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Abstract

For an integer k ≥ 2, let (F
(k)
n )n≥−(k−2) be the k-Fibonacci sequence. For this

sequence, the first k terms are 0, . . . , 0, 1, and each term afterwards is the sum of

the preceding k terms. In this paper, we will show that F
(k)
n F

(k)
m can represent a

repdigit, where n and m are two positive integers.

1. Introduction

A repdigit is a positive integer formed by the repetition of the same digit in its

decimal expansion. In particular, it is a number of the form
a(10ℓ − 1)

9
, where

ℓ ≥ 1 and 1 ≤ a ≤ 9. Let (Fn)n≥0 be the sequence of Fibonacci, defined by

F0 = 1, F1 = 1 and Fn = Fn−1 + Fn−2 for n ≥ 2. For an integer k ≥ 2, we shall

consider the following generalization for the Fibonacci sequence.

Let (F
(k)
n )n≥−(k−2) be the k-generalized Fibonacci sequence defined as

F (k)
n = F

(k)
n−1 + F

(k)
n−2 + · · ·+ F

(k)
n−k, for all n ≥ 2,
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with the initial conditions

F
(k)
−(k−2) = F

(k)
−(k−3) = · · · = F

(k)
0 = 0, and F

(k)
1 = 1.

This generalization represents a family of sequences where each new choice of k

generates a distinct sequence. Table 1 displays the values of these numbers for the

first few values of k and n ≥ 1.

k Name First non-zero terms

2 Fibonacci 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, . . .

3 Tribonacci 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, 1705, 3136, . . .

4 Tetranacci 1, 1,2, 4, 8, 15, 29, 56, 108, 208, 401, 773, 1490, 2872, 5536, . . .

Table 1: First terms of the sequence (F
(k)
n )n≥−(k−2).

Several mathematicians have shown significant interest in the study of the gener-

alized Fibonacci sequence with repdigits, leading to exploration of numerous related

problems. Among the noticeable problems that have been addressed, 55 and 44 are

the largest repdigits in the Fibonacci and Tribonacci sequences. This was proved

by Luca [11] and Marques [12]. Furthermore, for k > 3, Marques conjectured that

there are no repdigits with at least two digits belonging to (F
(k)
n )n≥−(k−2). In [2],

Bravo and Luca affirmed this conjecture. In [16], the second author determined

all the k-Fibonacci and all the k-Lucas numbers expressible as the products of two

repdigits.

Furthermore, in [9], Erduvan and Keskin investigated repdigits as products of

two Fibonacci and two Lucas numbers. Additionally, in [6], Coufal and Trojovský

investigated repdigits as products of terms of k-Bonacci sequences. In this work, we

search for repdigits which are the product of two k-Fibonacci numbers. Our main

result is given by the following theorem.

Theorem 1. The only solution of the Diophantine equation

F (k)
n F (k)

m =
a(10ℓ − 1)

9
(1.1)

in positive integers n,m, ℓ, k, and a with 3 ≤ m ≤ n, k ≥ 3, ℓ ≥ 2, and 1 ≤ a ≤ 9,

is

(a, k, l,m, n) = (8, 3, 2, 3, 8).

We set the condition m ≥ 3, as when m ∈ {1, 2} then Equation (1.1) transforms

into F
(k)
n =

a(10ℓ − 1)

9
and this problem was already treated in [2, 11, 12].
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The study of the above Diophantine equation and the proof of its obtained result

given by Theorem 1 are mainly based on linear forms in logarithms of algebraic

numbers and a modified version of the Baker-Davenport reduction method. Our

approach begins with the introduction of essential results and crucial definitions for

the subsequent sections of this study.

2. The Tools

2.1. Linear Forms in Logarithms

For any non-zero algebraic number η of degree d over Q, whose minimal polynomial

over Z is a
∏d

j=1

(
X − η(j)

)
, we denote by

h(η) =
1

d

log |a|+
d∑

j=1

logmax
(
1, |η(j)|

)
the usual absolute logarithmic height of η. In particular, if η = p/q is a rational

number with gcd(p, q) = 1 and q > 0, then h(η) = logmax{|p|, q}. The following

properties of the logarithmic height function, h(·), which will be used in the next

sections without a special reference, are also known:

h(η ± γ) ≤ h(η) + h(γ) + log 2, (2.1)

h(ηγ±1) ≤ h(η) + h(γ), (2.2)

h(ηs) = |s|h(η) (s ∈ Z), (2.3)

where η and γ are algebraic numbers. We start by recalling Theorem 9.4 of [5],

which is a modified version of a result of Matveev [13].

