

COMBINATORIAL INSIGHTS INTO LEONARDO *p*-NUMBERS AND LUCAS-LEONARDO *p*-NUMBERS

Amine Belkhir

Faculty of Mathematics, Recits Lab. USTHB, Bab Ezzouar, Algiers, Algeria ambelkhir@gmail.com

Elif Tan

Department of Mathematics, Ankara University, Ankara, Türkiye etan@ankara.edu.tr

Received: 1/2/25, Accepted: 5/28/25, Published: 6/27/25

Abstract

In this paper, we present a combinatorial interpretation of Leonardo p-numbers in terms of colored linear tilings and provide combinatorial proofs for several identities involving them. We further explore the incomplete and hyper Leonardo p-numbers, presenting their combinatorial interpretations. Additionally, we present a combinatorial interpretation of the Lucas-Leonardo p-numbers, closely related to Leonardo p-numbers, in terms of colored circular tilings and investigate their combinatorial properties. Finally, we introduce hyper Lucas-Leonardo p-numbers and establish connections with their incomplete counterparts.

1. Introduction

The Fibonacci sequence is among the most well-known sequences in mathematics. The *n*th Fibonacci number, denoted as F_n , is defined by the recurrence relation $F_n = F_{n-1} + F_{n-2}$, $n \ge 2$, with initial values $F_0 = 0$ and $F_1 = 1$. Fibonacci numbers and their extensions exhibit numerous fascinating properties and find diverse applications across science and art. For more details, see [9].

Many authors have explored non-homogeneous extensions of the Fibonacci recurrence relation. In particular, the Leonardo sequence $\{\mathcal{L}_n\}$, which was used by Dijkstra [8] as an integral part of his sorting algorithm, is defined by the nonhomogeneous recurrence relation

$$\mathcal{L}_n = \mathcal{L}_{n-1} + \mathcal{L}_{n-2} + 1, \ n \ge 2,$$

with initial values $\mathcal{L}_0 = \mathcal{L}_1 = 1$. For the history of Leonardo sequences, see [A001595] in [10]. The properties of the Leonardo numbers have been explored

DOI: 10.5281/zenodo.15756004

by Catarino and Borges [6], Alp and Kocer [1], and Shannon [12]. For a fixed positive integer k, Kuhapatanakul and Chobsorn [11] introduced the generalized Leonardo sequence $\{\mathcal{L}_{k,n}\}$ through the non-homogeneous recurrence relation

$$\mathcal{L}_{k,n} = \mathcal{L}_{k,n-1} + \mathcal{L}_{k,n-2} + k, \ n \ge 2$$

with initial values $\mathcal{L}_{k,0} = \mathcal{L}_{k,1} = 1$. It is clear to see that when k = 1, it reduces to the classical Leonardo sequence $\{\mathcal{L}_n\}$. Additionally, Shattuck [13] provided combinatorial proofs of several identities satisfied by the generalized Leonardo numbers. He also explored some combinatorial aspects of incomplete generalized Leonardo numbers discussed in [7]. Furthermore, it is noteworthy that Bicknell [4] examined a similar type of sequence with arbitrary initial values.

Motivated by the aforementioned studies, Tan and Leung [16] defined a generalization of Leonardo numbers, namely the Leonardo *p*-numbers. For any given integer p > 0, the Leonardo *p*-numbers are defined by the non-homogeneous relation

$$\mathcal{L}_{p,n} = \mathcal{L}_{p,n-1} + \mathcal{L}_{p,n-p-1} + p, \ n > p, \tag{1}$$

with initial values $\mathcal{L}_{p,0} = \mathcal{L}_{p,1} = \cdots = \mathcal{L}_{p,p} = 1$. It is clear to see that when p = 1, the Leonardo *p*-sequence reduces to the classical Leonardo sequence. For the purposes of our paper, we require the following equations (2)-(4) related to the Leonardo *p*-numbers, which can be found in [16]. The non-homogeneous relation of the Leonardo *p*-sequence can be converted to the homogeneous relation

$$\mathcal{L}_{p,n} = \mathcal{L}_{p,n-1} + \mathcal{L}_{p,n-p} - \mathcal{L}_{p,n-2p-1}, \ n > 2p.$$
⁽²⁾

A relation between Leonardo *p*-numbers and Fibonacci *p*-numbers is given by

$$\mathcal{L}_{p,n} = (p+1) F_{p,n+1} - p, \tag{3}$$

where $\{F_{p,n}\}$ is the Fibonacci *p*-sequence defined by the recurrence relation $F_{p,n} = F_{p,n-1} + F_{p,n-p-1}, n > p$, with initial values $F_{p,0} = 0, F_{p,i} = 1$ for i = 1, 2, ..., p. Note that when p = 1, the Fibonacci *p*-sequence reduces to the classical Fibonacci sequence. For details on Fibonacci *p*-sequences and their generalizations, we refer to [15]. The incomplete Leonardo *p*-numbers $\mathcal{L}_{p,n}(k)$ are defined as:

$$\mathcal{L}_{p,n}(k) = (p+1)\sum_{i=0}^{k} \binom{n-pi}{i} - p, \ 0 \le k \le \left\lfloor \frac{n}{p+1} \right\rfloor.$$
(4)

