π′′

starts with (and ends in) i. Note that π′ is weakly increasing (for otherwise, π would

have nonzero capacity) and contains each letter in [i− 1] at least once. Further, π′′

can only contain letters in {i, i + 1, . . .}, or membership in A′
n would be violated,

since π′′ both begins and ends with i. Let |π′′| = m + 1 for some m ≥ 1; note π′

containing every letter in [i− 1] implies m ≤ n− i. Subtraction of i− 1 from each

letter in π′′ is seen to result in a member of A′
m+1,1, as π′′ has zero capacity. By

the formula for a(n, 1; 0) already established, there are thus F2m−1 possibilities for

π′′ for a given m. Then |π′| = n−m− 1 implies there are
(
n−m−2

i−2

)
possibilities for

π′ and allowing m to vary gives
∑n−i

m=1 F2m−1

(
n−m−2

i−2

)
members of A′

n,i wherein i
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occurs at least twice. Combining this case with the prior yields (24) and completes

the proof.

3. Capacity of Smooth Words

Given n ≥ 1 and 1 ≤ i ≤ n, let Rn,i denote the set of smooth words of length

n ending in i and hence Rn = ∪n
i=1Rn,i. Let r(n, i; q) denote the distribution

of the capacity statistic on Rn,i (whose q argument will often be suppressed and

likewise for subsequent distributions). Let r(n; q) =
∑n

i=1 r(n, i; q) for n ≥ 1 be the

corresponding distribution on Rn. As it was with the array a(n, i) studied in the

prior section, it seems difficult to write a recursion for the array r(n, i) by itself. So

again we consider a system of recurrences with two other arrays.

Given n ≥ 1 and 1 ≤ i ≤ n, let Sn,i denote the subset of Rn,i containing those

members whose largest letter is also i. Let s(n, i; q) be the capacity distribution on

Sn,i. In order to write a system of recurrences for r(n, i) and s(n, i), we need to

consider a further array enumerating a certain class of words that satisfy the smooth

word restriction. Given m, j ≥ 1, let Tm,j denote the set of words w = w1 · · ·wm

on the alphabet of positive integers that begin, end and have greatest letter j such

that |wi+1 − wi| ≤ 1 for each i ∈ [m − 1]. Let t(m, j; q) denote the distribution of

the area statistic on Tm,j . Assume r(n, i) = 0 if i > n or i ≤ 0 and likewise for the

s(n, i) array, with t(m, j) = 0 if j ≤ 0.

Consider whether λ ∈ Tm,j ends in two or more j’s or a single j, where m, j ≥ 2.

If the latter, then λ both beginning and ending in j implies it can be decomposed

as λ = λ′λ′′j, where λ′ ∈ Tm−ℓ−1,j and λ′′ ∈ Tℓ,j−1 for some 1 ≤ ℓ ≤ m − 2. This

leads to the following recursive formula for t(m, j).

Lemma 6. If m, j ≥ 2, then

t(m, j) = qjt(m− 1, j) + qj
m−2∑
ℓ=1

t(ℓ, j − 1)t(m− ℓ− 1, j), (25)

with t(m, 1) = t(1,m) = qm for all m ≥ 1.

Then r(n, i) and s(n, i) are given in terms of a system of linear recurrence in-

volving t(m, j).

Lemma 7. The arrays r(n, i) and s(n, i) are given recursively by

r(n, i) = r(n− 1, i) + r(n− 1, i+ 1) + s(n− 1, i− 1)

+

n−i−1∑
m=1

qmir(n−m− 1, i)t(m, i− 1; 1/q), 1 < i < n, (26)
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with r(n, n) = 1 for all n ≥ 1 and r(n, 1) = r(n− 1, 1) + r(n− 1, 2) for n ≥ 2, and

s(n, i) = s(n− 1, i) + s(n− 1, i− 1)

+

n−i−1∑
m=1

qmis(n−m− 1, i)t(m, i− 1; 1/q), 1 < i < n, (27)

with s(n, n) = s(n, 1) = 1 for all n ≥ 1, where t(m, j) is as given in Lemma 6.

Proof. The boundary conditions when i = 1 or i = n follow from the fact that Rn,n,

Sn,1 and Sn,n each are singletons whose sole member has capacity zero, whereas

ρ ∈ Rn,1 for n ≥ 2 implies ρ = ρ′1, with ρ′ ∈ Rn−1,1 ∪ Rn−1,2. To show (26), let

π ∈ Rn,i where 1 < i < n and consider the penultimate letter j of π. Note π ∈ Rn,i

implies j ∈ {i − 1, i, i + 1}. If j = i or i + 1, then there are clearly r(n − 1, i)

and r(n− 1, i+ 1) possibilities, respectively. If j = i− 1 and no i occurs within π

other than at the end, then there are s(n− 1, i− 1) possibilities, by the definitions.

Otherwise, j = i−1, with π decomposable as π = π′iπ′′(i−1)i, where π′′ contains no

i and is possibly empty. Then we must have π′i ∈ Rn−m−1,i and π′′(i−1) ∈ Tm,i−1

for some m ∈ [n − i − 1], since π′′ must start with i − 1, if nonempty. Employing

now the same argument used to establish the comparable case in the proof of (2),

the contribution towards the total weight of those π decomposed as above is seen

to be r(n − m − 1, i) · qmit(m, i − 1; 1/q) for each m. Summing over all possible

m then accounts for the summation on the right-hand side and combining with

the prior cases completes the proof of (26). A similar proof applies to (27). First

note π ∈ Sn,i implies the penultimate letter of π must either be i or i − 1, and if

it is i − 1, consider whether or not π contains more than one i. If it does, with

π = π′iπ′′(i − 1)i as before, then the section π′i must now belong to Sn−m−1,i for

some m ∈ [n− i− 1], where |π′′| = m− 1. Combining the various cases then yields

(27) and completes the proof.

