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Abstract

In this paper, we present a combinatorial interpretation of Leonardo p-numbers in
terms of colored linear tilings and provide combinatorial proofs for several identities
involving them. We further explore the incomplete and hyper Leonardo p-numbers,
presenting their combinatorial interpretations. Additionally, we present a combina-
torial interpretation of the Lucas-Leonardo p-numbers, closely related to Leonardo
p-numbers, in terms of colored circular tilings and investigate their combinatorial
properties. Finally, we introduce hyper Lucas-Leonardo p-numbers and establish
connections with their incomplete counterparts.

1. Introduction

The Fibonacci sequence is among the most well-known sequences in mathematics.
The nth Fibonacci number, denoted as F,,, is defined by the recurrence relation
F,=F, 1+ F,_5, n> 2, with initial values Fy = 0 and F} = 1. Fibonacci num-
bers and their extensions exhibit numerous fascinating properties and find diverse
applications across science and art. For more details, see [9].

Many authors have explored non-homogeneous extensions of the Fibonacci re-
currence relation. In particular, the Leonardo sequence {L£,}, which was used by
Dijkstra [8] as an integral part of his sorting algorithm, is defined by the non-
homogeneous recurrence relation

»Cn = »Cnfl +£n72+1a n > 2,

with initial values Ly = £; = 1. For the history of Leonardo sequences, see
[A001595] in [10]. The properties of the Leonardo numbers have been explored

DOI: 10.5281/zenodo.15756004



INTEGERS: 25 (2025) 2

by Catarino and Borges [6], Alp and Kocer [1], and Shannon [12]. For a fixed
positive integer k, Kuhapatanakul and Chobsorn [11] introduced the generalized
Leonardo sequence {Lg.,} through the non-homogeneous recurrence relation

Ek,n = Lk,n—l + Ek,n—Q + k7 n > 2

with initial values L4 o = L1 = 1. It is clear to see that when k = 1, it reduces to
the classical Leonardo sequence {£,}. Additionally, Shattuck [13] provided combi-
natorial proofs of several identities satisfied by the generalized Leonardo numbers.
He also explored some combinatorial aspects of incomplete generalized Leonardo
numbers discussed in [7]. Furthermore, it is noteworthy that Bicknell [4] examined
a similar type of sequence with arbitrary initial values.

Motivated by the aforementioned studies, Tan and Leung [16] defined a gen-
eralization of Leonardo numbers, namely the Leonardo p-numbers. For any given
integer p > 0, the Leonardo p-numbers are defined by the non-homogeneous relation

Ep,n = Ep,n—l + Ep,n—p—l er, n > p, (1)

with initial values £,0 = L,1 = -+ = Ly, = 1. It is clear to see that when
p = 1, the Leonardo p-sequence reduces to the classical Leonardo sequence. For
the purposes of our paper, we require the following equations (2)-(4) related to the
Leonardo p-numbers, which can be found in [16]. The non-homogeneous relation of
the Leonardo p-sequence can be converted to the homogeneous relation

ﬁp,n = Ep,n—l + £p,n—p — ;Cp_’n_gp_l, n > 2p. (2)
A relation between Leonardo p-numbers and Fibonacci p-numbers is given by

Ep,n = (p + 1) Fp,n+1 - D (3)

where {F},,,} is the Fibonacci p-sequence defined by the recurrence relation F, ,, =
Fpn_1+ Fpn_p—1, n > p, with initial values Fj,g =0, F),; = 1 fori=1,2,...,p.
Note that when p = 1, the Fibonacci p-sequence reduces to the classical Fibonacci
sequence. For details on Fibonacci p-sequences and their generalizations, we refer
o [15]. The incomplete Leonardo p-numbers £, ,, (k) are defined as:

k .
n—pi n
Lon® =403 (") —p0sks |0, (@
i=0 p
It is clear to see that L, , (L}%D =Lpn-

On the other hand, Zhong et al.[17] recently studied a companion sequence of the
Leonardo p-sequence, called the Lucas-Leonardo p-sequence, and defined it using
the non-homogeneous recurrence relation

Rp,n = Rp,n—l + Rp,n—p—l +p, n>p (5)
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with initial values R, 0 =p?+p+1,Rp1=---=R,, = 1. For p = 1, it reduces to
the Lucas-Leonardo sequence {R,}; see [A022319] in [10]. In a similar manner to
the Leonardo p-numbers, we require the following equations (6)-(10) for the Lucas-
Leonardo p-numbers, which can be found in [17].

