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Abstract
Let 1 < c < d be two relatively prime integers. For a non-negative integer ℓ, let
gℓ(c, d) be the largest integer n such that n = cx + dy has at most ℓ non-negative
solutions (x, y). In this paper we prove that

πℓ,c,d ∼
π
(
gℓ(c, d)

)
2ℓ+ 2

(as c→ ∞) ,

where πℓ,c,d is the number of primes n having more than ℓ distinct non-negative
solutions to n = cx + dy with n ≤ gℓ(c, d), and π(x) denotes the number of all
primes less than or equal to x for any real number x. The case where ℓ = 0 has
been proved by Ding, Zhai, and Zhao recently, which was conjectured formerly by
Ramírez Alfonsín and Skałba.

1. Introduction

Let c1, . . . , ck (k ≥ 2) be a set of distinct integers with ci > 1 (i = 1, . . . , k). For
a given non-negative integer ℓ, let Sℓ(c1, . . . , ck) (written as Sℓ for shorthand) be
the set of all the elements n whose number of solutions to c1x1 + · · · + ckxk = n

with xi ≥ 0 is more than ℓ. The set Sℓ is called the ℓ-numerical semigroup if and
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only if gcd(c1, . . . , ck) = 1 Then for the set of non-negative integers N0, the set
N0\Sℓ is of all the elements of n whose number of solutions to c1x1+ · · ·+ ckxk = n

(x1, . . . , xk ∈ N0) is less than or equal to ℓ. In [4, 5, 6], properties of the ℓ-numerical
semigroups and explicit forms of crucial numbers are discussed3.

The set N0\Sℓ is finite if and only if gcd(c1, . . . , ck) = 1. Then, there exists the
largest element gℓ(c1, . . . , ck), which is called the ℓ-Frobenius number. When ℓ = 0,
then g(c1, . . . , ck) = g0(c1, . . . , ck) is the original Frobenius number, which is the
central topic on the classically well-known linear Diophantine problem of Frobenius;
see, e.g., the excellent monograph [7] of Ramírez Alfonsín. In general, to find an
explicit closed form of gℓ(c1, . . . , ck) is very difficult for k ≥ 3, but when k = 2, the
ℓ-Frobenius number can be given explicitly: for any non-negative integer ℓ,

gℓ(c, d) = (ℓ+ 1)cd− c− d (1)

(see [4, 5, 6] for more general formulas and related concepts).
For integers c, d with 1 < c < d and gcd(c, d) = 1, let πℓ,c,d be the number of

primes with n ∈ Sℓ(c, d) and n ≤ gℓ(c, d). Also, let π(x) denote the number of all
primes less than or equal to x for any real number x.

Ramírez Alfonsín and Skałba [8] proved that for any ε > 0, there is a constant
kε > 0 such that

π0,c,d ≥ kε
g0(c, d)(

log g0(c, d)
)2+ϵ ,

and conjectured the following:

π0,c,d ∼
π(g0

(
c, d)

)
2

(as c→ ∞) . (2)

Ding [1] made some progress on Conjecture (2). More precisely, for all but at most

O
(
N(logN)1/2(log logN)1/2+ε

)
pairs c and d, one has

π0,c,d =
π
(
g0(c, d)

)
2

+O

(
π
(
g0(c, d)

)(
log log(cd)

)ε
)
.

Since
π
(
g0(c, d)

)
2

+O

(
π
(
g0(c, d)

)(
log log(cd)

)ε
)

∼
π
(
g0(c, d)

)
2

(as c→ ∞) ,

3In [4, 5, 6] and other references, the terminology of p-numerical semigroup is frequently used.
However, in this paper, we mainly deal with prime numbers, so we do not use p or q, but instead
use ℓ.
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and the total number of the pairs (c, d) such that 1 < c < d, gcd(c, d) = 1 and
cd ≪ N is evaluated as ≫ N logN , Ding’s result provided an "almost all" version
of (2).