We seek explicit formulas for Ri(x; q) =
∑

n≥i r(n, i; q)x
n where i ≥ 1 is fixed and

R(x; q) =
∑

i≥1 Ri(x; q), which are the generating functions for the distribution of

the capacity statistic overRn,i for n ≥ i and overRn for n ≥ 1, respectively. We will

need expressions for the auxiliary generating functions Si(x; q) =
∑

n≥i s(n, i; q)x
n

and Tj(x; q) =
∑

m≥1 t(m, j; q)xm. By (25), we have

Tj(x; q) = qjx+ qjxTj(x; q) + qjxTj(x; q)Tj−1(x; q),

that is,

Tj(x; q) =
qjx

1− qjx− qjxTj−1(x; q)
, j ≥ 2,

with T1(x; q) =
qx

1−qx .

An induction on j then yields the following finite continued fraction expression

for Ti(x; q).
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Lemma 8. For all j ≥ 2,

Tj(x; q) =
qjx

1− qjx− q2j−1x2

1− qj−1x− q2j−3x2

. . . q5x2

1−q2x− q3x2

1−qx

,

with T1(x; q) =
qx

1−qx .

Multiplying (27) by xn and summing over n ≥ i+ 1, we obtain

Si(x; q) = xSi(x; q) + xSi−1(x; q) + xSi(x; q)Ti−1(q
ix; 1/q),

that is,

Si(x; q) =
xSi−1(x; q)

1− x− xTi−1(qix; 1/q)
, i ≥ 2,

with S1(x; q) =
x

1−x . Iteration of the last formula leads to the following result.

Lemma 9. For all i ≥ 1,

Si(x; q) =
xi∏i−1

j=0(1− x− xTj(qj+1x; 1/q))
,

where Tj(x; q) for j ≥ 1 with T0(x; q) = 0 is as given in Lemma 8.

From (26), we obtain

Ri(x; q) = xRi(x; q) + xRi+1(x; q) + xSi−1(x; q) + xRi(x; q)Ti−1(q
ix; 1/q), i ≥ 2,

with R1(x; q) = x+ xR1(x; q) + xR2(x; q). Thus,

Ri(x; q) =
xRi+1(x; q)

1− x− xTi−1(qix; 1/q)
+

xSi−1(x; q)

1− x− xTi−1(qix; 1/q)
, i ≥ 2,

with R1(x; q) =
x

1−x + x
1−xR2(x; q). Therefore, by iteration,

Ri(x; q) =
∑

m≥i−1

xm−i+2Sm(x; q)∏m
j=i−1(1− x− xTj(qj+1x; 1/q))

, i ≥ 2, (28)

and, in particular,

R2(x; q) =
∑
m≥1

xmSm(x; q)∏m
j=1(1− x− xTj(qj+1x; 1/q))

=
∑
m≥1

x2m

(1− x)(1− x− xTm(qm+1x; 1/q))
∏m−1

j=1 (1− x− xTj(qj+1x; 1/q))2
.

Hence, we get the following formulas for R1(x; q) and R(x; q).
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Theorem 4. We have

R1(x; q) =
∑
m≥0

x2m+1

(1− x− xTm(qm+1x; 1/q))
∏m−1

j=0 (1− x− xTj(qj+1x; 1/q))2
,

(29)

where Tj(x; q) for j ≥ 1 with T0(x; q) = 0 is as given in Lemma 8. Moreover, we

have R(x; q) =
∑

i≥1 Ri(x; q), where Ri(x; q) for i ≥ 2 is given by (28).

Note that R1(x; q) is the generating function for the distribution of the capacity

statistic on members of Rn,1 for n ≥ 1, which are synonymous with the Motzkin

paths of length n− 1 via the correspondence ȷ.

By the recurrence for Ti(x; q) at q = 1 and induction on i,

Ti(x; 1) =
Ui−1(v)

Ui(v)
, i ≥ 1, (30)

where v := 1−x
2x . Thus, when q = 1 in Lemma 9, one obtains a telescoping product

expression, giving

Si(x; 1) =
xi∏i−1

j=0(1− x− xTj(x; 1))
=

1

Ui(v)
, i ≥ 1. (31)

As a consequence of the preceding observations and Theorem 4, one can obtain

the following pair of Chebyshev identities.

Corollary 5. We have

R1(x; 1) =
∑
j≥0

1

Uj(v)Uj+1(v)
=

1− x−
√
1− 2x− 3x2

2x
(32)

and

R(x; 1) =
x

3x− 1

∑
j≥0

1 + Uj(v)− Uj+1(v)

Uj(v)Uj+1(v)
=

2x

3x− 1 +
√
1− 2x− 3x2

− 1, (33)

where v := 1−x
2x .

Proof. By (29) at q = 1, together with (30) and (31), we obtain

R1(x; 1) =
∑
j≥0

1

Uj(v)Uj+1(v)
.