A relation between Lucas-Leonardo p-numbers and Lucas p-numbers is given by

Rpn = (p+1) Lyn—p, (6)

where {L, ,} is the Lucas p-sequence defined by the recurrence relation L, , =
Lyn—1+Lpn_p—1,n > p, with initial values L, o = p+1, L, ; = 1fori=1,2,...,p.
It is clear to see that when p = 1, the Lucas p-sequence reduces to the classical Lucas
sequence {L,}. For details on Lucas p-numbers and their generalizations, see [15].
A relationship between Leonardo p-numbers and Lucas-Leonardo p-numbers is given
by

Rpm=(@+1) Lpn —pLpn—1. (7)

The incomplete Lucas-Leonardo p-numbers [17] are defined as

Rp,n<k>=<p+1>i - (”fp")—p, ®8)

n—pi 1
i=0 p

where 0 < k < {#J For 0<k< L";ﬁ;lJ , the following relation is satisfied:

Rpn(k+1) =Rpn-1(k+1) +Rpnp-1(k) +p. 9)

A relationship between incomplete Leonardo p-numbers and incomplete Lucas-
Leonardo p-numbers is

Rp,n(k) =({@+1) Lp,n(k) - pﬁp,n—l(k)- (10)

This paper offers a combinatorial perspective on Leonardo p-numbers, illustrating
them through colored linear tilings. We provide combinatorial demonstrations of
several identities associated with Leonardo p-numbers and incomplete Leonardo p-
numbers. In particular, we provide combinatorial proofs of the identities (2)-(4) and
more identities given in [16, Proposition 2-5]. Moreover, we establish a connection
between incomplete Leonardo p-numbers and hyper Leonardo p-numbers. Similarly,
we give a combinatorial interpretation of Lucas-Leonardo p-numbers and provide
combinatorial proofs of the identities (6)-(10). We also introduce the concept of
hyper Lucas-Leonardo p-numbers and give a relation between incomplete Lucas-
Leonardo p-numbers and hyper Lucas-Leonardo p-numbers. Our findings provide
combinatorial interpretations and present several novel identities associated with
hyper Lucas-Leonardo p-numbers.
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2. Combinatorial Interpretation of Leonardo p-numbers

Recall that a (linear) n-board is a board of length n with cells labeled 1,2,...,n
from left to right. A (linear) n-tiling is a tiling of a (linear) n-board. Suppose that
the board is covered by squares and p-minos, where a square covers a single cell and
a p-mino covers p + 1 cells. Here, a square or a p-mino is indistinguishable from
other pieces of the same kind and is denoted by s or p, respectively.

Let f,n denote the set of linear m-tilings consisting of squares and p-minos.
Considering whether the last piece within an n-tiling is s or p implies

ol = Fpnta

for n > 0. Note that a member of f, , containing exactly ¢ p-minos must contain
n — (p+ 1)i squares, and hence there are (";pz) such members of f,, for 0 <

i < L%J See [14] for more on the combinatorial interpretation of Fibonacci p-
numbers. Also, note that for p = 1, it reduces to the combinatorial interpretation
of classical Fibonacci numbers in terms of squares and dominos. For details, we
refer to the excellent book of Benjamin and Quinn [5].

To provide combinatorial proofs of identities involving Leonardo p-numbers, we

extend the arguments given in [13]. We define a new tile, called p-tile:
Definition 1. A p-tile is a rectangular tile defined as follows:

e It comes in one of p colors, which must occur as the initial piece in a tiling if
it is included in the arrangement at all.

e It has a length [ with [ > p+ 1, and is denoted by P;.