It is clear to see that $\mathcal{L}_{p,n}\left(\left\lfloor \frac{n}{p+1} \right\rfloor\right) = \mathcal{L}_{p,n}.$

On the other hand, Zhong et al.[17] recently studied a companion sequence of the Leonardo p-sequence, called the Lucas-Leonardo p-sequence, and defined it using the non-homogeneous recurrence relation

$$\mathcal{R}_{p,n} = \mathcal{R}_{p,n-1} + \mathcal{R}_{p,n-p-1} + p, \ n > p \tag{5}$$

with initial values $\mathcal{R}_{p,0} = p^2 + p + 1$, $\mathcal{R}_{p,1} = \cdots = \mathcal{R}_{p,p} = 1$. For p = 1, it reduces to the Lucas-Leonardo sequence $\{\mathcal{R}_n\}$; see [A022319] in [10]. In a similar manner to the Leonardo *p*-numbers, we require the following equations (6)-(10) for the Lucas-Leonardo *p*-numbers, which can be found in [17].

A relation between Lucas-Leonardo *p*-numbers and Lucas *p*-numbers is given by

$$\mathcal{R}_{p,n} = (p+1)L_{p,n} - p, \tag{6}$$

where $\{L_{p,n}\}$ is the Lucas *p*-sequence defined by the recurrence relation $L_{p,n} = L_{p,n-1} + L_{p,n-p-1}, n > p$, with initial values $L_{p,0} = p+1, L_{p,i} = 1$ for i = 1, 2, ..., p. It is clear to see that when p = 1, the Lucas *p*-sequence reduces to the classical Lucas sequence $\{L_n\}$. For details on Lucas *p*-numbers and their generalizations, see [15]. A relationship between Leonardo *p*-numbers and Lucas-Leonardo *p*-numbers is given by

$$\mathcal{R}_{p,n} = (p+1)\mathcal{L}_{p,n} - p\mathcal{L}_{p,n-1}.$$
(7)

The incomplete Lucas-Leonardo p-numbers [17] are defined as

$$\mathcal{R}_{p,n}\left(k\right) = \left(p+1\right)\sum_{i=0}^{k} \frac{n}{n-pi} \binom{n-pi}{i} - p,\tag{8}$$

where $0 \le k \le \left\lfloor \frac{n}{p+1} \right\rfloor$. For $0 \le k \le \left\lfloor \frac{n-p-1}{p+1} \right\rfloor$, the following relation is satisfied:

$$\mathcal{R}_{p,n}(k+1) = \mathcal{R}_{p,n-1}(k+1) + \mathcal{R}_{p,n-p-1}(k) + p.$$
(9)

A relationship between incomplete Leonardo p-numbers and incomplete Lucas-Leonardo p-numbers is

$$\mathcal{R}_{p,n}(k) = (p+1)\mathcal{L}_{p,n}(k) - p\mathcal{L}_{p,n-1}(k).$$

$$\tag{10}$$

This paper offers a combinatorial perspective on Leonardo p-numbers, illustrating them through colored linear tilings. We provide combinatorial demonstrations of several identities associated with Leonardo p-numbers and incomplete Leonardo pnumbers. In particular, we provide combinatorial proofs of the identities (2)-(4) and more identities given in [16, Proposition 2-5]. Moreover, we establish a connection between incomplete Leonardo p-numbers and hyper Leonardo p-numbers. Similarly, we give a combinatorial interpretation of Lucas-Leonardo p-numbers and provide combinatorial proofs of the identities (6)-(10). We also introduce the concept of hyper Lucas-Leonardo p-numbers and give a relation between incomplete Lucas-Leonardo p-numbers and hyper Lucas-Leonardo p-numbers. Our findings provide combinatorial interpretations and present several novel identities associated with hyper Lucas-Leonardo p-numbers.

2. Combinatorial Interpretation of Leonardo p-numbers

Recall that a (linear) *n*-board is a board of length n with cells labeled $1, 2, \ldots, n$ from left to right. A (linear) *n*-tiling is a tiling of a (linear) *n*-board. Suppose that the board is covered by squares and *p*-minos, where a square covers a single cell and a *p*-mino covers p + 1 cells. Here, a square or a *p*-mino is indistinguishable from other pieces of the same kind and is denoted by **s** or **p**, respectively.

