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Abstract

Let gcd(m,n) denote the greatest common divisor of two positive integers m and
n, and let A(n) := 1

n

∑n
m=1 gcd(m,n). For any real number x > 3 and any fixed

positive integers k, we investigate mean square estimates for the error term Ek(x)
of the summatory function

∑
n≤x A

k(n) under the Riemann Hypothesis.

1. Introduction and Main Results

Let gcd(n,m) denote the greatest common divisor of the positive integers n and m.

In 1933, Pillai [2] introduced the gcd-sum function

P (n) :=

n∑
k=1

gcd(k, n) = n
∑
d|n

ϕ(d)

d

for any integer n ≥ 1, where ϕ(n) denotes the Euler totient function defined by∑
dl=n dµ(l) with µ being the Möbius function. Define A(n) := P (n)

n for any integer

n ≥ 1. In 2010, the asymptotic formula of the summatory function
∑

n≤x A
2(n) is

derived by Tóth [4], who showed that the formula∑
n≤x

A2(n) = xP4(log x) +O
(
x1/2+ε

)
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holds for any real number x > 3, where P4(u) is a polynomial of degree 3 in u.

Moreover, he listed some open problems concerning the gcd-sum function, one of

which is to derive the asymptotic formula for
∑

n≤x P
k(n), where k ≥ 2 is a fixed

integer. The asymptotic formula of
∑

n≤x A
k(n) was considered by Zhang and Zhai

[5], who used classical methods to obtain∑
n≤x

Ak(n) = xQ2k−1(log x) + Ek(x),

where Ek(x) is estimated by O
(
xβk+ε

)
, and Q2k−1(u) is a polynomial of degree

2k − 1 in u. For example, the list of βk is

β2 =
1

2
, β3 =

5

8
, β4 =

7

9
, β5 =

31

36
, β6 =

207

224
, βk = 1− 1

2
2k
3 50

for k ≥ 7.

For any real number T > 3 and k = 3, 4, 5, they also proved that the mean value

formula

Jk(T ) :=

∫ T

1

Ek(u)du ≪ T 1+δk+ε (1)

holds, where δ3 = 1
2 , δ4 = 0.6030739, and δ5 = 0.773114.

Assume that the Riemann Hypothesis (RH) is true. For any fixed integer k ≥ 2

and any real number T > 3, we consider the mean square estimate of Ek(x),

Ik(T ) :=

∫ T

1

E2
k(u)du,

under the RH. Then we investigate the integral of Ek(x) defined by Jk(T ), which

gives us an improvement on the estimate (1). Under the RH, we use some prop-

erties of the Riemann zeta-function, Parseval’s identity, and the method of Mellin

transforms to obtain the following theorem.

Theorem 1. Assume that the RH is true. Suppose that a fixed number ηk depending

on the integer k satisfies the inequality

1

2k

(
4k − 3k −

(
2k

2

))
+

1

2k+1
+ 1 ≤ ηk ≤ 1

2k+1
log log T − 1.

For any sufficiently large real number T ≥ exp
(
exp

(
2k+1(ηk + 1)

))
, we have

Ik(T ) ≪ T 2− 1

2k exp

(
2ηk

log T

log log T

)
.
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Remark 1. If Ik(T ) may be evaluated as

Ik(T ) = ckT
2− 1

2k (log T )lk +Ok

(
T 2− 1

2k
−δ
)

(δ > 0)

as T → ∞, with a constant ck > 0 and a number lk > 0 depending on k, then we

can deduce the Omega-result for Ek(x), that is,

Ek(x) = Ω
(
x

1
2−

1

2k+1 (log x)lk/2
)

(x → ∞).

We use Theorem 1 and the Cauchy–Schwarz inequality to get the following corol-

lary.

Corollary 1. Let the notation be as above. We have

Jk(T ) ≪ T
3
2−

1

2k+1 exp

(
ηk

log T

log log T

)
.

Remark 2. Set α̃k := 1
2 − 1

2k+1 . Note that

α̃2 =
3

8
= 0.375 < α̃3 =

7

16
= 0.4375 < α̃4 =

15

32
= 0.46875 < α̃5 =

31

64
= 0.484375,

and α̃3 < δ3, α̃4 < δ4, α̃5 < δ5.

We adopt the following notation. Let s = σ + it be a complex variable, and let

ζ(s) denote the Riemann zeta-function. Let ε denote an arbitrary small positive

number which may be different at each occurrence.

2. Auxiliary Results

In order to prove our theorem, we need the following lemmas.