Let ICp, denote the set of linear n-tilings using squares, p-minos, and p-tiles.
For simplicity, we denote these members of K, ,, using sequences in s, p, and P,
respectively. For example, for p = 3 and n = 4, we have K34 = {s4,p,P4}. See
Figure 1.

[ssls[s] [ » J[ P+ |

Figure 1: Tilings of length 4 for p = 3:

Since the Py piece comes in one of 3 colors, we have
|IC374| =3+2=5= £3)4.

For p =3,n =5, we have K35 = {s° sp, ps,Pss, Ps} . See Figure 2.
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Figure 2: Tilings of length 5 for p = 3

Since P4 and P5 pieces come in one of 3 colors, we have
|]C375| =3243=9= £3,5.
Proposition 1. Ifn >0, then |[Kp.| = Lp .

Proof. Considering whether the final piece of A € K, ,, where n > p+ 1, is s or p
or if it equals P,, (in which case, it consists of a single p-tile of length n), we get

|’Cp,n| = |’Cp7n—1| + |]Cp,n—p—1‘ +p.

Since p-tiles and p-minos have length greater than p, we have |IC, | =1 = L, , for
n=20,1,...,p. O]

Proposition 2. Forn > 2p+ 1, we have

'Cp,n = me—l + 'Cp,n—p - 'Cp,n—Qp—la

with Loo=Lp1=-=Lpp=1and
Lypt1 = Lpp+Lpo+p=2+p,
Lppta = Lppr1+Lp1+p=3+2p,
Lpp+s = LppratLp2+p=4+3p,
£p72p = ﬁp,?pfl + Ep,p—l +p= p2 +p+ 1.

Proof. The initial conditions follow from the definitions.

Suppose n > 2p + 1 and note that there are £, ,,_1 members of K, ,, that ends
in s.

Let S denote the subset of k), ,,_, consisting of those tilings that do not end in
p. By subtraction, we have |S| = Ly n—p — Lpn—2p—1-

If A € S ends in s, then let ) be obtained from A by replacing the final s with
a p. Otherwise, n > 2p + 1 implies A = P,_, is also possible, where P,,_,, comes
one of p colors. In this case, we let \' = P,,, keeping the color the same. Then
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the mapping A — A is a bijection from S to the subset of K, , whose members
do not end in s, and hence they number £, ,,_, — L, n—2p—1, Which completes the
proof. O

For example, consider
7 3 2 2 3 3 2
K377 = {S ,PS™,SPS™,S"PS, S p,P4S 77)55 7P6S7P7} .

There are L3¢ = 13 members of K37 that end in s. Now consider the subset .S of
Kza= {84, p,P4} that do not end in p. So § = {54, P4} . Since there is a bijection
from S to the subset of K57 whose members do not end in s, it is clear to see that
s* € S maps to s®p €K3 7 and P, € S maps to P7€K3 7. Thus

Ka7| = |Ks6l +|S] =13 +4 =17.
Proposition 3. Forn > 0, we have

‘CP”ﬂ = (p + 1) Fp7n+1 —D.

Proof. Let K5, = K, — {s"} denote the subset of tilings that do not contain
only squares. There are £, — 1 tilings in K7, . Now, K7, can be partitioned

into two disjoints subsets, K, = Krl UK+2 | where the set 5!, contains tilings
with squares and at least one p-mino, and the set IC;?H contains tilings with a p-tile,

squares, and p-minos. Then, |IC;1n| =F,pt1 — 1 and

n
|IC;,2n| =D Z Fpny1-1 =p(Fpn1 —1).
l=p+1

Hence, |K .| = (p + 1)(Fpnt1 — 1) which gives the desired result. O

Proposition 4. Forn > 0, we have

D Lyi=Lpnipri—(n+1)p—1

=0

Proof. Consider the (n+p+ 1)-tilings that do not contain any p-minos. Such tilings
are either in the form of s"*P+1 or Pys"tPH1=! for p +1 <1 < n + p + 1, resulting
in p(n + 1) + 1 such tilings. Since the number of (n + p + 1)-tilings is Lp tp+1,
excluding those that do not contain any p-minos yields the right-hand side of the
identity.

