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Abstract
Let ged(m,n) denote the greatest common divisor of two positive integers m and
n, and let A(n) := 23" ocd(m,n). For any real number z > 3 and any fixed

positive integers k, we investigate mean square estimates for the error term Ejy(x)
of the summatory function Y, .. A¥(n) under the Riemann Hypothesis.

1. Introduction and Main Results

Let ged(n, m) denote the greatest common divisor of the positive integers n and m.
In 1933, Pillai [2] introduced the ged-sum function

P(n) = chd(k,n) = nz @
k=1

d|n

for any integer n > 1, where ¢(n) denotes the Euler totient function defined by
Y di—n Ap(l) with g being the Mobius function. Define A(n) := % for any integer
n > 1. In 2010, the asymptotic formula of the summatory function > __ AZ%(n) is
derived by Téth [4], who showed that the formula

n<z

Z AQ(”) =2Py(logz) + O (x1/2+5)

n<x
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holds for any real number = > 3, where Py(u) is a polynomial of degree 3 in u.
Moreover, he listed some open problems concerning the ged-sum function, one of
which is to derive the asymptotic formula for - __P*¥(n), where k > 2 is a fixed
integer. The asymptotic formula of }, . A*(n) was considered by Zhang and Zhai
[5], who used classical methods to obtain

S A5 () = 2Que 1 (log ) + By (@),

n<lz

where Fj(x) is estimated by O (xﬁk“), and Qqor_1(u) is a polynomial of degree
2% — 1 in u. For example, the list of 3y is

1 5 7 31

07
B2 == ﬂ3—§7 64_6’ ﬂ5—%,

2
fo = 551

1
=1——— fork>7.
247 /Bk 2%50 or =

For any real number T" > 3 and k = 3,4,5, they also proved that the mean value
formula

J(T) = /1T Ep(u)du < T+ (1)

holds, where d3 = 1,6, = 0.6030739, and &5 = 0.773114.
Assume that the Riemann Hypothesis (RH) is true. For any fixed integer k > 2
and any real number T > 3, we consider the mean square estimate of Fy(x),

T
(1) = [ B,

under the RH. Then we investigate the integral of Ey(z) defined by Ji(T), which
gives us an improvement on the estimate (1). Under the RH, we use some prop-
erties of the Riemann zeta-function, Parseval’s identity, and the method of Mellin
transforms to obtain the following theorem.

Theorem 1. Assume that the RH is true. Suppose that a fixed number ny, depending
on the integer k satisfies the inequality

1 (e ok 2k 1 < 1 logl
ok 4% — 3% — 9 +W+1_nk§2kﬁogongl.
For any sufficiently large real number T > exp (exp (2’““(77;C + 1))), we have

_ logT
I:(T) < T? o Mo —2 ") .
W(T) < ’ exp( nkloglogT)
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Remark 1. If [;;(T') may be evaluated as
L(T) = ¢, T (log T)!* + Oy, (TQ—#—‘S) (6 > 0)

as T — oo, with a constant ¢, > 0 and a number [ > 0 depending on k, then we
can deduce the Omega-result for Fy(x), that is,

Ey(x) :Q<z%_ﬁ(logx)l’“/2) (x — 00).
We use Theorem 1 and the Cauchy—Schwarz inequality to get the following corol-
lary.

Corollary 1. Let the notation be as above. We have

3_ 1 log T
Ji (T T2 2R+t — .
k(1) < T (Uk log logT>

Remark 2. Set &, := 1 — 2,6% Note that

~ 3 ~ 7 ~ 15 - 31
ap=g= 0375 < az = 6= 04375 < ay = 35 = 0.46875 < a5 = 61 0.484375,

and az < 03, ay < 04, as < 0s.

We adopt the following notation. Let s = o + it be a complex variable, and let
¢(s) denote the Riemann zeta-function. Let ¢ denote an arbitrary small positive
number which may be different at each occurrence.

2. Auxiliary Results

In order to prove our theorem, we need the following lemmas.

Lemma 1 ([1, Theorem 1.2 , Equations (1.23)—(1.25)] or [3, Theorem 2.1, Equations
(2.1.9),(2.1.10)]). The Riemann zeta-function {(s) can be analytically continued to
a meromorphic function in the whole complex plane C, its only singularity being
a simple pole at s = 1 with residue 1. It satisfies a functional equation ((s) =
x(8)¢(1 = s), where x(s) = 257°'sin L2T(1 — s). Also, in any bounded vertical
strip, using the Stirling formula, we deduce x(s) = (ﬁ)%ioﬂt et+3) (1 +0 (%))
fort >ty > 0.

The following lemma states the inversion formula.
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Lemma 2 ([1, Equation (A.8)]). Let A(s) =", %= be a Dirichlet series with a

n=1 ns’

finite abscissa of absolute convergence. Then

1 ct+ioco A s
ZI Op = — ﬂds,

~ 218 Joioo s

where ¢ > 0 is such a number that A(s) is absolutely convergent for Re s = ¢ and

Qx

!/
indicates that if x is an integer, then the last term into the sum becomes %

instead of a,.

Suppose that f(z)z°~! belongs to the space L(0,00) and that f(z) has bounded
variation on every finite interval. Then
(o)
F(s)= [ o o), )
0
where s = o 4 it (with o and ¢ real), is called the Mellin transform of f.
The following lemma states the Parseval identity.
Lemma 3 ([1, Equation (A.5)]). Assume that f and F are connected via (2),then
i oo
27 J_ o

|F (0 + it)|*dt = / f2(x)z* L.
0

The following lemma is a famous result concerning the boundary of the Riemann
zeta-function under the RH.
Lemma 4 ([1, Equation (1.134)] or [3, Equations (14.2.5),(14.2.6)] ). Assume that
the Riemann Hypothesis is true. For |t| > tg > 0, uniformly in o, we have

1
o+it) < (|t|+2)° and — < ([t]+2)°
(o +it) < (t] +2) o <+

for any o > %

Lastly, the key lemma to proving our theorem is as follows.