Lemma 1 ([1, Theorem 1.2 , Equations (1.23)–(1.25)] or [3, Theorem 2.1, Equations

(2.1.9),(2.1.10)]). The Riemann zeta-function ζ(s) can be analytically continued to

a meromorphic function in the whole complex plane C, its only singularity being

a simple pole at s = 1 with residue 1. It satisfies a functional equation ζ(s) =

χ(s)ζ(1 − s), where χ(s) = 2sπs−1 sin πs
2 Γ(1 − s). Also, in any bounded vertical

strip, using the Stirling formula, we deduce χ(s) =
(

t
2π

) 1
2−σ−it

ei(t+
π
4 )
(
1 +O

(
1
t

))
for t ≥ t0 > 0.

The following lemma states the inversion formula.
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Lemma 2 ([1, Equation (A.8)]). Let A(s) =
∑∞

n=1
an

ns , be a Dirichlet series with a

finite abscissa of absolute convergence. Then∑′

n≤x

an =
1

2πi

∫ c+i∞

c−i∞

A(s)xs

s
ds,

where c > 0 is such a number that A(s) is absolutely convergent for Re s = c and∑′
indicates that if x is an integer, then the last term into the sum becomes ax

2

instead of ax.

Suppose that f(x)xσ−1 belongs to the space L(0,∞) and that f(x) has bounded

variation on every finite interval. Then

F (s) =

∫ ∞

0

xs−1f(x)dx, (2)

where s = σ + it (with σ and t real), is called the Mellin transform of f .

The following lemma states the Parseval identity.

Lemma 3 ([1, Equation (A.5)]). Assume that f and F are connected via (2),then

1

2π

∫ ∞

−∞
|F (σ + it)|2dt =

∫ ∞

0

f2(x)x2σ−1dx.

The following lemma is a famous result concerning the boundary of the Riemann

zeta-function under the RH.

Lemma 4 ([1, Equation (1.134)] or [3, Equations (14.2.5),(14.2.6)] ). Assume that

the Riemann Hypothesis is true. For |t| ≥ t0 > 0, uniformly in σ, we have

ζ(σ + it) ≪ (|t|+ 2)ε and
1

ζ(σ + it)
≪ (|t|+ 2)ε

for any σ > 1
2 .

Lastly, the key lemma to proving our theorem is as follows.

Lemma 5. Let s be a complex variable with Re (s) > 1. Then we have

∞∑
n=1

Ak(n)

ns
= ζ2

k

(s)Gk(s), (3)

where Gk(s) =
∑∞

n=1
g(n)
ns is a Dirichlet series which is absolutely convergent for

Re s > 1/2. Moreover, we have

∞∑
n=1

Ak(n)

ns
=

ζ2
k

(s)G̃k(s)

ζ4
k−3k−(2

k

2 )(2s)
, (4)

where G̃k(s) =
∑∞

n=1
g̃(n)
ns is a Dirichlet series which is absolutely convergent for

Re s > 1/3.
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Proof. The Dirichlet series (3) is due to Lemma 4 in [5]. Expanding G(s) of Lemma

4 in [5] we have

Gk(s) =
G̃k(s)

ζ4
k−3k−(2

k

2 )(2s)
,

where

G̃k(s) =
∏
p

(
1− 1

p2s

)3k−4k+(2
k

2 ) (
1 +

3k − 4k +
(
2k

2

)
p2s

− k2k−1

ps+1
+ . . .+ (−1)k

1

ps+k

+
4k − 6k +

(
2k

2

)
2k −

(
2k

3

)
p3s

+
k2k−1 − 2k3k−1

p2s+1
+ . . .

+
2k · 2k3k−1 − 3k · 4k−1 − k · 2k−1

(
2k

2

)
p3s+1

+ . . .
)

=
∏
p

(
1 +

4k − 6k +
(
2k

2

)
2k −

(
2k

3

)
p3s

− k2k−1

ps+1
+ . . .+ (−1)k

1

ps+k

+
k2k−1 − 2k3k−1

p2s+1
+ . . .+

2k · 2k3k−1 − 3k · 4k−1 − k · 2k−1
(
2k

2

)
p3s+1

+ . . .
)
.

Here the product G̃k(s) converges absolutely in the half-plane Re s > 1/3.

3. Proof of Theorem 1

Proof of Theorem 1. Assume that the Riemann Hypothesis is true. Without loss

of generality we can assume that x ∈ Z + 1
2 . We shall consider the mean square

estimate of Ek(x) for any fixed integer k ≥ 2 under the RH. We use Lemmas 2 and

5 to deduce ∑
n≤x

Ak(n) =
1

2πi

∫ 2+i∞

2−i∞

ζ2
k

(s)Gk(s)

s
xsds. (5)

We define α0,k as the infimum of αk > 0 for which∫ ∞

−∞

|ζ (αk + it)|2k+1 |Gk(αk + it)|2

|αk + it|2
dt ≪ 1.