Let $f_{p,n}$ denote the set of linear *n*-tilings consisting of squares and *p*-minos. Considering whether the last piece within an *n*-tiling is **s** or **p** implies

$$|f_{p,n}| = F_{p,n+1}$$

for $n \ge 0$. Note that a member of $f_{p,n}$ containing exactly *i p*-minos must contain n - (p+1)i squares, and hence there are $\binom{n-pi}{i}$ such members of $f_{p,n}$ for $0 \le i \le \lfloor \frac{n}{p+1} \rfloor$. See [14] for more on the combinatorial interpretation of Fibonacci *p*-numbers. Also, note that for p = 1, it reduces to the combinatorial interpretation of classical Fibonacci numbers in terms of squares and dominos. For details, we refer to the excellent book of Benjamin and Quinn [5].

To provide combinatorial proofs of identities involving Leonardo p-numbers, we extend the arguments given in [13]. We define a new tile, called p-tile:

Definition 1. A *p*-tile is a rectangular tile defined as follows:

- It comes in one of p colors, which must occur as the initial piece in a tiling if it is included in the arrangement at all.
- It has a length l with $l \ge p+1$, and is denoted by \mathcal{P}_l .

Let $\mathcal{K}_{p,n}$ denote the set of linear *n*-tilings using squares, *p*-minos, and *p*-tiles. For simplicity, we denote these members of $\mathcal{K}_{p,n}$ using sequences in \mathbf{s}, \mathbf{p} , and \mathcal{P}_l , respectively. For example, for p = 3 and n = 4, we have $\mathcal{K}_{3,4} = {\mathbf{s}^4, \mathbf{p}, \mathcal{P}_4}$. See Figure 1.

Figure 1: Tilings of length 4 for p = 3:

Since the \mathcal{P}_4 piece comes in one of 3 colors, we have

$$|\mathcal{K}_{3,4}| = 3 + 2 = 5 = \mathcal{L}_{3,4}.$$

For p = 3, n = 5, we have $\mathcal{K}_{3,5} = \{\mathbf{s}^5, \mathbf{sp}, \mathbf{ps}, \mathcal{P}_4\mathbf{s}, \mathcal{P}_5\}$. See Figure 2.

Figure 2: Tilings of length 5 for p = 3

Since \mathcal{P}_4 and \mathcal{P}_5 pieces come in one of 3 colors, we have

$$|\mathcal{K}_{3,5}| = 3.2 + 3 = 9 = \mathcal{L}_{3,5}.$$

Proposition 1. If $n \ge 0$, then $|\mathcal{K}_{p,n}| = \mathcal{L}_{p,n}$.

Proof. Considering whether the final piece of $\lambda \in \mathcal{K}_{p,n}$, where $n \ge p+1$, is **s** or **p** or if it equals \mathcal{P}_n (in which case, it consists of a single *p*-tile of length *n*), we get

$$|\mathcal{K}_{p,n}| = |\mathcal{K}_{p,n-1}| + |\mathcal{K}_{p,n-p-1}| + p.$$

Since *p*-tiles and p-minos have length greater than *p*, we have $|\mathcal{K}_{p,n}| = 1 = \mathcal{L}_{p,n}$ for $n = 0, 1, \ldots, p$.

Proposition 2. For $n \ge 2p + 1$, we have

$$\mathcal{L}_{p,n} = \mathcal{L}_{p,n-1} + \mathcal{L}_{p,n-p} - \mathcal{L}_{p,n-2p-1},$$

with $\mathcal{L}_{p,0} = \mathcal{L}_{p,1} = \cdots = \mathcal{L}_{p,p} = 1$ and

$$\begin{split} \mathcal{L}_{p,p+1} &= \mathcal{L}_{p,p} + \mathcal{L}_{p,0} + p = 2 + p, \\ \mathcal{L}_{p,p+2} &= \mathcal{L}_{p,p+1} + \mathcal{L}_{p,1} + p = 3 + 2p, \\ \mathcal{L}_{p,p+3} &= \mathcal{L}_{p,p+2} + \mathcal{L}_{p,2} + p = 4 + 3p, \\ &\vdots \\ \mathcal{L}_{p,2p} &= \mathcal{L}_{p,2p-1} + \mathcal{L}_{p,p-1} + p = p^2 + p + \end{split}$$

Proof. The initial conditions follow from the definitions.

Suppose $n \ge 2p + 1$ and note that there are $\mathcal{L}_{p,n-1}$ members of $\mathcal{K}_{p,n}$ that ends in s.

1.

Let S denote the subset of $\mathcal{K}_{p,n-p}$ consisting of those tilings that do not end in **p**. By subtraction, we have $|S| = \mathcal{L}_{p,n-p} - \mathcal{L}_{p,n-2p-1}$.

If $\lambda \in S$ ends in **s**, then let λ' be obtained from λ by replacing the final **s** with a **p**. Otherwise, $n \geq 2p + 1$ implies $\lambda = \mathcal{P}_{n-p}$ is also possible, where \mathcal{P}_{n-p} comes one of p colors. In this case, we let $\lambda' = \mathcal{P}_n$, keeping the color the same. Then the mapping $\lambda \to \lambda'$ is a bijection from S to the subset of $\mathcal{K}_{p,n}$ whose members do not end in **s**, and hence they number $\mathcal{L}_{p,n-p} - \mathcal{L}_{p,n-2p-1}$, which completes the proof.