Theorem 2. Let η1, . . . , ηs be real algebraic numbers and let b1, . . . , bs be nonzero

integers. Let dK be the degree of the number field Q(η1, . . . , ηs) over Q and let Aj

be a positive real number satisfying

Aj = max{dKh(η), | log η|, 0.16}, for j = 1, . . . , s.

Assume that

B ≥ max{|b1|, . . . , |bs|}.

If ηb11 · · · ηbss − 1 ̸= 0, then

|ηb11 · · · ηbss − 1| ≥ exp(−1.4 · 30s+3 · s4.5 · d2K(1 + log dK)(1 + logB)A1 · · ·As).
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2.2. The Reduction Algorithm

Our secondary tool is based on a version of the reduction method of Baker and

Davenport [1]. In this paper, we will use the version given by Bravo, Gómez, and

Luca [3], which is an immediate variation of the result due to Dujella and Pethő

from [8].

Lemma 1. Let M be a positive integer and let A,B, µ, γ be given real numbers with

A > 0 and B > 1. Assume that p/q is a convergent of the continued fraction of γ

such that q > 6M . Let

ε = ||µq|| −M · ||γq||,

where || · || denotes the distance from the nearest integer. If ε > 0, then there is no

solution of the inequality

0 < |uγ − v + µ| < AB−w

in positive integers u, v, and w with

u ≤ M and w ≥ log(Aq/ε)

logB
.

The above-mentioned lemma cannot be applied when µ is a linear combination

of 1 and γ, since then ε < 0. Indeed, when µ is a linear combination of 1 and γ,

then µ = a + bγ for some integers a and b. Substituting this into the inequality

from the previous equation, it is simplified into

0 < |(u+ a)γ − (v − b)| < AB−w.

Consequently, we find that ε = −M · ||γq|| < 0 for any chosen q and M , making it

impossible to apply Lemma 1. Hence, we turn to the following useful property of

continued fractions.

Lemma 2. Let pi/qi be the convergents of the continued fraction [a0, a1, . . .] of the

irrational number γ. Let M be a positive integer and put aL := max{ai|0 ≤ i ≤
N + 1} where N ∈ N is such that qN ≤ M < qN+1. If x, y ∈ Z with x > 0, then

|xγ − y| > 1

(aL + 2)x
, for all x < M.

2.3. Properties of k-Generalized Fibonacci Sequence

This subsection is focused on reviewing important facts and properties of the k-

Fibonacci sequence, which will be used later. The defining characteristic polynomial

for this sequence is

Ψk(x) = xk − xk−1 − · · · − x− 1.



INTEGERS: 25 (2025) 5

Ψk(x) is irreducible over Q[x] and has just one root α(k) outside the unit circle (see,

for example [14], [15], and [19]). This root is real, positive, and satisfies α(k) > 1.

The other roots are strictly inside the unit circle. In [19], Wolfram showed that

2(1− 2−k) < α(k) < 2, for all k ≥ 2. (2.4)

We simplify this notation by omitting the dependence on k of α. For s ≥ 2, let

fs(x) :=
x− 1

2 + (s+ 1)(x− 2)
.

In [3], Bravo, Gomez, and Luca proved that the following inequalities

1/2 < fk(α) < 3/4 and
∣∣∣fk(α(i))

∣∣∣ < 1, 2 ≤ i ≤ k,

hold, where α := α(1), . . . , α(k) are all the zeros of Ψk(x). In the same paper, they

proved that the number fk(α) is not an algebraic integer. In addition, in [10],

Gomez and Luca proved that the logarithmic height of fk(α) satisfies

h(fk(α)) < 2 log k, for all k ≥ 3. (2.5)

With the above established notation, Dresden and Du demonstrated in [7] that

F (k)
n =

k∑
i=1

fk(α
(i))α(i)n−1

(2.6)

and

|ek(n)| <
1

2
, where ek(n) = F (k)

n − fk(α)α
n−1, (2.7)

for all n ≥ 2− k and k ≥ 2. Furthermore, for n ≥ 1 and k ≥ 2, it was proved in [2]

that

αn−2 ≤ F (k)
n ≤ αn−1. (2.8)

Additionally, note that the initial k+1 non-zero terms in (F
(k)
n )n≥−(k−2) are powers

of 2, namely

F
(k)
1 = 1, F

(k)
2 = 1, F

(k)
3 = 2, F

(k)
4 = 4, . . . , F

(k)
k+1 = 2k−1.