On the other hand, by ȷ, we have r(n, 1; 1) = |Rn,1| = Mn−1, and hence

R1(x; 1) =
∑
n≥1

Mn−1x
n =

1− x−
√
1− 2x− 3x2

2x
,
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which implies (32), where Mn denotes the n-th Motzkin number (see, for example,

[18, A001006]).

Note that by (28) at q = 1 and (31), we have for all m ≥ 2,

Rm(x; 1) =
∑

j≥m−1

xj−m+2Sj(x; 1)∏j
i=m−1(1− x− xTi(x; 1))

=
∑

j≥m−1

xj−m+2Sj(x; 1)
∏m−2

i=0 (1− x− xTi(x; 1))∏j
i=0(1− x− xTi(x; 1))

=
∑

j≥m−1

xj−m+2 · 1
Uj(v)

· xm−1Um−1(v)

xj+1Uj+1(v)
=

∑
j≥m−1

Um−1(v)

Uj(v)Uj+1(v)
.

Thus, by Theorem 4 at q = 1, we get

R(x; 1) =
∑
m≥1

Rm(x; 1) =
∑
j≥0

1

Uj(v)Uj+1(v)
+
∑
m≥2

∑
j≥m−1

Um−1(v)

Uj(v)Uj+1(v)

=
∑
m≥1

∑
j≥m−1

Um−1(v)

Uj(v)Uj+1(v)
=
∑
j≥0

1

Uj(v)Uj+1(v)

j+1∑
m=1

Um−1(v)

=
x

3x− 1

∑
j≥0

1 + Uj(v)− Uj+1(v)

Uj(v)Uj+1(v)
,

where in the last equality, we used the fact
∑n

i=0 Ui(x) =
1+Un(x)−Un+1(x)

2(1−x) . On the

other hand, by ȷ, we have r(n; 1) = |Rn| = Ln, and hence

R(x; 1) =
∑
n≥1

Lnx
n =

2x

3x− 1 +
√
1− 2x− 3x2

− 1,

which implies (33) and completes the proof.

Remark 2. See, for example, [1, 11] and references contained therein for finite sum

and infinite series identities involving reciprocals of Horadam numbers. Note that

the combinatorial derivation here of the identities (32) and (33) (as well as those

in Theorem 8 below) differs from the methods presented in [1, 11], which entail the

creative use of telescoping.

We have the following result for the maximum capacity achieved by a member

of Rn.

Theorem 5. If m ≥ 1 and 0 ≤ p ≤ 3, then deg(r(4m+ p; q)) = m(2m+ p− 1).

Proof. We seek to maximize the capacity of a member of Rn, where n ≥ 4. Upon

proceeding as in the proof of Theorem 2, and making the appropriate modifications,

in order to maximize the capacity, it suffices to consider only

ρ(j) = 12 · · · j(j − 1) · · · 21n−3j+323 · · · j, 2 ≤ j ≤ t,
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where t = ⌊(n+ 2)/3⌋, or members of Rn of the form

π = 12 · · · j(j − 1) · · · dd(d+ 1) · · · j or π = 12 · · · j(j − 1) · · · d(d+ 1) · · · j,

where 2 ≤ d < j and t < j ≤ n− 2. Upon changing the first j in π of either of the

two stated forms to j − 2, and then reducing each of the letters to the right of the

first j by one, we obtain a member of Rn with a strictly larger capacity. Thus, no

such π can be optimal, whence deg(r(n; q)) = max{cap(ρ(j)) : 2 ≤ j ≤ t}.

Figure 3: The maximum capacity over R25 of 72 achieved by ρ(7).

Note that cap(ρ(j)) = 2
(
j−1
2

)
+ (j − 1)(n − 3j + 3) = (j − 1)(n − 2j + 1), and

we seek to maximize the function g(x) = (x − 1)(n − 2x + 1) of a real variable

x. The function g(x) achieves its maximum value at x0 = n+3
4 , and we consider

cases on n mod 4. First suppose n = 4m for some m ≥ 1. Then x0 = m + 3
4

in this case and the value of j ∈ [2, t] closest to x0, that is, m + 1, will yield

the member of R4m with maximum capacity, by the graph of y = g(x). Thus,

deg(r(4m; q)) = g(m + 1) = m(n − 2(m + 1) + 1) = m(2m − 1), which establishes

the p = 0 case of our formula. A similar argument applies in the other cases. Note

that the maximum capacity of a member of R4m+p is seen to be achieved only by

ρ(m+1) if 0 ≤ p ≤ 2, and by both ρ(m+1) and ρ(m+2) if p = 3. Illustrated in Figure 3

is the optimal member π of R25, namely, π = ρ(7), for which the maximum capacity

of 72 is achieved.

We now consider the case when q = 0 in r(n, i) and r(n). Note first that

Tj(q
j+1x, 1/q) |q=0= 0 for each j and hence Si(x; 0) =

(
x

1−x

)i
for all i ≥ 1. There-

fore, by (28) at q = 0, we get for each i ≥ 2,

Ri(x; 0) =
∑

m≥i−1

(
x

1− x

)2m−i+2

=
xi

(1− 2x)(1− x)i−2

=
∑

j≥i−2

xj+2

(1− x)j+1
=
∑
n≥i

xn
n−2∑

j=i−2

(
n− 2

j

)
,
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with the second expression for Ri(x; 0) in the last line seen to hold for i = 1 as well.

Thus, we have

R(x; 0) =
∑
i≥1

Ri(x; 0) =
∑
i≥1

xi

(1− 2x)(1− x)i−2
= x

(
1− x

1− 2x

)2

.