Let A be a tiling of length n 4+ p+ 1 containing at least one p-mino. Conditioning
on the position of the last p-mino, which covers cellsi+1,...,i+p+1 (0 <i < n),
such a tiling must have the form A = N'ps"™* for (1 < i < n) where N € K, ;,
and there are £, ; such tilings. Summing over ¢ gives the left-hand side of the
identity. O
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Next, we provide a combinatorial proof of the identity in [16, Theorem 2] for
m = 0.

Proposition 5. Forn > 0, we have

Z ﬁp’(wl)i = ﬁp,(p+1)n+1 —pn.
=0

Proof. Consider the (p 4+ 1)n + 1-tilings that do not contain any squares. Such
tilings are in the form of P(pH)in”_i for 1 < i < n, resulting in pn such tilings.
Since the number of (p + 1)n + 1-tilings is £, (p+1)n+1, excluding those that do not
contain any squares yields the right-hand side of the identity.

Let X be a tiling of length n 4+ p+ 1 containing at least one square. Conditioning
on the position of the last square, which covers cell (p + 1)i where (0 < ¢ < n),
such a tiling must have the form A = X'sp™~* for 1 < i < n, where X' € K, (p+1s,
and there are £, (,11); such tilings. Summing over i gives the left-hand side of the
identity. O

Now, we provide a combinatorial interpretation of the incomplete Leonardo p-
numbers £, ,, (k).

Let A, ,, denote the set consisting of tilings A of length n such that the first piece
of A\ is assigned one of p + 1 colors provided A is not all the square tiling, in which
case the first piece of A is not assigned a color. Then, from Proposition 3, we have

[Apn| =P+ 1) (Fpnpr =) +1= @+ 1) Fpni1 =p = Lpn.

For0 <k < {#J , let A, (k) denote the subset of A, ,, containing at most k

p-minos. Then
k .
n—pi
A B =+ 0> (") (1)
=0
Comparing (11) with (4), we get | A, ,, (k)] = Ly (k).
It is clear to see that ‘.A n Q#D =Lpn.

Proposition 6. For 0 <k < L%J and n > p, we have

‘Cp’n(k +1) = Lyn—1(k+ 1)+ Ep,nfpfl(k) +p.

Proof. Let A € A, ,(k + 1), we condition on the last tile. If the last tile is square,
there are £, ,_1(k + 1) ways to tile the remaining n — 1 cells with at most k+ 1 p-
minos. If the last tile is p-mino, there are £, ,—p—1(k) ways to tile the first n—p—1
cells with at most k p-minos. Note that the tiling of the form s" P~ !p is counted
without coloring. Hence, we must add p to account for these missed tilings. O
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Proposition 7. For 0 <k < ";ﬁ;r, we have

5 () oo 40+ @ = b = Ly 7).
i=0

Proof. Let A € Ap i (p+1)r(k + 1) be a tiling of length n + (p + 1)r containing at
most k + r p-minos. Suppose there are ¢ p-minos among the last r tiles. Thus, A is
of the form A X" where X' € A, 1 pr—i)(k +7 —1i) and A" is a tiling with exactly
p-minos. There are (1) ways to tiles X and £, 4 (k + 1) possible ways to tiles A’.
Note that the tilings of the form s"TP("=)\" are counted without coloring. Thus,
we must multiply the number of such tilings by p, which gives us p(2" — 1). O

