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Abstract

An alternative short, elementary probabilistic and combinatorial proof is presented
to derive a closed form expression for Ik := (1/π)

∫∞
0

(sinkx)/xkdx, a well known
identity in the literature. An alternative simpler and more elegant form for the value
of Ik is also obtained for k = 2, 4, 6, 8, generalizing a result derived by R. Butler
in 1960. Furthermore, our results show new relations between Ik, the Dirichlet
beta functions, the Bernoulli numbers, and the Euler numbers in a way not realized
before.

1. Introduction

The integral Ik appears in a number of diverse problems (see, e.g., [2, 4, 7, 8, 9, 11,

17, 19, 21]).

In closed form, Ik is given (see, e.g., [8]) for all integers k ≥ 1 by

Ik =
1

2k(k − 1)!

γk/2∑
i=0

(−1)i
(
k

i

)
(k − 2i)k−1, (1)

where γs := ⌊s⌋ = Floor(s). The values of the first ten values of Ik are:
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,
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384
,
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40
,

5887

23040
,
151

630
,

259723

1146880
,
15619

72576
.

The numerators and denominators of these ratios are the sequences OEIS A049330

and OEIS A049331, respectively.

DOI: 10.5281/zenodo.15536337



INTEGERS: 25 (2025) 2

Several rather tedious mathematical methods have been suggested in the litera-

ture to prove the identity in Equation (1). For example, Goddard’s approach in his

version in [7] is based on a relation which is given by

log

(
sin x

x

)
= −

∞∑
i=1

Bi

2i(2i)!
(2x)2i,

where the Bi’s are the Bernoulli numbers. The values of these numbers are B0 =

1, B2 = 1/6, B4 = −1/30, B6 = 1/42, B8 = −1/30, B10 = 5/66, etc. (see OEIS

A000367 and OEIS A002445). All odd-indexed Bernoulli numbers are zero, except

for the convention that B1 = −1/2 is used, and the signs of B2n alternate. Butler

applies in [2] a formula due to Poisson (see, e.g., [20, p.443]) to derive Equation (1)

by the trapezoidal rule using certain ranges of intervals, dependent on k. He also

presented the following alternative and simpler form for the value of Ik in the cases

1 ≤ k ≤ 4:

Ik =
1

4

{
Ek−1

(k − 1)!
+ 1

}
, (2)

where Ek−1 represents the appropriate Eulerian numbers, which are those used in

[10], namely, E0 = 1, E1 = 1, E2 = 1, E3 = 2, E4 = 5, E5 = 16, E6 = 61, E7 = 272,

E8 = 1385, E9 = 7936, E10 = 50521, etc.

Below we provide an alternative elementary probabilistic and combinatorial proof

of the identity in Equation (1). Also, a simpler form for Ik is derived for k = 2, 4, 6, 8.

Furthermore, some interesting relations between Ik, the Dirichlet beta functions, the

Bernoulli numbers, and the Euler numbers are discussed.

2. Alternative Proof

We first introduce some notation. Suppose that U1, U2, . . . , Uk are independent and

identically distributed uniform random variables on (0, 1). Let Vi = 2Ui − 1, i =

1, . . . , k. Then clearly V1, V2, . . . , Vk are independent and identically distributed

uniform variables on (−1,+1), with probability density function

g(y) =

{
1/2, for − 1 < y < +1;
0, elsewhere.

(3)

Define Sk :=
∑k

i=1 Ui, Tk :=
∑k

i=1 Vi = 2Sk − k, and denote the cumulative distri-

bution function of Sk and that of Tk by Fk and Gk, respectively, with corresponding

probability density functions fk and gk, which exist almost everywhere since Fk and

Gk are absolutely continuous with respect to Lebesgue measure.