We use Equation (5) and the Cauchy residue theorem to obtain

∑
n≤x

Ak(n) = Mk(x) +
1

2πi

∫ αk+i∞

αk−i∞

ζ2
k

(s)Gk(s)

s

(
1

x

)−s

ds,
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where Mk(x) is the main term, which is Res
s=1

ζ2
k

(s)Gk(s)
xs

s . Then we have

Ek(x) =
1

2πi
lim

T→∞

∫ αk+iT

αk−iT

ζ2
k

(s)Gk(s)

s

(
1

x

)−s

ds (6)

for α0,k < αk < 1 and close to 1. Since ζ2
k

(s)Gk(s)s
−1 → 0 uniformly in the strip

α0,k < α′
k < αk < 1 as t → ±∞, it is seen on integrating over the rectangle α′

k± iT ,

αk ± iT (α0,k < α′
k < αk < 1), that Equation (6) holds for any αk > α0,k. Using

Lemma 3 we have

1

2π

∫ ∞

−∞

|ζ (αk + it)|2k+1 |Gk(αk + it)|2

|αk + it|2
dt

=

∫ ∞

0

E2
k

(
1

x

)
x2αk−1dx =

∫ ∞

0

E2
k(x)x

−2αk−1dx.

We see that if the integral∫ ∞

−∞

|ζ (αk + it)|2k+1 |Gk(αk + it)|2

|αk + it|2
dt (7)

is bounded for some αk (α0,k < αk < 3/2), then it is sufficient to show∫ 2T

T

E2
k(x)dx ≪ T 2αk+1

for any real number T ≥ 3, because we know that∫ T

1

E2
k(u)du =

∑
k≤ log T

log 2

∫ 2k

2k−1

E2
k(u)du ≪ T 2αk+1.

Next, it remains to evaluate the bound for the integral (7). For any real number

T ≥ 3 and a fixed integer k ≥ 2, we set

Lk(T ) :=

∫ T

T/2

|ζ (αk + it)|2k+1 |Gk(αk + it)|2

|αk + it|2
dt. (8)

For any real number T ≥ 3, we use Equations (4) and (8) to get

Lk(T ) :=

∫ T

T/2

|ζ (αk + it)|2k+1

|αk + it|
· |G̃k(αk + it)|2

|ζ(2αk + 2it)|2(4k−3k−(2
k

2 ))|αk + it|
dt.

Let ε > 0 be any sufficiently small number that satisfies Lemma 4. We set

αk :=
1

2
− 1

2k+1
+ ηkε
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with a constant ηk > 0 depending on k, and ε := 1
log log T . From Lemma 5, we see

that the series G̃k(σ+ it) converges absolutely for σ > αk > 1
3 . For any real number

T ≥ 3, we use Lemmas 1, 4, and 5 and insert αk into Equation (8) to deduce

Lk(T ) =

∫ T

T/2

|χ(αk + it)|2
k+1

|ζ(1− αk − it)|2
k+1

|αk + it| · |G̃k(αk + it)|2

|ζ(2αk + 2it)|2(4k−3k−(2
k

2 ))|αk + it|
dt

≪
∫ T

T/2

|ζ (1− αk − it)|2
k+1

|ζ(2αk + 2it)|2(4k−3k−(2
k

2 ))t1+2k+1ηkε

dt

≪
∫ T

T/2

1

t1+{2k+1(ηk−1)−2(4k−3k−(2
k

2 ))}ε
dt.

Since

1− αk ≥ 1

2
+ ε and 2k+1 (ηk − 1)− 2

(
4k − 3k −

(
2k

2

))
≥ 1,

we suppose that a fixed number ηk > 0 satisfies the inequality

1

2k

(
4k − 3k −

(
2k

2

))
+

1

2k+1
+ 1 ≤ ηk ≤ 1

2k+1
log log T − 1.

Then we have
Lk(T ) ≪ 1

for any sufficiently large positive real number T ≥ exp(exp(2k+1(ηk + 1))).

Combining the above results, we have∫ T

1

E2
k(u)du ≪ T 2αk+1,

which yields ∫ T

1

E2
k(u)du ≪ T 2− 1

2k exp

(
2ηk

log T

log log T

)
. (9)

Hence, the theorem is derived. 2

4. Proof of Corollary 1

Proof of Corollary 1. We use Equation (9) and the Cauchy–Schwarz inequality to
obtain ∫ T

T/2

Ek(u)du ≪

(∫ T

T/2

E2
k(u)du

)1/2(∫ T

T/2

du

)1/2

≪ T
3
2−

1

2k+1 exp

(
ηk

log T

log log T

)
.

2
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13.6.5.