We finish this section with the following important lemmas that will be used in

the proofs.

Lemma 3 ([18], Lemma 2.2). Let a, x ∈ R and 0 < a < 1. If |x| < a, then

|log(1 + x)| < − log(1− a)

a
· |x|.

Lemma 4 ([4], Lemma 3). If n < 2k/2, then the following estimate holds:

F (k)
n = 2n−2(1 + ζ1), where |ζ1| <

2

2k/2
.
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3. Repdigits as Product of Two k-Fibonacci Numbers

This section is devoted to showing Theorem 1.

3.1. Preliminary Considerations

We start our examination of Equation (1.1) by considering the range 2 ≤ m ≤ n ≤
k+1. Within this context, we have F

(k)
n = 2n−2 and F

(k)
m = 2m−2. Hence, Equation

(1.1) transforms into

2n+m−4 =
a(10ℓ − 1)

9
. (3.1)

For any rational number x, let ν2(x) denote the 2-adic valuation of x. Since

ν2(a(10
ℓ − 1)/9) ≤ 3, then by comparing the 2-adic valuation on both sides of

(3.1), one gets 2 ≤ m ≤ n ≤ 7. In this specified range, Equation (3.1) does not

possess solutions. Thus, from now on, we proceed under the condition n ≥ k+2 ≥ 5.

Now, we will determine the correlation between the sizes of ℓ and n. Using

inequalities (2.8) and 10ℓ−1 < a(10ℓ − 1)/9, we obtain

10ℓ−1 <
a(10ℓ − 1)

9
= F (k)

n F (k)
m < αn+m−2 < α2n−2.

Consequently, we get

ℓ < (2n− 2)

(
logα

log 10

)
+ 1 = n

(
2 logα

log 10

)
−
(
2 logα

log 10

)
+ 1.

Moreover, utilizing (2.4), we get

ℓ < n. (3.2)

3.2. An Inequality for n Versus k

Now, we illustrate the following lemma which provides an inequality relating n to

k.

Lemma 5. If (a, k, ℓ,m, n) is a solution in integers of Equation (1.1) with k ≥ 3

and n ≥ k + 2, then the inequality

n < 1.64× 1029k8 log5 k

holds.

Proof. Employing estimate (2.6), Equation (1.1) can be expressed as follows:

(fk(α)α
n−1 + ek(n))(fk(α)α

m−1 + ek(m)) = a

(
10ℓ − 1

9

)
,
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i.e.,

f2
k (α)α

n+m−2 − a10ℓ

9
= −ek(m)fk(α)α

n−1 − ek(n)fk(α)α
m−1 − ek(n)ek(m)− a

9
.

By taking the absolute value, dividing both sides by f2
k (α)α

n+m−2, and using the

fact that fk(α) > 1/2, along with (2.7), we arrive at∣∣∣∣ a

9f2
k (α)

· α−(n+m−2) · 10ℓ − 1

∣∣∣∣ ≤ 1

αm−1
+

1

αn−1
+

5

αn+m−2
<

7

αm−1
.

Define

Γ1 :=
a

9f2
k (α)

· α−(n+m−2) · 10ℓ − 1. (3.3)

Consequently, we obtain

|Γ1| <
7

αm−1
. (3.4)

We have Γ1 ̸= 0, because if we suppose that Γ1 = 0, we would get

a10ℓ

9
= f2

k (α)α
(n+m−2).

After applying an automorphism from the Galois group of the decomposition field

Ψ(x) over Q to the above relation and then taking absolute values, we conclude

that for any i ≥ 2, we have

100

9
≤ a10ℓ

9
= |fk(αi)|2 · |αi|n+m−2

< 1,

which is a contradiction. With the goal of applying Theorem 2 to Γ1 given by (3.3),

the parameters can be chosen as:

(η1, b1) = ((a/(9f2
k (α)), 1), (η2, b2) = (α,−(n+m− 2)), (η3, b3) = (10, ℓ).

Since the algebraic numbers η1, η2, η3 are members of K := Q(α), it follows that

dK = k. Next, we estimate the usual absolute logarithmic heights of η1 followed by

that of η2 and η3. Using estimate (2.5) and the properties (2.2) and (2.3), we see

that for all k ≥ 3,
h(η1) ≤ h(a/9) + 2h(fk(α))

< log 9 + 4 log k
< 6.1 log k.