Theorem 1. The identity in Equation (1) holds for all integers k ≥ 1.
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Proof. Note that

Gk(t) = P (Tk ≤ t) = P (2Sk − k ≤ t)

= P (Sk ≤ (t+ k)/2) = Fk((t+ k)/2),

so that, since 0 < Sk < k and −k < Tk < k,

gk(t) :=
d

dt
Gk(t) =

{
(1/2)fk((t+ k)/2), for− k < t < k;
0, elsewhere.

(4)

The distribution of Sk, the sum of independent and identically distributed uni-

form random variables on (0, 1), is well known in the statistical literature (see, e.g.,

[1,12,13,14,15,16]). From Remark 3 in [16, p.175] it follows for example that

fk(s) :=
d

ds
Fk(s) =

1

(k − 1)!

γs∑
i=0

(−1)i
(
k

i

)
(s− i)k−1, (5)

for 0 < s < k. Hence, applying Equations (4) and (5) we therefore have that

gk(t) =
1

2k(k − 1)!

γk(t)∑
i=0

(−1)i
(
k

i

)
(t+ k − 2i)k−1, (6)

where γk(t):=⌊(t + k)/2⌋. The following interesting identity can now be deduced

from Equations (5) and (6):

gk(0) = Ik. (7)

Furthermore, since the Vj ’s, j = 1, . . . , k, are identically distributed, they have a

common characteristic function, that is (see Equation (3)),

φj(t) :=

∫ +∞

−∞
eitvg(v)dv, (i2 = −1)

=
sin t

t
(t ∈ R).

Using the fact that the Vj ’s are independent random variables, it follows that the

characteristic function Ck(t) of Tk :=
∑k

i=1 Vi is given by

Ck(t) :=

∫ +∞

−∞
eitvgk(v)dv =

k∏
j=1

φj(t) =

(
sin t

t

)k

. (8)

Applying the Fourier integral inversion theorem (see Equation (15.20) in [20, p.937]),

from Equation (8) we obtain

gk(v) :=
1

2π

∫ +∞

−∞
e−itvCk(t)dt =

1

2π

∫ +∞

−∞
e−itv

(
sin t

t

)k

dt,
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which implies that

gk(0) :=
1

2π

∫ +∞

−∞

(
sin t

t

)k

dt =
1

π

∫ +∞

0

(
sin t

t

)k

dt. (9)

Hence, Equation (1) follows from Equations (7) and (9). 2

3. Simplified and New Identities for Ik, k = 2, 4, 6, 8

We need the following known results, which are stated as propositions.

Proposition 1 ([5]). Let ζ(s) :=
∑∞

n=1 1/n
s, s > 1, be the Riemann zeta function,

then

ζ(k)=
(2π)k

2(k!)
|Bk|, (k = 2, 4, 6, . . . ). (10)

Proposition 2 ([20]). We have

∞∑
n=1

1

(2n− 1)k
= (1− 2−k)ζ(k), k > 1. (11)

To state the next proposition, we need the following definitions. Let β(k) :=∑∞
n=1 (−1)n−1/(2n− 1)k be the well-known Dirichlet beta function, and suppose

{Ek, k = 0, 2, 4, . . . } is the set of Euler numbers (OEIS A028296) for the rest of the

discussion below.

Proposition 3 ([3,6]). For each even k ≥ 2, we have

β(k − 1) =

(
πk−1

2k

)
|Ek−2|
(k − 2)!

, (12)

which can be rewritten as β(k−1) = rπk−1 for k = 2, 4, 6, 8, . . . , where the multiples

r are respectively (OEIS A046976 and OEIS A053005):

1/4, 1/32, 5/1536, 61/184320, . . . .

Proposition 4 ([18]). We have

∞∑
n=1

sink(nt)

nk
= πtk−1Ik − tk

2
, (13)

for 0 < t < 2π if k = 1, and 0 ≤ t ≤ 2π/k if k ≥ 2.