For example, consider

$$\mathcal{K}_{3,7} = \left\{\mathbf{s}^7, \mathbf{ps}^3, \mathbf{sps}^2, \mathbf{s}^2\mathbf{ps}, \mathbf{s}^3\mathbf{p}, \mathcal{P}_4\mathbf{s}^3, \mathcal{P}_5\mathbf{s}^2, \mathcal{P}_6\mathbf{s}, \mathcal{P}_7\right\}.$$

There are $\mathcal{L}_{3,6} = 13$ members of $\mathcal{K}_{3,7}$ that end in **s**. Now consider the subset *S* of $\mathcal{K}_{3,4} = \{\mathbf{s}^4, \mathbf{p}, \mathcal{P}_4\}$ that do not end in **p**. So $S = \{\mathbf{s}^4, \mathcal{P}_4\}$. Since there is a bijection from *S* to the subset of $\mathcal{K}_{3,7}$ whose members do not end in **s**, it is clear to see that $\mathbf{s}^4 \in S$ maps to $\mathbf{s}^3 \mathbf{p} \in \mathcal{K}_{3,7}$ and $\mathcal{P}_4 \in S$ maps to $\mathcal{P}_7 \in \mathcal{K}_{3,7}$. Thus

$$|\mathcal{K}_{3,7}| = |\mathcal{K}_{3,6}| + |S| = 13 + 4 = 17.$$

Proposition 3. For $n \ge 0$, we have

$$\mathcal{L}_{p,n} = (p+1) F_{p,n+1} - p.$$

Proof. Let $\mathcal{K}_{p,n}^* := \mathcal{K}_{p,n} - \{s^n\}$ denote the subset of tilings that do not contain only squares. There are $\mathcal{L}_{p,n} - 1$ tilings in $\mathcal{K}_{p,n}^*$. Now, $\mathcal{K}_{p,n}^*$ can be partitioned into two disjoints subsets, $\mathcal{K}_{p,n}^* = \mathcal{K}_{p,n}^{*1} \cup \mathcal{K}_{p,n}^{*2}$, where the set $\mathcal{K}_{p,n}^{*1}$ contains tilings with squares and at least one *p*-mino, and the set $\mathcal{K}_{p,n}^{*2}$ contains tilings with a *p*-tile, squares, and *p*-minos. Then, $|\mathcal{K}_{p,n}^{*1}| = F_{p,n+1} - 1$ and

$$|\mathcal{K}_{p,n}^{*2}| = p \sum_{l=p+1}^{n} F_{p,n+1-l} = p(F_{p,n+1}-1).$$

Hence, $|\mathcal{K}_{p,n}^*| = (p+1)(F_{p,n+1}-1)$ which gives the desired result.

Proposition 4. For $n \ge 0$, we have

$$\sum_{i=0}^{n} \mathcal{L}_{p,i} = \mathcal{L}_{p,n+p+1} - (n+1)p - 1.$$

Proof. Consider the (n+p+1)-tilings that do not contain any *p*-minos. Such tilings are either in the form of s^{n+p+1} or $\mathcal{P}_l s^{n+p+1-l}$ for $p+1 \leq l \leq n+p+1$, resulting in p(n+1)+1 such tilings. Since the number of (n+p+1)-tilings is $\mathcal{L}_{p,n+p+1}$, excluding those that do not contain any *p*-minos yields the right-hand side of the identity.

Let λ be a tiling of length n + p + 1 containing at least one *p*-mino. Conditioning on the position of the last *p*-mino, which covers cells $i + 1, \ldots, i + p + 1$ ($0 \le i \le n$), such a tiling must have the form $\lambda = \lambda' \mathbf{p} s^{n-i}$ for $(1 \le i \le n)$ where $\lambda' \in \mathcal{K}_{p,i}$, and there are $\mathcal{L}_{p,i}$ such tilings. Summing over *i* gives the left-hand side of the identity.

Next, we provide a combinatorial proof of the identity in [16, Theorem 2] for m = 0.

Proposition 5. For $n \ge 0$, we have

$$\sum_{i=0}^{n} \mathcal{L}_{p,(p+1)i} = \mathcal{L}_{p,(p+1)n+1} - pn.$$

Proof. Consider the (p+1)n + 1-tilings that do not contain any squares. Such tilings are in the form of $\mathcal{P}_{(p+1)i+1}\mathbf{p}^{n-i}$ for $1 \leq i \leq n$, resulting in pn such tilings. Since the number of (p+1)n + 1-tilings is $\mathcal{L}_{p,(p+1)n+1}$, excluding those that do not contain any squares yields the right-hand side of the identity.