Proposition 8. Forn > (p+1)(k+ 1), we have

r—1
Z Lpnpii(k) +1p=Lpnir(k+1) = Lyn(k+1).
1=0

Proof. We will show that both sides of the identity count tilings of length n+r with
at most k + 1 p-minos such that the last p-mino from the right-hand side occupies
position (i +1,...;i+p+1) (n—p <i < n+r—p-—1). If there is a p-mino
at position (¢ +1,...,i+ p+ 1) then there are £, ;(k) ways to tile the first i cells.
Note that when the first ¢ cells are covered only with squares, the tiling is counted
without coloring. There are r such tilings. O

In [2], the authors define the hyper Leonardo p-numbers, L',I()]fr)b, and provide the
following explicit formula
L7 n+k—pi n+k

£k = 1 - . 12

) (p+)§ ok pl (12)

Now, we give a combinatorial interpretation of hyper Leonardo p-numbers. Let Aé’f%

be the set of tilings A of length n + (p 4+ 1)k that contain at least k p-minos, where

the first tile of A is assigned one of p + 1 colors, except when A\ contains exactly k
p-minos, in which case the first tile of A is not assigned a color. Then, we have

AR = (p+1) Lpizljjrk (n +(p +.1)k pi) N (n +(p+ 1Dk pk>

i=k+1 ¢ k
e L*’izljfk (n—i—kz —ip(i _ k:)) _p(n—;{—k)
o
_ 1) L7+ (nti;?l) B (n:k) :Efgk%
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Proposition 9. For m,n > 1 with m < k, we have

"\ (ki)
‘Cp,n+m - Z < i )‘Cp n+i*

=0

Proof. The left-hand side corresponds to the number of (n +m + (p + 1)k)-tilings
with at least k p-minos. There are () ways to select the positions of ¢ p-minos
that appear among the first m tiles. The number of ways to tile the remaining
n+p(k —1) + k-tilings with at least k —4 p-minos is Ep n_H Summing over all values
of 4 yields the right-hand side of the identity. O

Next, we provide tiling proofs of the following two recurrences relations from [2].

Proposition 10. For n,k > 1, we have
L) =™ 4l
with L% = Ly, and LY = L,0.

Proof. Let \ € A(k) be a n + (p + 1)k-tiling with at least k& p-minos. For k = 0,
we get |A(O) |Apn| = Lpn, and for n = 0, we obtain |A (k0| = 1 = Lp0. Now,
assuming n, k > 1, if the last tile of X is a square, then there are L _, ways to tile

the remaining n — 1 + (p + 1)k-tiling with at least k p-minos. Otherw1se, if the last

tile is a p-mino, then there are ngn_l) ways to tile the remaining n+ (p+1)(k — 1)-

tilings with at least £k — 1 p-minos. Considering both cases, we obtain the desired
result. O

Proposition 11. Forn > p and k > 1, we have
(k) n —+ k
Lpn+p+k = Lpnrprye(k —1) + Lp5 +p E)

Proof. For 0 < i < L’“J +k, let A, ppr1)ki € Apnt(p+1)k be the subset of

n + (p + 1)k-tilings using exactly ¢ p-minos. It is clear that
Ap7n+(p+1)k = UAp,n+(p+1)k,i'
i
Using combinatorial intepretation of incomplete Leonardo p-numbers we get

k—1

Z ‘Ap,n+(p+1)k,i| = Cp,n+(p+1)k(k —1). (13)
=0
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Note that the first piece in the tilings of A}, ;, 4 (p41)#,x is assigned p+1 colors. Then,
from the combinatorial interpretation of hyper Leonardo numbers, we obtain

L] ++
n+k
Z [Ap g (pt1)k,il = E,S’f% +P< k > (14)
i=k
Combining (13) and (14), we obtain the desired result. O

3. Combinatorial Interpretation of Lucas-Leonardo p-numbers

In this section, we give a combinatorial interpretation of the Lucas-Leonardo p-
numbers. We provide combinatorial proofs of the identities (6)-(10). We also intro-
duce the hyper Lucas-Leonardo p-numbers, which is a new family of sequences in
OEIS [10].

Recall that a circular n-board is obtained from an n-board by attaching the right
side of the nth cell to the left side of the first cell. A bracelet length n (or n-bracelet)
is a tiling of a circular n-board. Here, the cells and tiles are labeled in a clockwise
direction, with the first tile designated as the one that covers cell 1.