Though it seemed to be out of reach [8], recently Ding, Zhai, and Zhao [2]
completely proved (2). In a very recent article [3], Huang and Zhu extended their
result to the distributions of prime powers within the interval

[
0, g0(c, d)

]
. More

precisely, they established the asymptotic formula of

#
{
pk ≤ g0(c, d) : p

k = cx+ by, x, y ∈ Z≥0, p ∈ P
}
,

where k ≥ 1 is a given integer and P is the set of primes.
The main purpose of this paper is to show a more general result of (2) as follows.

Theorem 1. Let ℓ be a non-negative integer. For integers c and d with 1 < c < d

and gcd(c, d) = 1, we have

πℓ,c,d ∼
π
(
gℓ(c, d)

)
2ℓ+ 2

(as c→ ∞) .

Remark 1. When ℓ = 0, this is reduced to the main result in [2, Theorem 1.1].
The result itself is still never obvious because the speed of convergence is very slow.

2. Preliminaries

From now on, c and d will always denote two positive integers satisfying 1 < c < d

and gcd(c, d) = 1. The following result is straightforward.

Lemma 1. Suppose that cx+ dy = cx′ + dy′ with x, y, x′, y′ ∈ N0. Then

c|(y − y′) and d|(x− x′).

Lemma 2. Suppose that the number of solutions to

n = cx+ dy (x, y ∈ N0)

is exactly ℓ. Then we have

n = (ℓ− 1)cd+ cx0 + dy0

for some 0 ≤ x0 ≤ d− 1 and 0 ≤ y0 ≤ c− 1.

Proof. Suppose that ℓ solutions are given as

n = cx1 + dy1 = cx2 + dy2 = · · · = cxℓ + dyℓ .
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Without loss of generality, assume that

x1 < x2 < · · · < xℓ.

So, y1 > y2 > · · · > yℓ. Now, by using Lemma 1 we obtain

x2 = x1 + d, x3 = x1 + 2d, . . . , xℓ = x1 + (ℓ− 1)d

of 0 ≤ x1 ≤ d− 1 and 0 ≤ yℓ ≤ c− 1. Thus,

n = c
(
x1 + (ℓ− 1)d

)
+ dyℓ = (ℓ− 1)cd+ cx1 + dyℓ.

This completes the proof of Lemma 2.

Recall that P denotes the set of primes.

Lemma 3. Let πℓ,c,d be defined as in the introduction. Then we have

πℓ,c,d :=
∑

ℓcd<n≤gℓ(c,d)
n=ℓcd+cx0+dy0∈P
0≤x0≤d; 0≤y0≤c

1 .

Proof. If n has more than ℓ + 1 solutions with the form cx + dy (x, y ∈ N0), then
by Lemma 2, we have

n = (ℓ+ k)cd+ cx0 + dy0 (0 ≤ x0 ≤ d− 1; 0 ≤ y0 ≤ c− 1) ,

for some k ∈ Z+. For such an n, we will have

n ≥ (ℓ+ 1)cd > gℓ(c, d).

Thus, if n ≤ gℓ(c, d) with more than ℓ solutions, then n has exactly ℓ+ 1 solutions
(expressions). Applying again Lemma 2, we obtain that

n = ℓcd+ cx0 + dy0 (0 ≤ x0 ≤ d− 1; 0 ≤ y0 ≤ c− 1) ,

provided that n ≤ gℓ(c, d).
Furthermore, if n = ℓcd+ cx0 + dy0 ≤ gℓ(c, d) with

0 ≤ x0 ≤ d and 0 ≤ y0 ≤ c,

then we clearly have x0 ≤ d− 1 and y0 ≤ c− 1.
Now, the lemma follows from the trivial fact that ℓcd ̸∈ P.
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3. A Weighted Version

As usual, the von Mangoldt function Λ(n) is defined as

Λ(n) =

{
log p if n = pα (α > 0);
0 otherwise.

Proposition 1. Let ℓ be a non-negative integer. For integers c and d with 1 < c < d

and gcd(c, d) = 1, we have

ψℓ,c,d ∼ g0(c, d)

2
(as c→ ∞) ,

where
ψℓ,c,d =

∑
ℓcd<n≤gℓ(c,d)
n=ℓcd+cx0+dy0
0≤x0≤d; 0≤y0≤c

Λ(n) .