Let λ be a tiling of length n + p + 1 containing at least one square. Conditioning on the position of the last square, which covers cell (p + 1)i where $(0 \le i \le n)$, such a tiling must have the form $\lambda = \lambda' s \mathbf{p}^{n-i}$ for $1 \le i \le n$, where $\lambda' \in \mathcal{K}_{p,(p+1)i}$, and there are $\mathcal{L}_{p,(p+1)i}$ such tilings. Summing over *i* gives the left-hand side of the identity. \Box

Now, we provide a combinatorial interpretation of the incomplete Leonardo *p*-numbers $\mathcal{L}_{p,n}(k)$.

Let $\mathcal{A}_{p,n}$ denote the set consisting of tilings λ of length n such that the first piece of λ is assigned one of p + 1 colors provided λ is not all the square tiling, in which case the first piece of λ is not assigned a color. Then, from Proposition 3, we have

$$|\mathcal{A}_{p,n}| = (p+1)(F_{p,n+1}-1) + 1 = (p+1)F_{p,n+1} - p = \mathcal{L}_{p,n}.$$

For $0 \leq k \leq \left\lfloor \frac{n}{p+1} \right\rfloor$, let $\mathcal{A}_{p,n}(k)$ denote the subset of $\mathcal{A}_{p,n}$ containing at most k *p*-minos. Then

$$|\mathcal{A}_{p,n}(k)| = (p+1)\sum_{i=0}^{k} \binom{n-pi}{i} - p.$$
 (11)

Comparing (11) with (4), we get $|\mathcal{A}_{p,n}(k)| = \mathcal{L}_{p,n}(k)$. It is clear to see that $\left|\mathcal{A}_{p,n}\left(\left\lfloor\frac{n}{p+1}\right\rfloor\right)\right| = \mathcal{L}_{p,n}$.

Proposition 6. For $0 \le k \le \left\lfloor \frac{n}{p+1} \right\rfloor$ and n > p, we have

$$\mathcal{L}_{p,n}(k+1) = \mathcal{L}_{p,n-1}(k+1) + \mathcal{L}_{p,n-p-1}(k) + p.$$

Proof. Let $\lambda \in \mathcal{A}_{p,n}(k+1)$, we condition on the last tile. If the last tile is square, there are $\mathcal{L}_{p,n-1}(k+1)$ ways to tile the remaining n-1 cells with at most k+1 p-minos. If the last tile is p-mino, there are $\mathcal{L}_{p,n-p-1}(k)$ ways to tile the first n-p-1 cells with at most k p-minos. Note that the tiling of the form $s^{n-p-1}\mathbf{p}$ is counted without coloring. Hence, we must add p to account for these missed tilings. \Box

INTEGERS: 25 (2025)

Proposition 7. For $0 \le k \le \frac{n-p-r}{p+1}$, we have

$$\sum_{i=0}^{r} {r \choose i} \mathcal{L}_{p,n+pi}(k+i) + (2^{r}-1)p = \mathcal{L}_{p,n+(p+1)r}(k+r).$$

Proof. Let $\lambda \in \mathcal{A}_{p,n+(p+1)r}(k+r)$ be a tiling of length n + (p+1)r containing at most k+r p-minos. Suppose there are *i* p-minos among the last *r* tiles. Thus, λ is of the form $\lambda'\lambda''$ where $\lambda' \in \mathcal{A}_{p,n+p(r-i)}(k+r-i)$ and λ'' is a tiling with exactly *i* p-minos. There are $\binom{r}{i}$ ways to tiles λ'' and $\mathcal{L}_{p,n+pi}(k+i)$ possible ways to tiles λ' . Note that the tilings of the form $s^{n+p(r-i)}\lambda''$ are counted without coloring. Thus, we must multiply the number of such tilings by *p*, which gives us $p(2^r - 1)$.

Proposition 8. For $n \ge (p+1)(k+1)$, we have

$$\sum_{i=0}^{r-1} \mathcal{L}_{p,n-p+i}(k) + rp = \mathcal{L}_{p,n+r}(k+1) - \mathcal{L}_{p,n}(k+1).$$

Proof. We will show that both sides of the identity count tilings of length n+r with at most k+1 *p*-minos such that the last *p*-mino from the right-hand side occupies position $(i+1,\ldots,i+p+1)$ $(n-p \leq i \leq n+r-p-1)$. If there is a *p*-mino at position $(i+1,\ldots,i+p+1)$ then there are $\mathcal{L}_{p,i}(k)$ ways to tile the first *i* cells. Note that when the first *i* cells are covered only with squares, the tiling is counted without coloring. There are *r* such tilings.