Moreover, we have h(η2) = (logα)/k < (log 2)/k and h(η3) = log 10. Then, we can

choose

A1 = 6.1k log k = max{kh(η1), |log η1| , 0.16}

A2 = log 2 = max{kh(η2), |log η2| , 0.16}
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and

A3 = k log 10 = max{kh(η3), |log η3| , 0.16}.
Finally, as m ≤ n and using inequality (3.2), we can take B = 2n. Therefore,

Theorem 2 gives

|Γ1| > exp
(
−1.4 · 306 · 34.5 · k2(1 + log k)(1 + log 2n)(6.1k log k)(log 2)(k log 10)

)
> exp

(
−2.8 · 1012k4 log2 k(1 + log 2n)

)
,

where we have used the fact that 1 + log k < 2 log k, which holds for k ≥ 3. Com-

paring this lower bound with the upper bound of |Γ1| as given in (3.4), we obtain

(m− 1) logα < 2.9 · 1012k4 log2 k(1 + log 2n). (3.5)

We return to Equation (1.1) and we use again (2.6) to reformulate it as

(fk(α)α
n−1 + ek(n))F

(k)
m =

a(10ℓ − 1)

9
,

i.e.,

fk(α)α
n−1 − a10ℓ

9F
(k)
m

= − a

9F
(k)
m

− ek(n). (3.6)

Following the previous steps, by taking the absolute value and dividing through

by fk(α)α
n−1, we get∣∣∣∣∣ a

9F
(k)
m fk(α)

· α−(n−1) · 10ℓ − 1

∣∣∣∣∣ ≤ 3

2fk(α)αn−1
<

3α

αn
<

6

αn
.

Define

Γ2 :=
a

9F
(k)
m fk(α)

· α−(n−1) · 10ℓ − 1.

Hence, we see that

|Γ2| <
6

αn
. (3.7)

As above, we use the same argument to show that Γ2 ̸= 0. Now, we will apply

Theorem 2 to Γ2 by fixing the following parameters:

(η1, b1) = (a/(9F (k)
m fk(α)), 1), (η2, b2) = (α,−(n− 1)), (η3, b3) = (10, ℓ).

Once again, we consider K = Q(α) and dK = k. As before, we can take

A2 = log 2 and A3 = k log 10.

Now, we still need to determine A1. Using the estimates (2.5) and (3.5), along with

properties (2.1)-(2.3), for all k ≥ 3, we deduce that

h(η1) ≤ h
(a
9

)
+ h(F

(k)
m ) + h(fk(α))

< log 9 + (m− 1) logα+ 2 log k

< 3× 1012k4 log2 k(1 + log 2n).
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Conversely, given that

η1 =
a

9F
(k)
m fk(α)

< 2 and η−1
1 =

9F
(k)
m fk(α)

a
<

27αm−1

4
,

then, by (3.5), we see that

|log η1| < (m− 1) logα+ log 6.75 < 3× 1012k4 log2 k(1 + log 2n).

This indicates that

max{kh(η1), |log η1| , 0.16} < 3× 1012k5 log2 k(1 + log 2n) = A1.

Taking for B = 2n, we can apply Theorem 2 to Γ2 and then compare the resulting

inequality with (3.7) to obtain

n logα < 6.1× 1024k8 log3 k log2 n,

where we have used the inequalities 1 + log k < 2 log k and (1 + log 2n) < 2.1 log n,

which are valid for k ≥ 3 and n ≥ 5. For smaller values of n (i.e., n = 1, 2, 3, 4), the

inequality (1 + log 2n) < 2.1 log n does not hold as the left-hand side exceeds the

right-hand side in these cases. Therefore, we find

n

log2 n
< 1.1× 1025k8 log3 k.

It is evident that the inequality

x

log2 x
< A implies x < 4A log2 A, whenever A ≥ 100, (3.8)

which is derived from [17, Lemma 7] for m = 2. Hence, substituting A := 1.1 ×
1025k8 log3 k in Inequality (3.8) and applying the inequality 57.7+8 log k+3 log log k <

61 log k, valid for all k ≥ 3, we obtain

n < 4(1.1× 1025k8 log3 k)(log(1.1× 1025k8 log3 k))2

< (4.4× 1025k8 log3 k)(57.7 + 8 log k + 3 log log k)2

< 1.64× 1029k8 log5 k.

Based on this, the proof of Lemma 5 is complete.