Extracting the coefficient of xn in the preceding formulas then gives the following

result.

Theorem 6. If 2 ≤ i ≤ n, then

r(n, i; 0) =

n−2∑
j=i−2

(
n− 2

j

)
, (34)

with r(n, 1; 0) = 2n−2 for n ≥ 2 and r(1, 1; 0) = 1. Moreover, we have r(n; 0) =∑n
i=1 r(n, i; 0) = (n+ 2)2n−3 for n ≥ 2, with r(1; 0) = 1.

It is also possible to provide a direct combinatorial explanation of the prior result.

Combinatorial Proof of Theorem 6.

Let R′
n denote the subset of Rn whose members have capacity zero and let

R′
n,i = R′

n ∩ Rn,i for 1 ≤ i ≤ n. Let π ∈ R′
n,i, where n ≥ 2 and 2 ≤ i ≤ n. Note

that there are p+ i− 1 u’s and p d’s for some 0 ≤ p ≤ ⌊(n− i)/2⌋ among the n− 1

steps in the lattice path ȷ(π). Further, the positions of the u and d steps within

ȷ(π) may be chosen arbitrarily, with the d’s all occurring to the right of the last

u, since π having zero capacity contains no ascents beyond the first descent (if it

exists). Thus, there are
(

n−1
i+2p−1

)
u and d steps combined for each p. This yields

r(n, i; 0) = |R′
n,i| =

(
n− 1

i− 1

)
+

(
n− 1

i+ 1

)
+ · · · =

n−2∑
j=i−2

(
n− 2

j

)
,

which gives (34) and also shows r(n, 1; 0) = 2n−2 for n ≥ 2. From (34), we have

r(n, i; 0) + r(n, n+ 3− i; 0) = 2n−2, 1 ≤ i ≤ n+ 2,

assuming r(n,m; 0) = 0 if m > n. Summing both sides of the last equality over

1 ≤ i ≤ n+ 2 implies

r(n; 0) =

n∑
i=1

r(n, i; 0) = (n+ 2)2n−3, n ≥ 2,

which completes the proof.
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4. Restricted Smooth Words

Let R∗
n denote the subset of Rn whose members do not contain two adjacent 1’s

and R∗
n,i = R∗

n ∩Rn,i for 1 ≤ i ≤ n. Note that members of R∗
n correspond under ȷ

to the subset of Ln consisting of those paths that have no horizontal steps at height

zero (termed low h steps). Further, R∗
n,1 is seen to correspond to the subset of the

Motzkin paths of length n− 1 whose members contain no low h’s, which are called

Riordan paths. Thus, |R∗
n,1| = Rn−1 for all n ≥ 1, where Rn denotes the n-th

Riordan number (see A005043 in [18]). Define S∗
n,i where 1 ≤ i ≤ n and T ∗

m,j where

m, j ≥ 1 analogously, where we require members of Sn,i or Tm,j to not contain

any adjacent entries equal to 1. Let r∗(n), r∗(n, i) and s∗(n, i) denote the capacity

distribution on R∗
n, R∗

n,i and S∗
n,i, respectively, and t∗(m, j) the area distribution

on T ∗
m,j , where we have omitted here the q argument in each function.

Reasoning as in the proofs for Lemmas 6 and 7, we have that the arrays t∗(m, j),

r∗(n, i) and s∗(n, i) satisfy recurrences (25), (26) and (27), respectively, with the

only difference being in the initial conditions as follows: t∗(m, 1) = q·δm,1, r
∗(n, 1) =

r∗(n− 1, 2) for n ≥ 2 with r∗(1, 1) = 1, and s∗(n, 1) = δn,1.

Define R∗(x; q) =
∑

n≥1 r
∗(n; q)xn, R∗

i (x; q) =
∑

n≥i r
∗(n, i; q)xn, S∗

i (x; q) =∑
n≥i s

∗(n, i; q)xn and T ∗
j (x; q) =

∑
m≥1 t

∗(m, j; q)xm. Reasoning as before leads

to the following explicit formulas for T ∗
j (x; q) and S∗

i (x; q).

Lemma 10. For all j ≥ 2,

T ∗
j (x; q) =

qjx

1− qjx− q2j−1x2

1− qj−1x− q2j−3x2

. . . q5x2

1−q2x− q3x2

1

,

with T ∗
1 (x; q) = qx.

Lemma 11. For all i ≥ 1,

S∗
i (x; q) =

xi∏i−1
j=1(1− x− xT ∗

j (q
j+1x; 1/q))

,

where T ∗
j (x; q) for j ≥ 1 is as given in Lemma 10.

From the recurrence for r∗(n, i), we get

R∗
i (x; q) = xR∗

i (x; q) + xR∗
i+1(x; q) + xS∗

i−1(x; q) + xR∗
i (x; q)T

∗
i−1(q

ix; 1/q),

and hence

R∗
i (x; q) =

xR∗
i+1(x; q)

1− x− xT ∗
i−1(q

ix; 1/q)
+

xS∗
i−1(x; q)

1− x− xT ∗
i−1(q

ix; 1/q)
, i ≥ 2,
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with R∗
1(x; q) = x+ xR∗

2(x; q). Iterating the last equation, we have

R∗
i (x; q) =

∑
m≥i−1

xm−i+2S∗
m(x; q)∏m

j=i−1(1− x− xT ∗
j (q

j+1x; 1/q))
, i ≥ 2, (35)

and, in particular,

R∗
2(x; q) =

∑
m≥1

xmS∗
m(x; q)∏m

j=1(1− x− xT ∗
j (q

j+1x; 1/q))
.