In [2], the authors define the hyper Leonardo *p*-numbers, $\mathcal{L}_{p,n}^{(k)}$, and provide the following explicit formula

$$\mathcal{L}_{p,n}^{(k)} = (p+1) \sum_{i=0}^{\lfloor \frac{n}{p+1} \rfloor} \binom{n+k-pi}{i+k} - p\binom{n+k}{k}.$$
 (12)

Now, we give a combinatorial interpretation of hyper Leonardo *p*-numbers. Let $\mathcal{A}_{p,n}^{(k)}$ be the set of tilings λ of length n + (p+1)k that contain at least k *p*-minos, where the first tile of λ is assigned one of p + 1 colors, except when λ contains exactly k *p*-minos, in which case the first tile of λ is not assigned a color. Then, we have

$$\begin{aligned} |\mathcal{A}_{p,n}^{(k)}| &= (p+1) \sum_{i=k+1}^{\lfloor \frac{n}{p+1} \rfloor + k} \binom{n + (p+1)k - pi}{i} + \binom{n + (p+1)k - pk}{k} \\ &= (p+1) \sum_{i=k}^{\lfloor \frac{n}{p+1} \rfloor + k} \binom{n + k - p(i-k)}{i} - p\binom{n+k}{k} \\ &= (p+1) \sum_{i=0}^{\lfloor \frac{n}{p+1} \rfloor} \binom{n+k-pi}{i+k} - p\binom{n+k}{k} = \mathcal{L}_{p,n}^{(k)}. \end{aligned}$$

INTEGERS: 25 (2025)

Proposition 9. For $m, n \ge 1$ with $m \le k$, we have

$$\mathcal{L}_{p,n+m}^{(k)} = \sum_{i=0}^{m} \binom{m}{i} \mathcal{L}_{p,n+i}^{(k-i)}.$$

Proof. The left-hand side corresponds to the number of (n + m + (p + 1)k)-tilings with at least k p-minos. There are $\binom{m}{i}$ ways to select the positions of i p-minos that appear among the first m tiles. The number of ways to tile the remaining n + p(k-i) + k-tilings with at least k - i p-minos is $\mathcal{L}_{p,n+i}^{(k-i)}$. Summing over all values of i yields the right-hand side of the identity.

Next, we provide tiling proofs of the following two recurrences relations from [2].

Proposition 10. For $n, k \ge 1$, we have

$$\mathcal{L}_{p,n}^{(k)} = \mathcal{L}_{p,n-1}^{(k)} + \mathcal{L}_{p,n}^{(k-1)}.$$

with $\mathcal{L}_{p,n}^{(0)} = \mathcal{L}_{p,n}$ and $\mathcal{L}_{p,0}^{(k)} = \mathcal{L}_{p,0}$.

Proof. Let $\lambda \in \mathcal{A}_{p,n}^{(k)}$ be a n + (p+1)k-tiling with at least k p-minos. For k = 0, we get $|\mathcal{A}_{p,n}^{(0)}| = |\mathcal{A}_{p,n}| = \mathcal{L}_{p,n}$, and for n = 0, we obtain $|\mathcal{A}_{p,0}^{(k)}| = 1 = \mathcal{L}_{p,0}$. Now, assuming $n, k \geq 1$, if the last tile of λ is a square, then there are $\mathcal{L}_{p,n-1}^{(k)}$ ways to tile the remaining n - 1 + (p+1)k-tiling with at least k p-minos. Otherwise, if the last tile is a p-mino, then there are $\mathcal{L}_{p,n}^{(k-1)}$ ways to tile the remaining n + (p+1)(k-1)-tilings with at least k - 1 p-minos. Considering both cases, we obtain the desired result.

Proposition 11. For n > p and $k \ge 1$, we have

$$\mathcal{L}_{p,n+(p+1)k} = \mathcal{L}_{p,n+(p+1)k}(k-1) + \mathcal{L}_{p,n}^{(k)} + p\binom{n+k}{k}.$$

Proof. For $0 \leq i \leq \left\lfloor \frac{n}{p+1} \right\rfloor + k$, let $\mathcal{A}_{p,n+(p+1)k,i} \in \mathcal{A}_{p,n+(p+1)k}$ be the subset of n + (p+1)k-tilings using exactly *i p*-minos. It is clear that

$$\mathcal{A}_{p,n+(p+1)k} = \bigcup_{i} \mathcal{A}_{p,n+(p+1)k,i}.$$

Using combinatorial interretation of incomplete Leonardo p-numbers we get

$$\sum_{i=0}^{k-1} |\mathcal{A}_{p,n+(p+1)k,i}| = \mathcal{L}_{p,n+(p+1)k}(k-1).$$
(13)

Note that the first piece in the tilings of $\mathcal{A}_{p,n+(p+1)k,k}$ is assigned p+1 colors. Then, from the combinatorial interpretation of hyper Leonardo numbers, we obtain

$$\sum_{i=k}^{\lfloor \frac{n}{p+1} \rfloor + k} |\mathcal{A}_{p,n+(p+1)k,i}| = \mathcal{L}_{p,n}^{(k)} + p\binom{n+k}{k}.$$
 (14)

Combining (13) and (14), we obtain the desired result.