Note that in [18] the notation S̃k is used instead of Ik.
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3.1. Relation Between Ik and the Bernoulli Numbers for k = 2, 4, 6, 8

Let t = π/4. Straightforward calculations then show that, since k is even, Equation

(13) becomes(
1√
2

)k ∞∑
n=1

1

(2n− 1)k
+

1

2k

∞∑
n=1

1

(2n− 1)k
=

πk

22k−2

(
Ik − 1

8

)
. (14)

Hence, from Equations (10), (11) and (14) we obtain the following interesting new

identity for k = 2, 4, 6, 8:

Ik =
1

8

{
2k(2k − 1)(2k/2 + 1)

k!
|Bk|+ 1

}
. (15)

3.2. Relation Between Ik and the Euler Numbers for k = 2, 4, 6, 8

Differentiating with respect to t the left-hand side of Equation (13) term by term

(which is permissible by virtue of the uniform convergence of the resulting sum and

continuity of sin x and cos x) and the right-hand side of Equation (13), we obtain

k

∞∑
n=1

sink−1(nt) cos(nt)

nk−1
= (k − 1)πtk−2Ik − ktk−1

2
. (16)

Choosing t = π/4 in Equation (16), it readily follows, since k − 1 is odd, that

k

(
1√
2

)k−1 (
1√
2

)
β(k − 1) =

πk−1

22k−1
[8(k − 1)Ik − k] ,

which yields the following surprising identity for k = 2, 4, 6, 8:

β(k − 1) = 2(2−3k)/2 πk−1 [8(k − 1)Ik − k] /k. (17)

Furthermore, from Equations (12) and (17) the following exciting identity is also

obtained for k = 2, 4, 6, 8:

Ik =
k

8(k − 1)

{
2(k−2)/2 |Ek−2|

(k − 2)!
+ 1

}
. (18)

Note that both the expressions for Ik presented in Equations (2) and (18) yield that

I2 = 1/2 and I4 = 1/3. However, the formula for Ik given in Equation (18) is a

generalization to the cases k = 6 and k = 8 of the identity for Ik in Equation (2),

derived in [2].
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3.3. Relation Between Bk and Ek for k = 2, 4, 6, 8

From Equations (15) and (18) it readily follows that for k = 2, 4, 6, 8,

2k(2k − 1)(2k/2 + 1)|Bk| = k22(k−2)/2|Ek−2|+ k(k − 2)!,

which also seems to be a new identity in the literature.

3.4. Ik Expressed as a Function of Both Bk and Ek for k = 2, 4, 6, 8

Rewrite Equation (13) in terms of x, i.e.,

∞∑
n=1

sink(nx)

nk
= πxk−1Ik − xk

2
, (19)

for k = 2, 4, 6, 8. Since k is even, a well known trigonometric identity is given by

sink(nx) =
1

2k

(
k

k/2

)
+

2

2k

(k−2)/2∑
i=0

(−1)(k−2i)/2

(
k

i

)
cos((k − 2i)nx), (20)

which can be deduced using De Moivre’s identity, Euler’s formula and the binomial

theorem.

Substituting the expression for sink(nx) in Equation (20) into the left-hand side

of Equation (19), and then integrating both sides of the resulting identity (term by

term) with respect to x over the intervals (0, t) (which is permissible by virtue of

the uniform convergence of the sum and continuity of sin x and cos x), we obtain

1

2k

(
k

k/2

)
tζ(k) +

2

2k

(k−2)/2∑
i=0

(−1)(k−2i)/2

(k − 2i)

(
k

i

) ∞∑
n=1

sin((k − 2i)nt)

nk+1

=
πtkIk
k

− tk+1

2(k + 1)
. (21)

Choosing t = π/4 in Equation (21), we then have that

1

2k

(
k

k/2

)
(π/4)ζ(k) +

1

2k

k/2∑
j=1

(−1)j

j

(
k

(k − 2j)/2

) ∞∑
n=1

sin(jnπ/2)

nk+1

=
πk+1

4k

{
Ik
k

− 1

8(k + 1)

}
. (22)

Applying Equation (10), the first term on the left-hand side of Equation (22)

equals (
k

k/2

)
πk+1|Bk|
8(k!)