Thus, we can state the following result.

Theorem 7. We have

R∗
1(x; q) = x+

∑
m≥1

x2m+1

(1− x− xT ∗
m(qm+1x; 1/q))

∏m−1
j=1 (1− x− xT ∗

j (q
j+1x; 1/q))2

,

(36)

where T ∗
j (x; q) for j ≥ 1 is as given in Lemma 10. Moreover, we have R∗(x; q) =∑

i≥1 R
∗
i (x; q), where R∗

i (x; q) for i ≥ 2 is given by (35).

As a consequence of the prior results, one can obtain the following pair of iden-

tities.

Theorem 8. We have

R∗
1(x; 1) =

∑
j≥0

(1− x)2

(Uj(v) + xUj−2(v))(Uj+1(v) + xUj−1(v))

=
1 + x−

√
1− 2x− 3x2

2(1 + x)
(37)

and

R∗(x; 1) =
1− x

3x− 1

∑
j≥0

2x(1− x) + (x2 + 2x− 1)Uj(v) + 2x2Uj−2(v)

(Uj(v) + xUj−2(v))(Uj+1(v) + xUj−1(v))

=
x√

1− 2x− 3x2
, (38)

where v := 1−x
2x .

Proof. Using the recurrence for t∗(m, j), one can show

T ∗
i (x; q) =

qix

1− qix− qixT ∗
i−1(x; q)

, i ≥ 2,

with T ∗
1 (x; q) = qx. By induction on i, and use of the recurrence

Ui(v) =
1− x

x
Ui−1(v)− Ui−2(v),
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one can show

T ∗
i (x; 1) =

Ui−1(v) + xUi−3(v)

Ui(v) + xUi−2(v)
, i ≥ 1, (39)

where we assume U−1(v) = 0 and U−2(v) = −1. By (39) and the recurrence for

Uj(v), we have for j ≥ 1,

1− x− xT ∗
j (x; 1) =

(1− x)(Uj(v) + xUj−2(v))− xUj−1(v)− x2Uj−3(v)

Uj(v) + xUj−2(v)

=
x(Uj+1(v) + xUj−1(v))

Uj(v) + xUj−2(v)
.

Thus, by Lemma 11 and (39), we get

S∗
i (x; 1) =

xi∏i−1
j=1(1− x− xT ∗

j (x; 1))
=

1− x

Ui(v) + xUi−2(v)
, i ≥ 1. (40)

Hence, by (36) and (40), we have

R∗
1(x; 1) = x+

∑
m≥1

x2m+1

(1− x− xT ∗
m(x; 1))

∏m−1
j=1 (1− x− xT ∗

j (x; 1))
2

= x+
∑
m≥1

(
xm∏m−1

j=1 (1− x− xT ∗
j (x; 1))

)
·

(
xm+1∏m

j=1(1− x− xT ∗
j (x; 1))

)

=
∑
m≥0

(1− x)2

(Um(v) + xUm−2(v))(Um+1(v) + xUm−1(v))
.

On the other hand, r∗(n, 1; 1) = |R∗
n,1| = Rn−1 for all n ≥ 1, and hence

R∗
1(x; 1) =

∑
n≥1

Rn−1x
n =

1 + x−
√
1− 2x− 3x2

2(1 + x)
,

which implies (37).

Note that by (35) at q = 1 and (40), we have for all m ≥ 2,

R∗
m(x; 1) =

∑
j≥m−1

xj−m+2S∗
j (x; 1)∏j

i=m−1(1− x− xT ∗
i (x; 1))

=
∑

j≥m−1

xj−m+2S∗
j (x; 1)

∏m−2
i=1 (1− x− xT ∗

i (x; 1))∏j
i=1(1− x− xT ∗

i (x; 1))

=
∑

j≥m−1

xj−m+2 · 1−x
Uj(v)+xUj−2(v)

· xm−1(Um−1(v)+xUm−3(v))
1−x

xj+1(Uj+1(v)+xUj−1(v))
1−x
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=
∑

j≥m−1

(1− x)(Um−1(v) + xUm−3(v))

(Uj(v) + xUj−2(v))(Uj+1(v) + xUj−1(v))
.

Therefore, by Theorem 7 at q = 1, we get

R∗(x; 1) =
∑
m≥1

R∗
m(x; 1)

=
∑
j≥0

(1− x)2

(Uj(v) + xUj−2(v))(Uj+1(v) + xUj−1(v))

+
∑
m≥2

∑
j≥m−1

(1− x)(Um−1(v) + xUm−3(v))

(Uj(v) + xUj−2(v))(Uj+1(v) + xUj−1(v))

=
∑
m≥1

∑
j≥m−1

(1− x)(Um−1(v) + xUm−3(v))

(Uj(v) + xUj−2(v))(Uj+1(v) + xUj−1(v))

=
∑
j≥0

1− x

(Uj(v) + xUj−2(v))(Uj+1(v) + xUj−1(v))

j+1∑
m=1

(Um−1(v) + xUm−3(v))

= x+
1− x2

U2(v) + x
+
∑
j≥2

1− x

(Uj(v) + xUj−2(v))(Uj+1(v) + xUj−1(v))

j∑
m=0

Um(v)

+
∑
j≥2

1− x

(Uj(v) + xUj−2(v))(Uj+1(v) + xUj−1(v))