3. Combinatorial Interpretation of Lucas-Leonardo p-numbers

In this section, we give a combinatorial interpretation of the Lucas-Leonardo p-numbers. We provide combinatorial proofs of the identities (6)-(10). We also introduce the hyper Lucas-Leonardo p-numbers, which is a new family of sequences in OEIS [10].

Recall that a *circular n-board* is obtained from an *n*-board by attaching the right side of the *n*th cell to the left side of the first cell. A bracelet length n (or *n*-bracelet) is a tiling of a circular *n*-board. Here, the cells and tiles are labeled in a clockwise direction, with the first tile designated as the one that covers cell 1.

Let $l_{p,n}$ denote the set of *n*-bracelets that can be made using curved squares and *p*-minos. A bracelet is said to have phase r (or r-phase) where $1 \le r \le p+1$ if the rth cell of the first tile covers cell 1. We denote by \mathbf{p}_r a curved *p*-mino whose rth cell covers cell 1. Then, since there is only one way to tile a circular *n*-board using only squares, we have $|l_{p,n}| = 1$ for $1 \le n \le p$. Since a circular (p+1)-board can be tiled with squares or with one *p*-mino arranged in p+1 different phases, we have $|l_{p,p+1}| = p+2$ for n = p+1. We define $|l_{p,0}| = p+1$ and interpret this as the number of phases. For $n \ge p+1$, considering whether the last tile, the one that precedes the first tile, of the *n*-bracelet is square or *p*-mino implies $|l_{p,n}| = |l_{p,n-1}| + |l_{p,n-p-1}|$. Thus, we have

$$|l_{p,n}| = L_{p,n}$$

for $n \ge 0$. That is, the Lucas *p*-numbers count the number of ways to tile a circular *n*-board using curved squares and *p*-minos. Note that for p = 1, it reduces to the combinatorial interpretation of classical Lucas numbers. For details, we refer to [5].

In the Figure 3, we illustrate all 4-bracelets that can be made using curved squares and 2-minos $\{\mathbf{p}_1 s, s\mathbf{p}, s^4, \mathbf{p}_2 s, \mathbf{p}_3 s\}$.

Now, we provide a combinatorial interpretation of Lucas-Leonardo p-numbers. Throughout this section, we consider all tiles as curved tiles. We define a (curved) p-tile as follows:

A p-tile is a circular piece with length l ≥ p+1 coming in one of p colors, which
must occur as the first tile in an n-bracelet if it is included in the arrangement
at all.

Figure 3: All 4-bracelets that can be made using squares and 2-minos

• If the *p*-tile has length p + 1, then it can be in p + 1 phases. We denote by \mathcal{P}_{p+1}^r a *p*-tile whose *r*th cell covers cell 1 of the bracelet. Otherwise, the *p*-tile of length l with l > p + 1, denoted by \mathcal{P}_l , must start from cell 1.

Let $\mathcal{B}_{p,n}$ denote the set of *n*-bracelets that can be made using curved squares, *p*-minos, and *p*-tiles. In Figure 4, we illustrate 13 possible bracelets for n = 4, p = 2. The *p*-tiles \mathcal{P}_3^r ($1 \le r \le 3$) and \mathcal{P}_4 come in one of 2 possible colors.

$$\mathcal{B}_{2,4} = \{\mathbf{p}_1 s, s\mathbf{p}, s^4, \mathbf{p}_2 s, \mathbf{p}_3 s, \mathcal{P}_3^1 s, \mathcal{P}_3^2 s, \mathcal{P}_3^3 s, \mathcal{P}_4\}$$

Figure 4: All 4-bracelets that can be made using squares and 2-minos

Proposition 12. For $n \ge 0$, we have $|\mathcal{B}_{p,n}| = \mathcal{R}_{p,n}$.

Proof. Considering whether the final piece of $\lambda \in \mathcal{B}_{p,n}$ where $n \ge p+1$ is **s** or **p** or if it equals \mathcal{P}_n (in which case, it consists of a single *p*-tile of length *n*), we get

$$|\mathcal{B}_{p,n}| = |\mathcal{B}_{p,n-1}| + |\mathcal{B}_{p,n-p-1}| + p.$$

Since *p*-tiles and *p*-minos have length greater than *p*, we have $|\mathcal{B}_{p,n}| = 1 = \mathcal{R}_{p,n}$ for $n = 1, \ldots, p$, and $|\mathcal{B}_{p,0}| = p^2 + p + 1 = \mathcal{R}_{p,0}$, where p + 1 corresponds to the number

of phases of a *p*-mino, and p^2 is the number of colored phases of a *p*-tile excluding phase 1.