Proof. Our proof follows from the argument of [2, Theorem 1.1] with some adjust-
ments. For convenience, we will let g = g0(c, d). Throughout the proof, the integer
c is supposed to be sufficiently large.

By the definitions of ψℓ,c,d, we have

ψℓ,c,d =
∑

ℓcd<n≤gℓ(c,d)
n=ℓcd+cx0+dy0
0≤x0≤d; 0≤y0≤c

Λ(n) =
∑
n≤g

n=cx0+dy0
0≤x0≤d; 0≤y0≤c

Λ(ℓcd+ n) +Oℓ(log g) ,

where the big-Oℓ with subscript ℓ means that the implied constant depends at most
on ℓ. For any real α, let

f(α) =
∑

0≤n≤g

Λ(ℓcd+ n)e(αn) ,

h(α) =
∑

0≤x≤d
0≤y≤c

e
(
α(cx+ dy)

)
,

where e(t) denotes e2πit for any number t, as usual. Then by the orthogonal relation,
we have

ψℓ,c,d =

∫ 1

0

f(α)h(−α)dα . (3)

We are in a position to introduce the Hardy–Littlewood method to evaluate the
above integral.

Let Q < c1/3 denote a parameter depending only on c and d, which will be
determined later. Define the major arcs to be
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M(Q) =
⋃

1≤q≤Q

⋃
1≤a≤q

gcd(a,q)=1

{
α :

∣∣∣∣α− a

q

∣∣∣∣ ≤ Q

qg

}
.

By our assumption, we have Q < g1/6, from which it follows trivially that the above
subsets are pairwise disjoint (see, e.g., [2, Section 2]). In addition, we note that

M(Q) ⊆
[
1

Q
− Q

qg
, 1 +

Q

qg

]
⊆
[
Q+ 1

g
, 1 +

Q+ 1

g

]
.

The minor arcs are then defined to be (see [2, Equation (2.1)])

m(Q) =

[
Q+ 1

g
, 1 +

Q+ 1

g

]
\M(Q).

From Equation (3), it is clear that

ψℓ,c,d =

∫ 1+Q+1
g

Q+1
g

f(α)h(−α)dα

=

∫
M(Q)

f(α)h(−α)dα+

∫
m(Q)

f(α)h(−α)dα. (4)

3.1. Estimates of the Minor Arcs

Note that

|f(α)| =

∣∣∣∣∣∣
∑

0≤n≤g

Λ(ℓcd+ n)e(αn)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

ℓcd≤m≤ℓcd+g

Λ(m)e(αm)e(−αℓcd)

∣∣∣∣∣∣ (m = ℓcd+ n)

≤

∣∣∣∣∣∣
∑

ℓcd≤m≤ℓcd+g

Λ(m)e(αm)

∣∣∣∣∣∣ .
By a remarkable theorem of Vinogradov (see, e.g., [9, Theorem 3.1]) as well as the
Dirichlet approximation theorem (see, e.g., [9, Lemma 2.1]), we can obtain that

sup
α∈m(Q)

∣∣∣∣∣∑
m

Λ(m)e(αm)

∣∣∣∣∣≪ℓ
g(log g)4

Q1/2
+ g4/5(log g)4 ,

where the implied constant depends on ℓ (see [2, Lemma 3.1]), which means that

sup
α∈m(Q)

|f(α)| ≪ℓ
g(log g)4

Q1/2
+ g4/5(log g)4 .
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By using the following estimate given in [2, Lemma 3.2]∫ 1

0

|h(−α)|dα≪ (log g)2 ,

we have

∫
m(Q)

f(α)h(−α) ≤ sup
α∈m(Q)

|f(α)|
∫
m(Q)

|h(−α)|dα

≪ℓ

(
g(log g)4

Q1/2
+ g4/5(log g)4

)∫ 1

0

|h(−α)|dα

≪ℓ
g(log g)6

Q1/2
+ g4/5(log g)6 . (5)

3.2. Calculations of the Major Arc

We now calculate the integral on the major arcs:∫
M(Q)

f(α)h(−α) =
∑

1≤q≤Q

∑
1≤a≤q

gcd(a,q)=1

∫ a
q +

Q
qg

a
q −

Q
qg

f(α)h(−α)dα

=
∑

1≤q≤Q

∑
1≤a≤q

gcd(a,q)=1

∫ Q
qg

− Q
qg

f

(
θ +

a

q

)
h

(
−θ − a

q

)
dθ

=

∫ Q
g

−Q
g

f(θ)h(−θ)dθ +R , (6)

where

R =
∑

1<q≤Q

∑
1≤a≤q

gcd(a,q)=1

∫ Q
qg

− Q
qg

f

(
θ +

a

q

)
h

(
−θ − a

q

)
dθ.