Lemma 5. Let s be a complex variable with Re (s) > 1. Then we have
= Ak (n k
S AW ). Q

ns
n=1

where Gi(s) = >0~ qr(tn) is a Dirichlet series which is absolutely convergent for

Re s > 1/2. Moreover, we have

> kn QkSNS
ZA(): ¢* (5)Gr(s) (@)

= M

where Gi(s) = .00, 97(12) is a Dirichlet series which is absolutely convergent for
Re s > 1/3.
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Proof. The Dirichlet series (3) is due to Lemma 4 in [5]. Expanding G (s) of Lemma
4 in [5] we have

Gi(s
Guls) = ——
") (2s)
where
3k74k+(2k) k & ok b1
~ 1 2 3F—ab 4+ (%) k2 p 1
Gis) =] (1 - pQS) (1+ et (Do
P
4k 6k (B)28 — () k2Rl 2kghe!
+ p3s + p25+1
2k - 283h—1 3k - 4h-1 _ k. 2h-1(2)
+ T +. )
2k 2k —
- p38 ps+1 e szrk
p
k2k—1 — 2)3k-1 2k - 2k3k—1 _ 3. 4b=1 _ }. 2k=1(2))
p2s+l et Pt +)
Here the product G (s) converges absolutely in the half-plane Re s > 1/3. O

3. Proof of Theorem 1

Proof of Theorem 1. Assume that the Riemann Hypothesis is true. Without loss
of generality we can assume that © € Z + % We shall consider the mean square
estimate of Ey(x) for any fixed integer k£ > 2 under the RH. We use Lemmas 2 and
5 to deduce

24ic0 ~2F s s

2 . S
n<x —100

We define oy 1, as the infimum of ay > 0 for which

dt < 1.

/ ¢ (o +it)]* " |Grlak + it)|?
e | + it]?

We use Equation (5) and the Cauchy residue theorem to obtain

S Ak (n) = My(a) + 2% /;Hm ¢ (5)Gi(s) <1> s

n<z k=100 5 r
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where My (z) is the main term, which is R_els ¢ (s)Gk(s)%s. Then we have

ap+iT k —s
E(z) = 1 lim ' M (1> ds (6)

271 T—oo Jo, _im s T

for ap ) < a < 1 and close to 1. Since CQk(s)Gk(s)s_1 — 0 uniformly in the strip
agr < o) < ag < 1ast— +oo, it is seen on integrating over the rectangle o), +¢7,
ar £ 1T (oo < @), < ag < 1), that Equation (6) holds for any ay > g . Using
Lemma 3 we have

1/°° ¢l + i) |Gl + it) |2

o | | + it]?
o0 1 o0
:/ E? (> x2a’“*1dm:/ Ei(x)z 2 dg.
0 z 0
We see that if the integral

/°° C(ar +it)* " |Grlon + it)
|ak+it\2

2

dt

>

dt (7)

— 0o

is bounded for some ay, (oox < o < 3/2), then it is sufficient to show

2T
/ Ei(z)dx < T?o++1
T

for any real number T > 3, because we know that

T 2k
/ E?(u)du = Z E}(u)du < T+,
1

—1
p<log T 2k
>Tog2

Next, it remains to evaluate the bound for the integral (7). For any real number
T > 3 and a fixed integer k > 2, we set

Lu(T) = /T (e +it)* |G + it) 2
g ' T/2 |y + it]?

>

dt. 8)

For any real number T' > 3, we use Equations (4) and (8) to get

Lu(T) = /T ¢ + i) |Gl + it)
T2 ekt 00, 420 Py it

|2k+1

dt.

Let € > 0 be any sufficiently small number that satisfies Lemma 4. We set

1 1

o :Zi—wﬁ-nka
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with a constant 75 > 0 depending on k, and € := From Lemma 5, we see

1
N loglog T *
that the series G, (o +it) converges absolutely for o > oy, > 1. For any real number
T > 3, we use Lemmas 1, 4, and 5 and insert oy, into Equation (8) to deduce

. k+1 ) Bl _ .
Liy(T) = /T x(ox +it)]? ’ [C(1 — oy —it)|? |G (o + it)[? »
T/2 | + it 2k (%)) ‘
/ \((Qak +22t)‘ 2 |ak +Zt‘
T . ENTLER!
<</ IC(1 — o zt)2|k 5
T/2 |<(204k + 2Z‘t)|2(4k73k7( 2 )>t1+2k+177k5

T 1
</ o
T/2 {28 (g —1)—2(4k =3k — (%) )))e

Since

1 2k
l—ay>5+e and 2k+1(nk1)2(4k3k<2>) >1,

we suppose that a fixed number 7, > 0 satisfies the inequality

L/ e (2 1 1
ok 4% — 3% — 9 +W+1§nkSWIOgIOgT_1'

Then we have
Ly(T) < 1

for any sufficiently large positive real number T > exp(exp(2¥F*! (g + 1))).
Combining the above results, we have

T
/ B} (u)du < T+ +
1

which yields

T
1 logT
E2(u)du < T2 3% M —2” 9
/1 i (u)du < T 2F exp Wioglog T 9)

Hence, the theorem is derived. O

4. Proof of Corollary 1

Proof of Corollary 1. We use Equation (9) and the Cauchy—Schwarz inequality to

obtain
T T 1/2 T 1/2
/ Ep(u)du < / E?(u)du / du
T/2 T/2 T/2

3__1 log T
T2 3R+ — .
< R (nk log log T)
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