Let I, denote the set of n-bracelets that can be made using curved squares and
p-minos. A bracelet is said to have phase r (or r-phase) where 1 < r < p+ 1 if the
rth cell of the first tile covers cell 1. We denote by p, a curved p-mino whose rth
cell covers cell 1. Then, since there is only one way to tile a circular n-board using
only squares, we have |l ,| = 1 for 1 <n < p. Since a circular (p+ 1)-board can be
tiled with squares or with one p-mino arranged in p + 1 different phases, we have
[lp p+1] = p+2 for n = p+1. We define |l,, 0| = p+1 and interpret this as the number
of phases. For n > p+1, considering whether the last tile, the one that precedes the
first tile, of the n-bracelet is square or p-mino implies |I, | = |lp.n—1| + |lpn—p—1]-
Thus, we have

|lp7n‘ =Lpn
for n > 0. That is, the Lucas p-numbers count the number of ways to tile a circular
n-board using curved squares and p-minos. Note that for p = 1, it reduces to the
combinatorial interpretation of classical Lucas numbers. For details, we refer to [5].

In the Figure 3, we illustrate all 4-bracelets that can be made using curved
squares and 2-minos {p; s, sp, s*, Py, P35}

Now, we provide a combinatorial interpretation of Lucas-Leonardo p-numbers.
Throughout this section, we consider all tiles as curved tiles. We define a (curved)
p-tile as follows:

e A p-tile is a circular piece with length [ > p+1 coming in one of p colors, which
must occur as the first tile in an n-bracelet if it is included in the arrangement
at all.



INTEGERS: 25 (2025) 11

0 O W

phase 1
phase 2 phase 3

Figure 3: All 4-bracelets that can be made using squares and 2-minos

o If the p-tile has length p 4+ 1, then it can be in p + 1 phases. We denote by
Pp41 a p-tile whose rth cell covers cell 1 of the bracelet. Otherwise, the p-tile
of length [ with [ > p + 1, denoted by P;, must start from cell 1.

Let B, denote the set of n-bracelets that can be made using curved squares,
p-minos, and p-tiles. In Figure 4, we illustrate 13 possible bracelets for n = 4, p = 2.
The p-tiles P§ (1 <r < 3) and P4 come in one of 2 possible colors.

62,4 - {plsa sp, 84a p2sa p3SaP§37P3257P??57P4}

OO
OO O

Figure 4: All 4-bracelets that can be made using squares and 2-minos

Proposition 12. For n > 0, we have |By.,| = Rpn-

Proof. Considering whether the final piece of A € B, ,, where n > p+11issor p or
if it equals P, (in which case, it consists of a single p-tile of length n), we get

‘Bpm/| = |BPJL—1| + |Bp7n—p—1| +p.

Since p-tiles and p-minos have length greater than p, we have |B, ,| =1 =R, for
n=1,...,p,and |B,o| = p*+p+1 =R, 0, where p+1 corresponds to the number
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of phases of a p-mino, and p? is the number of colored phases of a p-tile excluding
phase 1. O

Proposition 13. For n > 0, we have
Rpn=(p+1)Lypn—p

Proof. Let By, ,, := Bp, n—{s"} denote the subset of n-bracelets without only squares.
There are R, ,, — 1 bracelets in By ,,. Now, B} ,, can be partitioned into two disjoint

subsets, By, = Bil U B2 where B! contains n-bracelets with squares and at

P, p.n

least one p-mino, and where B;;Qn contains n-bracelets with p-tiles, squares, and
p-minos. Then, we have |B;! | = L,, —1. To count the number of bracelets in
B;zm we consider the following two cases.

If the p-tile has length p + 1, then there are p 4 1 different phases to arrange it,
each in one of the p colors. The number of ways to tile the remaining n —p —1 cells
is given by F), ,,—,. Then, |B;,2n| =plp+1)Fpn—p.