We shall see later that the set R still contributes to the ‘error term’.
For any real θ, we have

f(θ) =
∑

0≤n≤g

Λ(n+ ℓcd)e(θn)

=
∑

ℓcd≤m≤g+ℓcd

Λ(m)e
(
θ(m− ℓcd)

)
(m = n+ ℓcd)

= e(−θℓcd)f̃(θ) ,

where
f̃(θ) =

∑
ℓcd≤m≤g+ℓcd

Λ(m)e(θm) .
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Let ρ(m) = Λ(m)− 1. Then

f̃(θ)−
∑

ℓcd≤m≤g+ℓcd

e(θm) =
∑

ℓcd<m≤g+ℓcd

ρ(m)e(θm) +Oℓ (log g) .

By partial summation, we have∑
ℓcd<m≤g+ℓcd

ρ(m)e(θm) = e
(
(ℓcd+ g)θ

) ∑
m≤ℓcd+g

ρ(m)

− e(ℓcdθ)
∑

m≤ℓcd

ρ(m)− 2πiθ

∫ ℓcd+g

ℓcd

(∑
m≤t

ρ(m)

)
e(tθ)dt . (7)

By using the Prime Number Theorem, there exists some absolute constant κ1 > 0

such that ∑
m≤t

ρ(m) = ψ(t)− t≪ te−κ1

√
log t.

Inserting this into Equation (7), it follows that∑
ℓcd<m≤g+ℓcd

ρ(m)e(θm) ≪ℓ ge
−κ1

√
log g + |θ|

∫ ℓcd+g

ℓcd

te−κ1

√
log tdt

≪ℓ ge
−κ1

√
log g + |θ|e−κ1

√
log g

∫ ℓcd+g

ℓcd

t dt

≪ℓ g(1 + |θ|g)e−κ1

√
log g .

Thus,
f̃(θ) =

∑
ℓcd≤m≤g+ℓcd

e(θm) +Oℓ

(
g(1 + |θ|g)e−κ1

√
log g

)
.

Hence,

f(θ) = e(−θℓcd)
∑

ℓcd≤m≤g+ℓcd

e(θm) +Oℓ

(
g(1 + |θ|g)e−κ1

√
log g

)
=

∑
0<n≤g

e(θn) +Oℓ

(
g(1 + |θ|g)e−κ1

√
log g

)
.

By the estimates of [2, Lemma 4.4], we have∫
|θ|≤Q

g

f(θ)h(−θ)dθ = g

2
+Oℓ

(
g

Q
(log g)2 + gQ2e−κ1

√
log g

)
. (8)

For Q < c1/3, by [2, Lemma 4.5] we also have

R =
∑

2≤q≤Q

∑
1≤a≤q

gcd(a,q)=1

∫
|θ|≤ Q

qg

f

(
a

q
+ θ

)
h

(
−a
q
− θ

)
dθ ≪ℓ dQ

3 . (9)
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Bringing together (6), (8) and (9), we conclude that for Q < c1/3∫
M(Q)

f(α)h(−α) = g

2
+Oℓ

(
g

Q
(log g)2 + gQ2e−κ1

√
log g + dQ3

)
. (10)

3.3. The Asymptotic Formula

It can be concluded from (4), (5), and (10) that for Q < c1/3,

ψℓ,c,d =
g

2
+Oℓ

(
g

Q
(log g)2 + gQ2e−κ1

√
log g + dQ3 +

g(log g)6

Q1/2
+ g4/5(log g)6

)
.

