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Abstract

This paper makes the following conjecture: for every prime p there exists a pos-
itive integer x with

⌈
p
4

⌉
≤ x ≤

⌈
p
2

⌉
and a positive divisor d | x2 so that either

d ≡ −px mod (4x− p) or d ≤ x and d ≡ −x mod (4x− p). Furthermore, this
paper proves that the solutions to these modular equations are in one-to-one corre-
spondence with the solutions of the diophantine equation used in the Erdős-Straus
conjecture.

1. Introductory Material

The Erdős-Straus conjecture suggests that for any integer n ≥ 2 there exist positive

integers x, y, and z so that the following diophantine equation holds:

4

n
=

1

x
+

1

y
+

1

z
. (1)

Introduced by Paul Erdős and Ernst Straus in the late 1940s [7], the problem

was quickly picked up by other notable mathematicians such as Richard Obláth

[13], Luigi Rosati [15], Koichi Yamamoto [26], and Louis Mordell [12]. Richard

Guy included this problem in his book Unsolved Problems in Number Theory along

with many other results on Egyptian fractions [8]. Notable papers use analytic

number theory, abstractions, or computational methods to analyze this problem

[1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27], but

this paper introduces an insight that will govern how this problem will be resolved.

In earlier work we described how it suffices to show the conjecture holds for any

prime p [3]. In this previous work we insisted that x ≤ y ≤ z, and here we continue

this convention. It was shown that p ∤ x, p | z and p sometimes divides y. It was

also shown that p2 does not divide x, y, or z. Using the common nomenclature, a
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solution is of Type I if p ∤ y and is of Type II if p | y. This paper discusses new

results and serves to motivate further research. Some proofs for Type I solutions

are found in the final section. The remaining proofs are left to the reader.

2. New Results

The results in this paper are very subtle but quite illuminating. Ultimately, for each

prime p, both necessary and sufficient conditions are built to describe the solutions of

Equation (1) solely through its smallest solution value, x. The following proposition

and corollary derive a sufficient condition for finding Type I solutions to Equation

(1).

Proposition 1. Suppose for a prime p there exists a positive integer x with
⌈
p
4

⌉
≤

x ≤
⌈
p
2

⌉
and a positive divisor d | x2 so that d ≡ −px mod (4x− p). Then letting

y =
px+ d

4x− p

z =
p
(
x+ p

(
x2

d

))

4x− p
,

we have that x, y, and z are positive integers with x ≤ y ≤ z and p ∤ y.

Corollary 1. Suppose for a prime p there exists a positive integer x with
⌈
p
4

⌉
≤

x ≤
⌈
p
2

⌉
and a positive divisor d | x2 so that d ≡ −px mod (4x− p). This is a Type

I solution to Equation (1).

The following proposition and corollary provide a sufficient condition for finding

Type II solutions to Equation (1).

Proposition 2. Suppose for a prime p there exists a positive integer x with
⌈
p
4

⌉
≤

x ≤
⌈
p
2

⌉
and a positive divisor d | x2 so that d ≤ x and d ≡ −x mod (4x− p). Then

letting

y =
p(x+ d)

4x− p

z =
p
(
x+ x2

d

)

4x− p
,

we have that x, y, and z are positive integers with x ≤ y ≤ z and p | y.

Corollary 2. Suppose for a prime p there exists a positive integer x with
⌈
p
4

⌉
≤

x ≤
⌈
p
2

⌉
and a positive divisor d | x2 so that d ≤ x and d ≡ −x mod (4x− p). This

is a Type II solution to Equation (1).
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The following two propositions provide the necessary conditions for finding Type

I and Type II solutions to Equation (1).

Proposition 3. Suppose for a prime p there exist positive integers x ≤ y ≤ z that

satisfy Equation (1) and p ∤ y. Then it is necessarily true that
⌈
p
4

⌉
≤ x ≤

⌈
p
2

⌉
and

a positive divisor d | x2 exists so that

(i) d ≡ −px mod (4x− p)

(ii) y =
px+ d

4x− p

(iii) z =
p
(
x+ p

(
x2

d

))

4x− p
.

Proposition 4. Suppose for a prime p there exist positive integers x ≤ y ≤ z that

satisfy Equation (1) and p | y. n Then it is necessarily true that
⌈
p
4

⌉
≤ x ≤

⌈
p
2

⌉

and a positive divisor d | x2 exists so that

(i) d ≤ x

(ii) d ≡ −x mod (4x− p)

(iii) y =
p(x+ d)

4x− p

(iv) z =
p
(
x+ x2

d

)

4x− p
.

Indeed, Proposition 4 develops both the necessary and sufficient conditions for

solving the Erdős-Straus conjecture. The solutions are in one-to-one correspondence

with the modular identities in Propositions 1 and 2. This is a key result because it

reduces the conjecture to one dimension. That is to say, to prove the Erdős-Straus

conjecture we need to show that for every prime p there exists at least one pair, x

and d, meeting the appropriate conditions as functions of p. This is summarized in

the following conjecture.