3.3. The Case 3 ≤ k ≤ 430

Within this subsection, our focus is to examine the small values of k, specifically in

the range [3, 430]. Define

Λ1 := log(Γ1 + 1) = ℓ log 10− (n+m− 2) logα+ log(a/(9f2
k (α))).
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Assume that m ≥ 10. With the help of estimate (3.4) and the use of the fact that

α > 1.75, we get |Γ1| < 0.05. Putting d = 0.05 in Lemma 3, we obtain

|Λ1| <
− log 0.95

0.05
· |Γ1| < 14.4 · α−m.

Thus, we get∣∣∣∣ℓ · log 10logα
− (n+m− 2) +

log(a/(9f2
k (α)))

logα

∣∣∣∣ < 25.8 · α−m. (3.9)

We apply Lemma 1 to Λ1, for each a ∈ {1, · · · , 9} and k ∈ [3, 430], by taking as

parameters

γ =
log 10

logα
, µ(k,a) =

log(a/(9f2
k (α)))

logα
, and (A,B) = (25.8, α).

For each k ∈ [3, 430] and a ∈ {1, . . . , 9}, we find a reliable approximation of γ.

Additionally, we obtain a convergent pi/qi of the continued fraction of γ, satisfying

the conditions qi > 6Mk and ε = ε(k,a) = ||µ(k,a)qi|| − Mk||γqi|| > 0. Here,

Mk = ⌊1.64 × 1029k8 log5 k⌋, representing an upper bound for ℓ as derived from

Lemma 5. Using Mathematica, we see that q185 fulfills the conditions specified in

Lemma 1. After completing this step, Lemma 1 is applied to Inequality (3.9). By

employing a computer program with Mathematica, it was determined for k = 430

and a = 9 that ε > 1.02 × 10−36 and the highest value of
log(Aq/ε)

logB
across all

k ∈ [3, 430] and a ∈ {1, . . . , 9} is 425.623. This value serves as an upper bound of

m as dictated by Lemma 1.

Note that for the remaining values of k and a, it is observed that the correspond-

ing results yield significantly smaller values compared to the chosen upper bound

for m of 425.623.

Let us consider 3 ≤ m < 426 and

Λ2 := log(Γ2 + 1) = ℓ log 10− (n− 1) logα+ log(a/(9F (k)
m fk(α))).

Assuming n ≥ 10, with the given estimate (3.7) and considering α > 1.75, it follows

that |Γ2| < 0.03. Substituting d = 0.03 in Lemma 3, we see that

|Λ2| <
− log 0.97

0.03
· |Γ2| < 6.1 · α−n.

Hence, we get∣∣∣∣∣ℓ · log 10logα
− (n− 1)− log(a/(9F

(k)
m fk(α)))

logα

∣∣∣∣∣ < 11 · α−n. (3.10)
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In view to apply Lemma 1 to Λ2, for all a ∈ {1, · · · , 9} and 3 ≤ m ≤ 425, we

consider

γ =
log 10

logα
, µ(k,m,a) =

log(a/(9F
(k)
m fk(α)))

logα
, and (A,B) = (11, α).

Again, considering each pair (k,m) ∈ [3, 430] × [3, 425] and a ∈ {1, . . . , 9}, we

find a reliable approximation of γ and a convergent pi/qi of the continued fraction

of γ ensuring qi > 6Mk and ε = ε(k,m,a) = ||µ(k,m,a)qi|| − Mk||γqi|| > 0, where

Mk = ⌊1.64× 1029k8 log5 k⌋, serving as an upper bound of ℓ obtained from Lemma

5. Again, we use Mathematica to verify that q179 satisfies the conditions of Lemma

1. Next, we apply Lemma 1 on Inequality (3.10). Our Mathematica computation

revealed for k = 409, a = 9, and m = 3 that ε > 2.22× 10−34 and the highest value

attained by
log(Aq/ε)

logB
across all (k,m) ∈ [3, 430] × [3, 425] and a ∈ {1, . . . , 9} is

425.634, serving as an upper bound for n by Lemma 1. The other upper bounds

for n obtained with the remaining values of k, m, and a fall substantially below the

established upper bound for n of 425.634.

Therefore, we conclude that the possible solutions (a, k, l,m, n) of Equation (1.1),

where k ∈ [3, 430] and a ∈ {1, · · · , 9}, satisfy m ≤ n ≤ 425. Hence, utilizing

Inequality (3.2), we derive ℓ ≤ 424.