We now choose Q = (log g)14. Then we can obtain

ψℓ,c,d =
g

2
+Oℓ

(
g

log g

)
, (11)

provided that c ≥ (log g)43.
For c ≤ (log g)43, we have

ψℓ,c,d =
∑

ℓcd<n≤gℓ(c,d)
n=ℓcd+cx0+dy0
0≤x0≤d; 0≤y0≤c

Λ(n) =
∑

0<m≤g
m=cx+dy
x,y∈N0

Λ(ℓcd+m)

=
∑

1≤y≤c
gcd(y,c)=1

∑
m+ℓcd≡dy (mod c)

dy≤m+ℓcd≤g

Λ(m+ ℓcd) +Oℓ(log g)

=
∑

1≤y≤c
gcd(y,c)=1

∑
n≡dy (mod c)

dy+ℓcd≤n≤g+ℓcd

Λ(n) +Oℓ(log g)

=
∑

1≤y≤c
gcd(y,c)=1

(
ψ(g + ℓcd; c, dy)− ψ(dy + ℓcd; c, dy)

)
+Oℓ(log g).

Since c ≤ (log g)43 ≪ (log d)43, by the Siegel–Walfisz theorem we have

ψ(g + ℓcd; c, dy)− ψ(dy + ℓcd; c, dy) =
g − dy

φ(c)
+Oℓ

(
ge−κ2

√
log g

)
,

where κ2 > 0 is an absolute constant. Thus, for c ≤ (log g)43 we have

ψℓ,c,d =
∑

1≤y≤c
gcd(y,c)=1

g − dy

φ(c)
+Oℓ

(
g(log g)43e−κ2

√
log g

)

= g − 1

2
cd+Oℓ

(
g(log g)43e−κ2

√
log g

)
= g/2 +Oℓ

(
g/c+ g(log g)43e−κ2

√
log g

)
. (12)
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Therefore, from (11) and (12) we know that

ψℓ,c,d ∼ g/2 (as c→ ∞).

This completes the proof of proposition 1.

4. Proof of Theorem 1

Proof of Theorem 1. From now on, the symbol p will always denote a prime. For
ℓcd < p ≤ gℓ(c, d), let

ϑℓ,a,b(t) =
∑

ℓcd<p≤t
p=ℓcd+cx0+dy0
0≤x0≤d; 0≤y0≤c

log p,

and ϑℓ,a,b = ϑℓ,a,b
(
gℓ(c, d)

)
. From Lemma 3, we obtain that

πℓ,a,b =
∑

ℓcd<p≤gℓ(c,d)
p=ℓcd+cx0+dy0
0≤x0≤d; 0≤y0≤c

1 =
ϑℓ,a,b

log gℓ(c, d)
+

∫ gℓ(c,d)

ℓcd

ϑℓ,a,b(t)

t log2 t
dt (13)

via partial summations. By the Chebyshev estimate, we have

ϑℓ,a,b(t) ⩽
∑
p⩽t

log p≪ t,

from which it follows that∫ gℓ(c,d)

ℓcd

ϑℓ,a,b(t)

t log2 t
dt≪

∫ gℓ(c,d)

ℓcd

1

log2 t
dt≪ℓ

g

(log g)2
. (14)

Again, using the Chebyshev estimate, we have

ϑℓ,a,b = ψℓ,a,b +Oℓ

(√
g
)
. (15)

Thus, by Proposition 1 and Equations (13), (14), (15), we conclude that

πℓ,a,b =
ψℓ,a,b

log gℓ(c, d)
+Oℓ

( √
g

log g
+

g

(log g)2

)
∼ 1

2

g

log gℓ(c, d)
, (16)

as c→ ∞. Recall that

π(gℓ(c, d)) ∼
gℓ(c, d)

log gℓ(c, d)
∼ (ℓ+ 1)g

log gℓ(c, d)
(as c→ ∞). (17)

Now, Theorem 1 follows immediately from (16) and (17).
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5. Final Comment

We further expect that for a fixed c ≥ 3

πℓ,c,d ∼ c− 2

2cℓ+ 2(c− 1)
π
(
gℓ(c, d)

)
(as d→ ∞) .

Hence, when c→ ∞, our main result is reduced. Further results will follow later.
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