(
−x+ x

j−2∑
m=0

Um(v)

)

= x+
x2(1 + x)

1− x− x2

+
∑
j≥2

(1− x)(1 + x− 2x(1− v) + Uj(v) + xUj−2(v)− Uj+1(v)− xUj−1(v))

2(1− v)(Uj(v) + xUj−2(v))(Uj+1(v) + xUj−1(v))

= x+
x2(1 + x)

1− x− x2

+
x(1− x)

3x− 1

∑
j≥2

2(1− x) + Uj(v) + xUj−2(v)− Uj+1(v)− xUj−1(v)

(Uj(v) + xUj−2(v))(Uj+1(v) + xUj−1(v))

=
x(1− x)

3x− 1

∑
j≥0

2(1− x) + Uj(v) + xUj−2(v)− Uj+1(v)− xUj−1(v)

(Uj(v) + xUj−2(v))(Uj+1(v) + xUj−1(v))

=
1− x

3x− 1

∑
j≥0

2x(1− x) + (x2 + 2x− 1)Uj(v) + 2x2Uj−2(v)

(Uj(v) + xUj−2(v))(Uj+1(v) + xUj−1(v))
,

where we have used the identity
∑j

m=0 Um(v) =
1+Uj(v)−Uj+1(v)

2(1−v) and, in the last

equality, the recurrence for Uj(v).

Let Gn denote the n-th grand Motzkin number for n ≥ 0; see A002426 in [18].
In the proof of Theorem 11 below, a bijection is given demonstrating |R∗

n| = Gn−1

for all n ≥ 1. Thus, we get

R∗(x; 1) =
∑
n≥1

r∗(n; 1)xn =
∑
n≥1

|R∗
n|xn =

∑
n≥1

Gn−1x
n =

x√
1− 2x− 3x2

,
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which implies (38) and completes the proof.

Remark 3. We have r(n, i; 1) = A064189[n−1, i−1] and r∗(n, i; 1) = A089942[n−
1, i − 1] for all 1 ≤ i ≤ n. The first equality follows from applying the correspon-

dence ȷ, whereas the second follows from comparing the defining recurrences and

apparently yields the first combinatorial interpretation of entry A089942 in [18].

That is, A089942[n, i] for 0 ≤ i ≤ n gives the cardinality of the subset of smooth

words of length n+1 that end in i+1 in which no two 1’s are adjacent. Let R(x) =∑
n≥1 Rn−1x

n = 1+x−
√
1−2x−3x2

2(1+x) and M(x) =
∑

n≥1 Mn−1x
n = 1−x−

√
1−2x−3x2

2x .

Using (28) and (35) at q = 1, one can extend identities (32) and (37) to

Rm(x; 1) =
∑

j≥m−1

Um−1(v)

Uj(v)Uj+1(v)
= M(x)m, m ≥ 1,

and

R∗
m(x; 1) =

∑
j≥m−1

(1− x)(Um−1(v) + xUm−3(v))

(Uj(v) + xUj−2(v))(Uj+1(v) + xUj−1(v))

= R(x)M(x)m−1, m ≥ 1.

There is the following result concerning the degree and leading coefficient of the

polynomial r∗(n; q).

Theorem 9. Let n = 8m+ p ≥ 1, where 0 ≤ p ≤ 7. Then we have

deg(r∗(8m+ p; q)) = 8m2 + (2p− 3)m+


0, 0 ≤ p ≤ 3;

1, p = 4;

2p−5, 5 ≤ p ≤ 7.

(41)

Let α = deg(r∗(n; q)) and cn denote the coefficient of qα in r∗(n; q). Then we have

for m ≥ 1,

c8m+p =


m+ 1, p = 0, 3;

1, p = 1, 2, 4, 7;

m+ 3, p = 5;

m+ 2, p = 6,

(42)

with cn for 1 ≤ n ≤ 7 given by 1, 1, 3, 1, 5, 2, 1, respectively.

Proof. The values of α and cn for 1 ≤ n ≤ 7 may be verified directly, so assume

n ≥ 8. Let

π(j) = 12 · · · j(j − 1) · · · 2ρ23 · · · j, 2 ≤ j ≤ ⌊(n+ 2)/3⌋,
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where ρ is of the form 12 · · · 121 if |ρ| is odd and ρ is a sequence consisting of an equal

number of 1’s and 2’s such that no two 1’s are adjacent if |ρ| is even. Note that ρ is

nonempty as j ≤ ⌊(n+ 2)/3⌋ implies |ρ| = n− 3j + 3 ≥ 1. Proceeding in a manner

comparable to the proof of Theorem 5, in order to maximize the capacity over all

members of R∗
n, we need only consider the π(j) having the stated form above. Note,

in particular, that σ given by σ = 12 · · · ℓ(ℓ− 1) · · · 3223 · · · ℓ where ℓ ≥ 4 is seen to

have capacity strictly less than that of σ′ = 12 · · · (ℓ−1)(ℓ−2) · · · 3212123 · · · (ℓ−1),

with σ′ of the form π(j).