If the p-tile has length [ > p+2, the number of ways to tile the remaining n—p—2
cells is

n—p—2
Fp,j-&-l = Fpm-&-l - Fp,n—p -1
=0

J

Thus, we have
‘B;,Qn| =plp+1)Fpnp+ p(Fp,n+1 —Fpn—p—1)=p(Lpn—1).
Hence, |B}; .| = (p+ 1)Ly n — p — 1 which gives the desired result. O

Proposition 14. For n > 0, we have
Rpn=@+1)Lyn—1Lpn-1.

Proof. Let A be an n-bracelet. There are two cases to consider.

If X\ is breakable at cell n (i.e., the first tile starts at cell 1), then A can be
converted into a linear tiling, and there are £, ,, such tilings.

If A is unbreakable at cell n, then the first tile is either a p-mino or a p-tile of
length p + 1 at phase r (2 <r < p+1). If the first tile is a p-mino, then there are
p ways to arrange it, and F}, ,_, ways to tile the remaining cells. If the first tile is
a p-tile of length p + 1, then there are p ways to arrange it, each in one of the p
colors, and Fj, ,,—, ways to tile the remaining cells. So, we have

p(pF, n—p + F yn—p) = p(ﬁp,n - ﬁp,n—l)-

Considering both cases, we obtain the desired results. O
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Proposition 15. For n > 0, we have
ZRW = Rpntp+1 —p(n+1) — 1. (15)
i=0

Proof. Consider the (n + p + 1)-bracelets that do not contain any p-minos. Such
tilings are either in the form of s" P or PL, | s™, Prs" P! for p4+2 < | < ntp+1,
resulting in p(n + 1) + 1 such bracelets. Since the number of (n + p + 1)-bracelets
is Ryp,n+p+1, excluding those that do not contain any p-minos yields the right-hand
side of the identity.

The remaining bracelets must have at least one p-mino and have one of the
following forms:

L Ppystfor2<r<p+1,
2. p'stfor1 <r<p+1,
3. Nps"~ for 1 <i <n, where X' € B, ;.

There are p? bracelets of the first form and p+ 1 bracelets of the second form, giving
atotal of p2 +p+1 = Rp,0. For the third type of bracelets, we condition on the
position of the last p-mino, which covers cellsi+1,...,i+p+1 for 1 <7 < n. These
bracelets can be transformed into i-bracelets by removing the pieces ps”~*. Gluing
the remaining pieces together results in R, ; such bracelets (see Figure 5). Summing
over i gives Y . R,;. Combining these three cases, we obtain the left-hand side
of the identity. O

first tile
At first tile

~ I
LS
last p-mino

Figure 5: Transforming a bracelet in the form of N'ps"~¢ to \’

Proposition 16. For n > 0, we have

> Roprn)i = Rppriymsr = p(n—p—1). (16)
i=0
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Proof. The proof of the identity (16) is similar to that of Proposition 5, considering
the position of the last square within ((p + 1)n + 1)-bracelets. O

Now, we give a combinatorial interpretation of incomplete Lucas-Leonardo p-
numbers.

Let Cp,,, denote the set consisting of n-bracelets A. The first piece of A is assigned
one of p+ 1 colors, provided A is not the entire square bracelet. If A is the entire
square bracelet, then the first piece of A is not assigned a color. Then, from the
proof of relation (6), we have

IC ,n| =(p+1) (Lp,n -D+1= (pJFl)Lp,n —p=TRpn

For 0 < k < L)LJ , let Cp. (k) denote the subset of Cp,, containing at most k

p-minos. It is well known that L, ,, = ZL”?J H_Lpi("_im), then

Con 0 =003 (") . 17

k
=0 iy % 7

Comparing (17) with (8), we get |Cpp, (k)| = Rp.n (k).

3

Proposition 17. For 0 <k < L#J and n > p, we have

Rp,n(k + 1) = Rp,n—l(k + 1) + Rp,n—p—l(k) +p.