Conjecture 1. For every prime p there exists a positive integer x with
⌈
p
4

⌉
≤ x ≤⌈

p
2

⌉
and a positive divisor d | x2 so that either d ≡ −px mod (4x− p) or d ≤ x and

d ≡ −x mod (4x− p).

3. Computational Motivation Toward a Solution

The strength of this approach is that we have yet to employ different methodologies

for different modular classes of prime numbers. At this point, one can use Conjecture

1 to derive Mordell’s identities for all primes p except possibly for primes p such that
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p mod 840 ∈ {1, 121, 169, 289, 361, 529}. It has been suggested that this problem can

be solved through quadratic residues, and it may be no coincidence that our results

suggest d | x2. This approach might make it appear that x depends on a divisor of⌈
p
4

⌉
, but such is not the case for all primes. For clarity, only primes less than 100

are graphed here. Figure 1 may serve as motivation to find a similar pattern.
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Figure 1: Primes less than 100 versus the possible solution values x in the Erdős-
Straus conjecture.

The following two tables are included for increased clarity. Table 1 considers

Type I solutions for p < 100. We define k to be the integer such that x =
⌃

p
4

⌥
+ k.

Notice that 0  k 
⌃

p
4

⌥
. The table provides for each prime p every possible

value k that appears for Type I solutions. Notice that for primes p 6= 2 such that

p mod 24 6⌘ 1 we are guaranteed to have a Type I solution when k = 0. Also notice

for primes p such that p mod 4 ⌘ 3 we are guaranteed to have Type I solutions

when k is a divisor of
⌃

p
4

⌥
.

Table 2 considers Type II solutions for primes p < 100 with the same definition

for k. For a given prime p, notice that there are some Type II solutions that have

Figure 1: Primes less than 100 versus the possible solution values x in the Erdős-
Straus conjecture.

The following two tables are included for increased clarity. Table 1 considers

Type I solutions for p < 100. We define k to be the integer such that x =
⌈
p
4

⌉
+ k.

Notice that 0 ≤ k ≤
⌈
p
4

⌉
. The table provides for each prime p every possible

value k that appears for Type I solutions. Notice that for primes p ̸= 2 such that

p mod 24 ̸≡ 1 we are guaranteed to have a Type I solution when k = 0. Also notice

for primes p such that p mod 4 ≡ 3 we are guaranteed to have Type I solutions

when k is a divisor of
⌈
p
4

⌉
.

Table 2 considers Type II solutions for primes p < 100 with the same definition

for k. For a given prime p, notice that there are some Type II solutions that have

x values that have no Type I solutions. For example, we see that p = 41 has k = 3,
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p k
2
3 0 1
5 0
7 0 1 2
11 0 1 3
13 0 1
17 0 1
19 0 1 3 5
23 0 1 2 3 4 6
29 0 3
31 0 1 2 4 8
37 0 2 4 6
41 0 1 7
43 0 1 4 7 11
47 0 1 2 3 4 5 9 12
53 0 1 2 6 7 10
59 0 1 3 4 5 9 10 15
61 0 2 5 7 8
67 0 1 3 4 7 11 13 17
71 0 1 2 3 4 6 8 9 12 14 18
73 1 2 3
79 0 1 2 4 5 8 10 16 20
83 0 1 3 5 6 7 9 15 21
89 0 1 3 16
97 0 1 3 9

Table 1: All possible k values for Type I solutions, p < 100.

which corresponds to x = 14. There are no Type I solutions when p = 41 and

x = 14.

There are other patterns to consider. Tables for up to five-digit primes have

previously been considered, but this paper outlines a motivation for finding a pattern

and proving the conjecture.

4. Proofs

We now provide proofs of Propositions 1 and 3.

Proof of Proposition 1. Let p be a prime, x be a positive integer with
⌈
p
4

⌉
≤ x ≤⌈

p
2

⌉
, and d be a positive divisor of x2 so that d ≡ −px mod (4x− p). It should be

clear that p ̸= 2; otherwise, both x and d equal 1 by definition, which contradicts
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p k
2 0
3 0
5 0
7 0
11 0 1
13 0
17 0 1
19 0 1
23 0 2
29 0 2
31 0 1
37 0
41 0 1 3
43 0 1
47 0 2 4
53 0 4
59 0 1 2 5
61 0 2
67 0 1
71 0 1 2 6
73 1 2
79 0 1
83 0 3 7
89 0 1 3 7
97 0 1 3

Table 2: All possible k values for Type II solutions, p < 100.

the modular equation. If d ≡ −px mod (4x− p), then (px + d) ≡ 0 mod (4x− p).

This implies that (4x − p) | (px + d). By definition, p, x, and d are all positive, so

px + d is positive. Because
⌈
p
4

⌉
≤ x ≤

⌈
p
2

⌉
, it should be clear that 4x − p is also

positive. Letting

y =
px+ d

4x− p

shows that y is a positive integer. We next prove that p ∤ y. Assume, for the sake

of contradiction, that p | y. This implies that p | (px + d), which further implies

that p | d. If p | d, then p | x2; however, from the definition of x, we see that x < p.