We consider cases based on the parity of n and j in determining the value of

M := max{cap(π(j)) : 2 ≤ j ≤ ⌊(n + 2)/3⌋} for a fixed n. First suppose n and j

are both even and let n = 2a and j = 2ℓ for some a ≥ 4 and ℓ ≥ 1. Then we have

|ρ| = n− 3j + 3 odd in this case and thus

cap(π(j)) = 2

(
j − 1

2

)
+ (j − 1)

(
n− 3j + 4

2

)
+ (j − 2)

(
n− 3j + 2

2

)
= (2ℓ− 1)(2ℓ− 2) + (2ℓ− 1)(a− 3ℓ+ 2) + (2ℓ− 2)(a− 3ℓ+ 1)

= (2ℓ− 1)2 + (4ℓ− 3)(a− 3ℓ+ 1), 1 ≤ ℓ ≤ ⌊(a+ 1)/3⌋.

We seek the integer ℓ in the indicated interval that is closest to the x-coordinate

of the vertex of the graph of g(x) = (2x − 1)2 + (4x − 3)(a − 3x + 1), namely,

x0 = a
4 + 9

16 . We now need to consider cases on a mod 4. First suppose a is

divisible by 4, with a = 4m for some m ≥ 1. Then x0 = m+ 9
16 in this case, and we

choose ℓ = m+1. Let us assume for now m ≥ 2, in which case m+1 ≤ ⌊(4m+1)/3⌋.
Then we have

cap(π(m+1)) = g(m+1) = (2m+1)2+(4m+1)(m−2) = 8m2−3m−1, m ≥ 2,

which is the maximum capacity of the π(j) for j even where n = 8m. If m = 1,

then use ℓ = 1 and the corresponding maximum works out to 3.

To determine M , we must also compute the maximum capacity of the π(j) for

which j is odd. Let j = 2ℓ+ 1, where ℓ ≥ 1. Then we have |ρ| = n− 3j + 3 even in

this case and thus

cap(π(j)) = 2

(
j − 1

2

)
+ (2j − 3)

(
n− 3j + 3

2

)
= 2ℓ(2ℓ− 1) + (4ℓ− 1)(a− 3ℓ), 1 ≤ ℓ ≤ ⌊(a− 1)/3⌋.

If h(x) = 2x(2x − 1) + (4x − 1)(a − 3x), then the maximum of h(x) occurs at

x0 = a
4 + 1

16 . If a = 4m, then we choose ℓ = m and note m ≥ 1 implies m ≤
⌊(a − 1)/3⌋. Thus, the maximum capacity of the π(j) for j odd where n = 8m is

given by h(m) = 2m(2m − 1) + (4m − 1)(a − 3m) = 8m2 − 3m. Comparing this

maximum with that of π(j) for j even found above, we have M = 8m2 − 3m, which

implies the p = 0 case of formula (41). Similar arguments apply to the other cases
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when p is even in (41), upon writing a = 4m + s where 1 ≤ s ≤ 3 and treating

separately each case of s.

A similar proof which we briefly describe applies in the cases of (41) when n is

odd, upon writing n = 2a+ 1 for some a ≥ 4 and proceeding as before. Note that

if j = 2ℓ+ 1 where ℓ ≥ 1, then |ρ| odd implies

cap(π(j)) = 2

(
j − 1

2

)
+ (j − 1)

(
n− 3j + 4

2

)
+ (j − 2)

(
n− 3j + 2

2

)
= 2ℓ(2ℓ− 1) + 2ℓ(a− 3ℓ+ 1) + (2ℓ− 1)(a− 3ℓ)

= 4ℓ2 + (4ℓ− 1)(a− 3ℓ), 1 ≤ ℓ ≤ ⌊a/3⌋,

and one would pick ℓ in the given range closest to a
4 + 3

16 . On the other hand, if j

is even with j = 2ℓ, then |ρ| even implies

cap(π(j)) = (2ℓ− 1)(2ℓ− 2) + (4ℓ− 3)(a− 3ℓ+ 2), 1 ≤ ℓ ≤ ⌊(a+ 1)/3⌋,

and one would pick ℓ in the given range closest to a
4 + 11

16 . Taking the larger of the

two maximum capacities obtained in this way yields M . Once again, one would

need to consider cases on a mod 4. Illustrated in Figure 4 is the optimal member π

of R∗
26, namely, π = π(8), for which the maximum capacity of 75 is achieved.

Figure 4: The maximum capacity over R∗
26 of 75 achieved by π(8).

Formula (42) follows directly from the preceding proof when p = 1, 2, 4, 7, since

the maximum value M arises in these cases (only) from instances in which |ρ| =
n − 3j + 3 is odd, and hence there is only a single maximal member of R∗

8m+p. If

p = 0, we saw in the derivation above of this case that M arose when |ρ| was even,
with |ρ| = 8m − 3(2m + 1) + 3 = 2m. The formula for c8m then follows from the

fact that there are m + 1 linear arrangements of m 1’s and m 2’s in which no two

1’s are adjacent. To see this, consider inserting a single 2 between the i-th and

(i + 1)-st 1 for each 1 ≤ i ≤ m − 1, which leaves a single 2 to insert in any one of

m + 1 possible positions. The same explanation applies to c8m+3. Finally, in the

cases p = 5, 6, the maximum M is achieved by π(j) for both an even and an odd
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value of j. Since we have |ρ| = 2m+ 2 when p = 5 and |ρ| = 2m when p = 6 in the

corresponding maximal cases for which |ρ| = 8m+ p− 3j+3 was even, one obtains

the corresponding cn values of m+ 3 and m+ 2, respectively.

By modifying appropriately the algebraic or combinatorial argument given for

Theorem 6 above (the details we omit), one obtains the following analogous results

for r∗(n, i) and r∗(n) evaluated at q = 0.