, (23)
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and it readily follows, since k ≤ 8, that the second term on the left-hand side of

Equation (22) becomes

β(k + 1)

{(
1

3

)(
k

(k − 6)/2

)
−
(

k

(k − 2)/2

)}
/2k, (24)

with
(
k
j

)
= 0 for j < 0 and

(
k
0

)
= 1.

Note that replacing k by k + 2 in Equation (12) we have that

β(k + 1) =

(
πk+1

2k+2

)
|Ek|
k!

. (25)

Hence, from Equations (22), (23), (24), and (25) we obtain the following unexpected

new identity for k = 2, 4, 6, 8:

Ik =
4k
(

k
k/2

)
|Bk|

8(k − 1)!
+

|Ek|
4(k − 1)!

{(
1

3

)(
k

(k − 6)/2

)
−

(
k

(k − 2)/2

)}
+

k

8(k + 1)
.
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[4] A. Erdélyi, W. Magnus, F. Oberhettinger, and F.G. Tricome, Tables of Integral Transforms,
vol.1, McGraw-Hill, New York, 1954.

[5] L. Euler, De seriebus quibusdam considerationes, Comm. Acad. Sci. Petrop. 12 (1740), 53-96,
Opera Omnia 14 (1925), 407-462.

[6] S.R. Finch, Mathematical Constants, Cambridge Univ. Press, Cambridge, 2003.

[7] L.S. Goddard, The accumulation of chance effects and the Gaussian frequency distribution,
Philos. Mag. 36 (257) (1945), 428-433.

[8] A.H.R. Grimsey, On the accumulation of chance effects and the Gaussian frequency distribu-
tion, Philos. Mag. 36 (255) (1945), 294-295.

[9] K. Harumi, S. Katsura, and J.W. Wrench Jr., Values of (2/π)
∫∞
0 ((sin t)/t)ndt, Math. Comp.

14 (1960), 379.



INTEGERS: 25 (2025) 8

[10] L.B.W. Jolley, Summation of Series, 3rd edition, Chapman and Hall, Ltd., London, 1925.

[11] R.G. Medhurst and J.H. Roberts, Evaluation of the integral In(b) =
(2/π)

∫∞
0 ((sin x)/x)ncos(bx)dx, Math. Comp. 19 (1965), 113-117.

[12] S.K. Mitra, On the probability distribution of the sum of uniformly distributed random
variables, SIAM J. Appl. Math. 20 (2) (1971), 195-198.

[13] A.M. Mood, F.A. Graybill, and D.C. Boes, Introduction to the theory of statistics, 3rd edition,
McGraw-Hill, London, 1974.

[14] E.G. Olds, A note on the convolution of uniform distributions, Ann. Math. Stat. 23 (1952),
282-285.

[15] S.A. Roach, The frequency distribution of the sample mean where each member of the sample
is drawn from a different rectangular distribution, Biometrika 50 (1963), 508-513.

[16] S.M. Sadooghi-Alvandi, A.R. Nematollahi, and R. Habibi, On the distribution of the sum of
independent uniform random variables, Statist. Papers 50 (1) (2009), 171-175.

[17] L. Silberstein, The accumulation of chance effects and the Gaussian frequency distribution,
Philos. Mag. 35 (1944), 395-404.

[18] J.W.H. Swanepoel, On a generalization of a theorem by Euler, J. Number Theory 149 (2015),
46-56.

[19] R. Thompson, Evaluation of In(b) = 2π−1
∫∞
0 ((sin x)/x)ncos(bx)dx, and of similar integrals,

Math. Comp. 20 (94) (1966), 330-332.

[20] E.C. Titchmarsh, The Theory of Functions, 2nd edition, Oxford Univ. Press, London, 1952.

[21] J. Wolstenholme, Mathematical Problems, 3rd edition, Macmillan Publishers, London, 1891.