Thus p cannot divide x or x2. This creates a contradiction, implying that p ∤ y.
Finally, note that

(
p2x2

d

)
d = p2x2 = (−px)2 in Z and d ≡ −px mod (4x− p), so

we get the following modular equation:
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(
p2x2

d

)
· (−px) ≡ (−px) · (−px) mod (4x− p). (2)

Because p ̸= 2, we see that −px and 4x − p are coprime. To show this, let

m be a positive integer so that m | (−px) and m | (4x − p). We necessarily see

that m must divide (−4)(−px) + (−p)(4x − p) = p2. Thus m = 1, p, or p2. For

the sake of contradiction, assume that m = p. This implies that p | (4x − p),

which further implies that p | x, but this is impossible as x ≤
⌈
p
2

⌉
. Next, for

the sake of contradiction, assume that m = p2. This implies that p2 | (−px),

which further implies that p | x. Again, this is impossible. We conclude that

m = 1, so we have that −px and 4x − p are indeed coprime. This shows that

(−px) mod (4x−p) is a unit, with an inverse element in the group (Z/(4x− p)Z)×.
Applying this inverse element on the right to both sides of Equation (2), we have that(

p2x2

d

)
≡ −px mod (4x− p). We then see that

(
px+

(
p2x2

d

))
≡ 0 mod (4x− p).

This implies (4x − p) |
(
px+

(
p2x2

d

))
. Note that p, x, d, and 4x − p are positive

integers. Letting

z =
p
(
x+ p

(
x2

d

))

4x− p

shows us that z is a positive integer. To finish, we prove x ≤ y ≤ z. First consider

when x <
⌈
p
2

⌉
. Because x is an integer, it should be clear that x ≤ p

2 + d
4x . This

implies that 4x2 < 2px+ d, x(4x− p) < px+ d and

x <
px+ d

4x− p
= y.

Next, consider when x =
⌈
p
2

⌉
. Because p ̸= 2, we have that x = p+1

2 . We see

that

y =
p
(
p+1
2

)
+ d

4
(
p+1
2

)
− p

=
p(p+ 1) + 2d

2(p+ 2)

=
p+ 1

2
+

d− (p+ 1)

p+ 2
.

Because y is an integer, it follows that (p + 2) | (d − (p + 1)). We cannot have

0 < d < (p+ 1), because this would imply

−1 <
d− (p+ 1)

p+ 2
< 0.

In fact d ≥ (p+ 1) and x = p+1
2 ≤ y. In either scenario we are guaranteed to have

x ≤ y. Because d | x2, we see that d ≤ x2 ≤ px. This implies that d2 ≤ p2x2.
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Dividing by d shows that

d ≤
(
p2x2

d

)
,

which will imply that

px+ d

4x− p
≤

px+
(

p2x2

d

)

4x− p
.

We conclude that y ≤ z.

Proof of Proposition 3. Let p be prime and let x ≤ y ≤ z be positive integers that

satisfy Equation (1) with p ∤ y. First, it was shown in [3] that a necessary condition

for Type I solutions is that
⌈
p
4

⌉
≤ x ≤

⌈
p
2

⌉
. Next, slightly changing the notation in

[3], we let m = gcd(x, y, z), a = gcd(x, y)/m, b = gcd(x, z)/m and c = gcd(y, z)/m.

Using this new notation, it was shown in [3] that x = abm, y = acm, and z = bcm.

For this Type I solution, let d = (4x − p)y − px. We need to show that d | x2. In

[3] it was shown for Type I solutions that

p =
4abcm− a

b+ c
.

This makes

d = (4x− p)y − px

= 4xy − (x+ y)p

= 4a2bcm2 − (abm+ acm)

(
4abcm− a

b+ c

)

= 4a2bcm2 − 4a2bcm2 + a2m

= a2m.

Because a2m | a2b2m2, we see that d | x2. From the definition of d = (4x−p)y−px,

it should be clear that d ≡ −px mod (4x− p). It can be concluded that

px+ d

4x− p
=

px+ (4x− p)y − px

4x− p

=
(4x− p)y

4x− p

= y.
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Similarly we find that

p
(
x+ p

(
x2

d

))

4x− p
=

px+ p2x2

(4x−p)y−px

4x− p

=
(4x− p)xyp− p2x2 + p2x2

(4x− p)(4xy − (x+ y)p)

=
(4x− p)xyp

(4x− p)(4xy − (x+ y)p)

=
xyp

4xy − (x+ y)p

=
1

4
p − 1

x − 1
y

= z.
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and Optim. 17 (1) (2015), 41-54.

[5] E. S. Croot III, Egyptian Fractions, Ph. D. thesis, University of Georgia, 2000.

[6] C. Elsholtz and T. Tao, Counting the number of solutions to the Erdős-Straus equation on
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