Theorem 10. If 3 ≤ i ≤ n, then

r∗(n, i; 0) =

n−3∑
j=i−3

(
n− 3

j

)
, (43)

with

r∗(n, 1; 0) =


1, n = 1, 3;

0, n = 2;

2n−4, n ≥ 4,

and r∗(n, 2; 0) =

{
1, n = 2;

2n−3, n ≥ 3.

Moreover, we have r∗(n; 0) =
∑n

i=1 r
∗(n, i; 0) = (n + 2)2n−4 for n ≥ 4, with

r∗(1; 0) = r∗(2; 0) = 1 and r∗(3; 0) = 3.

We conclude with the following enumerative result concerning the members of

R∗
n.

Theorem 11. The cardinality of R∗
n is given by the grand Motzkin number Gn−1

for all n ≥ 1.

Proof. Let us first recall some terminology and introduce a bit of notation. A grand

Motzkin path of length n is any lattice path from the origin to (n, 0) using u, d and

h steps. Let Gn denote the set of all grand Motzkin paths of length n for n ≥ 1,

which are enumerated by Gn (see, for example, [18, A002426]). The subset of Gn

consisting of those paths that do not dip below the x-axis at any point is denoted by

Mn. Members of Mn are referred to simply as Motzkin paths and are enumerated

by the n-th Motzkin number Mn. By a low h step, it is meant one that lies on the

x-axis. Let Kn denote the set of first quadrant lattice paths from the origin to the

line x = n− 1 using u, d and h steps that do not contain any low h steps. Since R∗
n

is equivalent to Kn via ȷ, to establish the result, it suffices to show Gn = |Kn+1| for
all n ≥ 0.

Let π ∈ Gn, where n ≥ 1. Recall that a unit ρ of π is a sequence of consecutive

steps of the form ρ = uρ′d, where ρ′ is a (possibly empty) Motzkin path, or of the

form ρ = dρ′′u, where ρ′′ is the reflection in the x-axis of some Motzkin path, such

that the first step begins and the last step of ρ ends on the x-axis. We will refer

to units of the two respective forms as being positive and negative. A bad unit will
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refer to either a low h step or negative unit. We define a bijection f between Gn

and Kn+1 as follows. If π consists exclusively of positive units, then let f(π) = π.

So assume π contains at least one bad unit. In this case, we write π = αβγ, where

α is a possibly empty sequence of positive units, β is a bad unit and γ comprises the

remaining steps of π. We further decompose γ as γ = u(1)v(1) · · ·u(k−1)v(k−1)u(k)

for some k ≥ 1, where each u(i) if nonempty consists of positive units and each v(i)

consists of a single bad unit. Note that if γ contains no bad units, then k = 1 with

γ = u(1).
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(b) f(π) = uhdu2dhudhudu4d2udu3d2 ∈ K26

Figure 5: The lattice paths π ∈ G25 and f(π) ∈ K26 in a case when β is a low h.

Given a lattice path τ , let ref(τ) be obtained from τ by changing each u to d and

each d to u, leaving all h steps unchanged. Let g(γ) be obtained from γ by leaving

each u(i) section unchanged and replacing v(i) with u if v(i) is a low h and replacing

v(i) with href(σi)u if v(i) is a negative unit with vi = dσiu. We can now define f

by considering cases on β. If β is a low h within π = αβγ, then let f(π) = αug(γ).

On the other hand, if β = dβ′u is a negative unit, then let f(π) = αug(γ)href(β′).

Illustrated in Figures 5 and 6 are instances of f when β is a low h or a negative unit,

respectively. The first bad unit of π (that is, β) is indicated in red in both figures,

with the remaining bad units (that is, those contained in γ) in green. Further, the

steps within f(π) that correspond to those derived from the bad units of π after

the transformation are colored accordingly.

One may verify that the mapping f provides the desired bijection between Gn

and Kn+1 by constructing its inverse. We outline how to do so as follows. Given

λ ∈ Kn+1, let s denote the final height of λ. If s = 0, then clearly f−1(λ) = λ,

so assume s > 0. Let λ∗ denote the section of λ consisting of all steps beyond the

rightmost step of λ ending at height s − 1. Note λ∗ = uδ, where δ is a possibly
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empty Motzkin path. Then consider cases based on whether or not δ contains a

low h step (when δ is viewed as starting from the origin). If δ does not contain a

low h, then δ would correspond to the section u(k) in π = f−1(λ), where β within

π would be a low h in this case. If δ does contain a low h, then write δ = δ(1)hδ(2),

where δ(1) consists of only positive units if nonempty. Then δ(1) in this case would

correspond to u(k) in π and δ(2) to ref(β′), in which case β = dref(δ(2))u.
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(b) f(π) = u2d2uhdu2dhuhdu3d2udhudh ∈ K26

Figure 6: The lattice paths π ∈ G25 and f(π) ∈ K26 in a case when β is a negative
unit.

The rest of π may be reconstructed successively in a similar fashion considering

the remaining steps of λ to the left of λ∗. We make the following further observa-

tions. The parameter s of λ corresponds to the number of bad units of π. The units

of λ when s > 0 are seen to correspond to the positive units of π occurring to the left

of the first bad unit. Also, when s > 0, the rightmost u ending at a given height can

only arise through the transformation of a bad unit. Finally, consider the h steps

at a given (positive) level within λ, and among them those after which the path

never reaches a lower level (if any). Then the leftmost of these h steps arises from

the transformation of a negative unit (either of β or one contained within γ).
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