Proof. We condition on the last tile. If the last tile is square, there are R, ,,—1(k+1)
ways to tile the remaining n — 1 cells with at most k£ + 1 p-minos. If the last tile is
a p-mino, there are R, ,—p—1(k) ways to tile the first n —p — 1 cells with at most
k p-minos. Note that the tiling of the form s” P~ !p is counted without coloring.

Hence, we must add p to account for these missed tilings. O
Proposition 18. For 0 <n < ";_ﬁr, we have
r r ' N
5 ()Rl )+ 27 = 10 = R r-47). (18)
i=0
Proof. The proof is similar to the Proposition 7. O

Now we establish a link between incomplete Lucas-Leonardo p-numbers and
Leonardo p-numbers. To do this, we introduce the concept of hyper Lucas-Leonardo
p-numbers.

The hyper Lucas-Leonardo p-number ’Rék% counts the number of circular tilings
of length n + (p + 1)k with at least k p-minos. Such a tiling A, the first tile is
assigned one of p + 1 colors, except when A\ has phase 1 bracelet with exactly &
p-minos. In this case, the first tile of A is not assigned a color. Thus, we give the
following definition.
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Definition 2. For n > 1 and k¥ > 1, the hyper Lucas-leonardo p-numbers are
defined by

| 7] :
k) _ ) n+(+Dkm+k—pi\ (n+k
Rom=p+1) ; n+k—pi i+ k P\ )

with Rih = Ry RU) = Rpo =p? +p+ 1.

Some special cases for the hyper Lucas-Leonardo p-sequence can be given as fol-
lows. For p =1, we get the hyper Lucas-Leonardo sequence {R%k)}. In particular,

we have
{73;?} — {3,4,9,16,29,50,85,122,...},
{7zg”} — {3,7,16,32,61, 101,186,308, ...},
{Rﬁf’)} = {3,10,26,58, 119, 220,406,714, ...} .

For p = 2, we get the hyper Lucas-Leonardo 2-sequence. In particular, we have

(ri0)
(R

{7331} —  {7,22,46,89, 164, 287, 486,804, 1302, ...} .

{7.8,9,19,32,48,76,119, 180, .. .} ,

{7,15,24,43,75,123,199, 318,498, .. .} ,

We note that for p > 1, we observe that the hyper Lucas-Leonardo p-sequences are
new additions in OEIS [10].

Proposition 19. Forn >p>1 and k > 1, we have

n+k
Rz()kr)t =Rpnt@+1)k — Rpnt+prr(k —1) — p( L )

Proof. By using Definition 2 and relation (9), we get the desired result. O

Finally, we give a relationship between hyper Leonardo p-numbers and hyper
Lucas-Leonardo p-numbers.

Proposition 20. Forn >p>1 and k > 1, we have

n+k—-1
R =+ 02 - oe +2 ("),
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Proof. From Proposition 11 and using the relations (7) and (10), we have

k
(p+1) Eé]?’l)L - p‘cz(;n)zfl = ((p +1) £p7n+(p+1)k - pﬁp,n-lr(p-ﬁ-l)k‘—l)
- ((p + 1) ‘Cp,n—&-(p—i-l)k(k - ]-) - pﬁp,n+(p+1)k—1(k - 1))

—(p*+p) (n:k> +p2(n+£_1)

n+k—1
= Rpntrir — Rpntrowlk —1) = PQ( b1 )
n+k
-, )
By using Proposition 19, we get the desired result. O

4. Concluding Remarks

This paper provides combinatorial interpretations of Leonardo p-numbers and Lucas-
Leonardo p-numbers while also extending the incomplete and hyper analogs. Our
results offer combinatorial interpretations and reveal several new identities related
to hyper Lucas-Leonardo p-numbers. In future work, we plan to investigate addi-
tional identities and properties of hyper Lucas-Leonardo p-numbers.

Acknowledgements. The authors would like to thank the anonymous referee for
their valuable comments and suggestions, which have contributed to improving the
quality and clarity of the manuscript.
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