Finally, we use Mathematica to manage a comparative analysis between F
(k)
n F

(k)
m

and
a(10ℓ − 1)

9
over the intervals k + 2 ≤ n ≤ 425, m ≤ n, and 2 ≤ ℓ ≤ 424,

where ℓ < n, confirming that the solutions to Equation (1.1) are exclusively those

enumerated in Theorem 1.

3.4. The Case k > 430

In this subsection, we undertake an examination of the large values of k, precisely

when k > 430. A simple verification for k > 430 affirms that

m ≤ n < 1.64× 1029k8 log5 k < 2k/2.

Thus, following Lemma 4, we derive

F (k)
n = 2n−2(1 + ζ1), where |ζ1| <

2

2k/2
. (3.11)

and

F (k)
m = 2m−2(1 + ζ2), where |ζ2| <

2

2k/2
. (3.12)

By substituting (3.11) and (3.12) into Equation (1.1), we get

2n+m−4 − a10ℓ

9
= 2n+m−4 (−ζ1 − ζ2 − ζ1ζ2)−

a

9
.
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Hence, we obtain∣∣∣∣2n+m−4 − a10ℓ

9

∣∣∣∣ ≤ 2n+m−4 (|ζ1|+ |ζ2|+ |ζ1ζ2|) +
a

9
≤ 2n+m−2

2k/2
+

2n+m−2

2k
+ 1.

Consequently, dividing through by 2n+m−4 and using the fact that n ≥ m give us∣∣∣1− a

9
· 10ℓ · 2−(n+m+4)

∣∣∣ <
4

2k/2
+

4

2k
+

1

22m−4

<
8.5

2min{k/2,m−2} .

Define

Γ3 :=
a

9
· 2−(n+m−4) · 10ℓ − 1.

Thus, we deduce that

|Γ3| <
8.5

2min{k/2,m−2} . (3.13)

We have Γ3 ̸= 0, because assuming Γ3 = 0 leads to a · 10ℓ = 9 · 2n+m−4. Conse-

quently, this would imply that 5 divides 9 · 2n+m−4, which is an impossibility, for

3 ≤ m ≤ n. We are now in a position to apply Theorem 2 to Γ3, taking into account

the following parameters:

(η1, b1) = (a/9, 1), (η2, b2) = (2,−(n+m− 4)), (η3, b3) = (10, ℓ).

Then, the usual absolute logarithmic heights of these numbers are given by

h(η1) = log 9, h(η2) = log 2, and h(η3) = log 10.

Observing that η1, η2, η3 belong to K = Q, we take dK = 1. Consequently, we opt

for:

A1 = log 9, A2 = log 2, A3 = log 10.

Finally, we choose B = 2n and we apply Theorem 2 to Γ3, which gives us

|Γ3| > exp
(
−1.4 · 306 · 34.5 · (1 + log 2n)(log 9)(log 2)(log 10)

)
> exp

(
−1.1 · 1012 log n

)
,

where we have used the fact that 1+ log 2n < 2.1 log n, for all n ≥ 5. By comparing

the resulting inequality with (3.13), we obtain

min{k/2,m− 2} < 1.6 · 1012 log n.

As specified by Lemma 5 and considering that 67.3+ 8 log k+5 log log k < 20 log k,

valid for all k > 430, we get

min{k/2,m− 2} < 1.6 · 1012 log(1.64 · 1029k8 log5 k)
< 1.6 · 1012(67.3 + 8 log k + 5 log log k)
< 3.2 · 1013 log k.
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Case 1: min{k/2,m − 2} = k/2. In this case, we get k < 6.4 · 1013 log k. Solving

this inequality and applying Lemma 5, we see that

k < 2.3 · 1015 and n < 7.12 · 10159. (3.14)

Case 2: min{k/2,m− 2} = m− 2. In this case, we obtain

m < 3.21 · 1013 log k. (3.15)

Returning now to (3.6), we proceed to rephrase it as follows:

a10ℓ

9F
(k)
m

− 2n−2 = 2n−2ζ1 +
a

9F
(k)
m

.

Thus, we obtain ∣∣∣∣ a10ℓ
9F

(k)
m

− 2n−2

∣∣∣∣ ≤ 2n−1

2k/2
+ 1.

Consequently, dividing through by 2n−2 and using the fact that n ≥ k + 2 lead to

|Γ4| ≤
2

2k/2
+

1

2n−2
<

2

2k/2
+

1

2k
<

3

2k/2
, (3.16)

where

Γ4 :=
a

9F
(k)
m

· 2−(n−2) · 10ℓ − 1.

We must ensure that Γ4 ̸= 0. Otherwise, we would derive the equation
a10ℓ

9F
(k)
m

=

2n−2. If a ∈ {1, . . . , 8}, then it is evident that the expression on the left cannot

yield an integer value. For the case where a = 9, we have
10ℓ

F
(k)
m

= 2n−2. In this case,

as m − 2 < k/2, it implies that m ≤ k + 1, consequently leading to F
(k)
m = 2m−2.

Substituting this into the equation results in
10ℓ

2m−2
= 2n−2, which inevitably leads

to a contradiction. Consequently, Γ4 ̸= 0. Now, we apply Theorem 2 to Γ4 by

setting

(η1, b1) = (a/(9F (k)
m ), 1), (η2, b2) = (2,−(n− 2)), (η3, b3) = (10, ℓ).

As previously calculated, we define A2 = log 2, A3 = log 10, and B = n. Subse-

quently, we proceed to estimate h(η1). Utilizing the fact that F
(k)
m < αm−1 and

Inequality (3.15), we derive

h(η1) ≤ h(a/9) + h(F (k)
m ) < log 9 + (m− 1) logα < 2.23 · 1013 log k.

Consequently, we set A1 = 2.23·1013 log k. Thus, according to Theorem 2, we obtain

|Γ4| > exp(−8.67 · 1024 log k log n), (3.17)
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where we have used the fact that 1+ log n < 1.7 log n, for all n ≥ 5. By considering

both (3.16) and (3.17), it follows that

k < 2.51 · 1025 log k log n.

According to Lemma 5 and using the fact that 67.4+8 log k+5 log log k < 20 log k,

for all k > 430, we get

k < 2.51 · 1025 log k
(
log(1.64 · 1029k8 log5 k)

)
< 2.51 · 1025 log k(67.3 + 8 log k + 5 log log k)

< 5.1 · 1026 log2 k.

Solving this inequality and applying Lemma 5, we obtain

k < 2.5 · 1030 and n < 4.21 · 10281. (3.18)

From (3.14) and (3.18), it is evident that (3.18) consistently remains valid. However,

the resulting bounds are exceedingly large. Therefore, our subsequent step involves

their reduction. Let us put

Λ3 := log(Γ3 + 1) = ℓ log 10− (n+m− 4) log 2 + log(a/9).

Assuming that m ≥ 10, it then follows that |Γ3| < 0.04. Setting d = 0.04 in Lemma

3, we obtain

|Λ3| <
− log 0.96

0.04
· |Γ3| < 8.7 · 2−min{k/2,m−2}.

Consequently, we have∣∣∣∣ℓ · log 10log 2
− (n+m− 4) +

log(a/9)

log 2

∣∣∣∣ < 12.6 · 2−min{k/2,m−2}. (3.19)

We apply Lemma 1 to Λ3, for a ∈ {1, . . . , 8}, with the following parameters:

γ =
log 10

log 2
, µ =

log(a/9)

log 2
, and (A,B) = (12.6, 2).

We aim to reduce our excessively large bounds utilizing Lemma 1. Setting M =

4.21 · 10281 as an upper bound on ℓ by (3.2) and (3.18), we employ Lemma 1 on

Inequality (3.19) to derive an upper bound on k. After conducting a computer

search with Maple, we confirm that q571 satisfies the conditions of Lemma 1 for

a ∈ {1, . . . , 8}. As a result, applying Lemma 1 leads to the results shown in Table

2.
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a 1 2 3 4 5 6 7 8

ε ≥ 0.19 0.19 0.41 0.19 0.19 0.41 0.25 0.19

min{k/2,m− 2} ≤ 947 947 945 947 947 945 946 947

Table 2: First reduction.

From the obtained results, it follows that min{k/2,m− 2} < 948, a condition that

holds in all cases.

For the case a = 9, it follows that

Λ3 = log(Γ3 + 1) = ℓ log 10− (n+m− 4) log 2. (3.20)

Therefore, Inequality (3.19) becomes∣∣∣∣ℓ · log 10log 2
− (n+m− 4)

∣∣∣∣ < 12.6 · 2−min{k/2,m−2}. (3.21)

Consider the continued fraction expression of
log 10

log 2
, represented as

[a0, a1, a2, . . .] = [3, 3, 9, 2, 2, 4, 6, 2, 1, 1, 3, 1, 18, 1, . . .].

Let ps/qs denote its convergent. Recall that ℓ < 4.21 · 10281. Using Maple, we

determine that

q567 < 4.21 · 10281 < q568

and

aL = max{ai : i = 1, 2, . . . , 568} = a135 = 5393.

Thus, from the known properties of the continued fractions given by Lemma 2, we

obtain that ∣∣∣∣ℓ · log 10log 2
− (n+m− 4)

∣∣∣∣ > 1

(aL + 2)ℓ
. (3.22)

Putting the above inequality together with (3.21) and using the fact that ℓ <

4.21 · 10281, we get

2min{k/2,m−2} < 12.6 · 5395 · 4.21 · 10281.

Hence, we obtain min{k/2,m−2} < 952. So, in all cases, we have min{k/2,m−2} <

952. Let us now continue the procedure of reduction with each case individually in

order to achieve the reduced bound on k.

Case 1: min{k/2,m− 2} = k/2. In this case, it results

k < 1904.
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Case 2: min{k/2,m− 2} = m− 2. In this case, we obtain m ≤ 953. Set 3 ≤ m ≤
953 and we put

Λ4 := log(Γ4 + 1) = ℓ log 10− (n− 2) log 2 + log(a/(9F (k)
m )).

Since k > 430, then by (3.16), we have |Γ4| < 0.01. Thus, applying Lemma 3 with

d = 0.01, we obtain

|Λ4| < − log(0.99)

0.01
· |Γ4| < 3.02 · 2−k/2.

So, we get ∣∣∣∣∣ℓ · log 10log 2
− (n− 2) +

log(a/(9F
(k)
m ))

log 2

∣∣∣∣∣ < 4.4 · 2−k/2. (3.23)

For all a ∈ {1, . . . , 8} and 3 ≤ m ≤ 953, we apply Lemma 1 to Λ4 by considering

γ =
log 10

log 2
, µ =

log(a/(9F
(k)
m ))

log 2
, M = 4.21 · 10281, and (A,B) = (4.4, 2).

The inequality m − 2 < k/2 implies that m ≤ k + 1 for k ≥ 2, and we can replace

F
(k)
m by 2m−2 in our calculations. Utilizing Maple once more, it follows that q571

meets the conditions of Lemma 1, for all a ∈ {1, . . . , 8} and 3 ≤ m ≤ 953. Hence,

the application of Lemma 1 yields the results presented in Table 3, which are valid

for 3 ≤ m ≤ 953.

a 1 2 3 4 5 6 7 8

ε ≥ 0.19 0.19 0.41 0.19 0.19 0.41 0.25 0.19

k/2 ≤ 945 945 944 945 945 944 945 945

Table 3: First reduction for second case.

The data from Table 3 confirm that k < 1891 in all instances. When a = 9, then

Inequality (3.23) becomes∣∣∣∣ℓ · log 10log 2
− (n+m− 4)

∣∣∣∣ < 4.4 · 2−k/2. (3.24)

According to (3.22) and (3.24), we deduce that k < 1901. Therefore, in all cases we

have k < 1904.

With this refined bound, we deduce n < 1.5 · 1040. Subsequently, we once again

employ Lemma 1 with the same dataset but with a revised upper bound of M =

1.5 · 1040. Utilizing Maple, we confirm that q120 satisfies the conditions stipulated

in Lemma 1 for all a ∈ {1, . . . , 8}. The results of this application are presented in

Table 4.
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a 1 2 3 4 5 6 7 8

ε ≥ 0.11 0.11 0.45 0.11 0.11 0.45 0.18 0.11

min{k/2,m− 2} ≤ 191 191 189 191 191 189 190 191

Table 4: Second reduction.

These obtained results affirm that min{k/2,m − 2} < 192 holds in all cases. For

a = 9, we find that min{k/2,m−2} < 143. Thus, we deduce that min{k/2,m−2} <

192 is valid in all cases.

As previously, for the first case, we ascertain that k < 384, while for the second

case, we once again see that q120 satisfies the conditions specified in Lemma 1 for

all a ∈ {1, . . . , 8} and 3 ≤ m ≤ 193. Then, we derive the subsequent results, valid

for all 3 ≤ m ≤ 193.

a 1 2 3 4 5 6 7 8

ε ≥ 0.11 0.11 0.45 0.11 0.11 0.45 0.18 0.11

k/2 ≤ 189 189 187 189 189 187 188 189

Table 5: Second reduction for second case.

The obtained results from Table 5 state that k < 380 for all cases. When a = 9, we

find that k < 283. Consequently, in all cases, we establish that k < 384. However,

this contradicts our assumption that k > 430. This achieves the proof of Theorem

1
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