Proposition 13. For $n \ge 0$, we have

$$\mathcal{R}_{p,n} = (p+1)L_{p,n} - p.$$

Proof. Let $\mathcal{B}_{p,n}^* := \mathcal{B}_{p,n} - \{s^n\}$ denote the subset of *n*-bracelets without only squares. There are $\mathcal{R}_{p,n} - 1$ bracelets in $\mathcal{B}_{p,n}^*$. Now, $\mathcal{B}_{p,n}^*$ can be partitioned into two disjoint subsets, $\mathcal{B}_{p,n}^* = \mathcal{B}_{p,n}^{*1} \cup \mathcal{B}_{p,n}^{*2}$, where $\mathcal{B}_{p,n}^{*1}$ contains *n*-bracelets with squares and at least one *p*-mino, and where $\mathcal{B}_{p,n}^{*2}$ contains *n*-bracelets with *p*-tiles, squares, and *p*-minos. Then, we have $|\mathcal{B}_{p,n}^{*1}| = L_{p,n} - 1$. To count the number of bracelets in $\mathcal{B}_{p,n}^{*2}$, we consider the following two cases.

If the *p*-tile has length p + 1, then there are p + 1 different phases to arrange it, each in one of the *p* colors. The number of ways to tile the remaining n - p - 1 cells is given by $F_{p,n-p}$. Then, $\left|\mathcal{B}_{p,n}^{*2}\right| = p(p+1)F_{p,n-p}$.

If the *p*-tile has length $l \ge p+2$, the number of ways to tile the remaining n-p-2 cells is n-p-2

$$\sum_{j=0}^{-p-2} F_{p,j+1} = F_{p,n+1} - F_{p,n-p} - 1.$$

Thus, we have

$$|\mathcal{B}_{p,n}^{*2}| = p(p+1)F_{p,n-p} + p(F_{p,n+1} - F_{p,n-p} - 1) = p(L_{p,n} - 1).$$

Hence, $|\mathcal{B}_{p,n}^*| = (p+1)L_{p,n} - p - 1$ which gives the desired result.

Proposition 14. For $n \ge 0$, we have

$$\mathcal{R}_{p,n} = (p+1)\mathcal{L}_{p,n} - p\mathcal{L}_{p,n-1}.$$

Proof. Let λ be an *n*-bracelet. There are two cases to consider.

If λ is breakable at cell n (i.e., the first tile starts at cell 1), then λ can be converted into a linear tiling, and there are $\mathcal{L}_{p,n}$ such tilings.

If λ is unbreakable at cell n, then the first tile is either a p-mino or a p-tile of length p + 1 at phase r ($2 \le r \le p + 1$). If the first tile is a p-mino, then there are p ways to arrange it, and $F_{p,n-p}$ ways to tile the remaining cells. If the first tile is a p-tile of length p + 1, then there are p ways to arrange it, each in one of the p colors, and $F_{p,n-p}$ ways to tile the remaining cells. So, we have

$$p(pF_{p,n-p} + F_{p,n-p}) = p(\mathcal{L}_{p,n} - \mathcal{L}_{p,n-1}).$$

Considering both cases, we obtain the desired results.

INTEGERS: 25 (2025)

Proposition 15. For $n \ge 0$, we have

$$\sum_{i=0}^{n} \mathcal{R}_{p,i} = \mathcal{R}_{p,n+p+1} - p(n+1) - 1.$$
(15)

Proof. Consider the (n + p + 1)-bracelets that do not contain any p-minos. Such tilings are either in the form of s^{n+p+1} or $\mathcal{P}_{p+1}^1 s^n$, $\mathcal{P}_l s^{n+p+1-l}$ for $p+2 \leq l \leq n+p+1$, resulting in p(n+1) + 1 such bracelets. Since the number of (n + p + 1)-bracelets is $\mathcal{R}_{p,n+p+1}$, excluding those that do not contain any p-minos yields the right-hand side of the identity.

The remaining bracelets must have at least one p-mino and have one of the following forms:

- 1. $\mathcal{P}_{p+1}^r s^n$ for $2 \le r \le p+1$,
- 2. $\mathbf{p}^r s^n$ for $1 \le r \le p+1$,
- 3. $\lambda' \mathbf{p} s^{n-i}$ for $1 \leq i \leq n$, where $\lambda' \in \mathcal{B}_{p,i}$.

There are p^2 bracelets of the first form and p+1 bracelets of the second form, giving a total of $p^2 + p + 1 = \mathcal{R}_{p,0}$. For the third type of bracelets, we condition on the position of the last *p*-mino, which covers cells $i+1, \ldots, i+p+1$ for $1 \le i \le n$. These bracelets can be transformed into *i*-bracelets by removing the pieces \mathbf{ps}^{n-i} . Gluing the remaining pieces together results in $\mathcal{R}_{p,i}$ such bracelets (see Figure 5). Summing over *i* gives $\sum_{i=1}^{n} \mathcal{R}_{p,i}$. Combining these three cases, we obtain the left-hand side of the identity.

Figure 5: Transforming a bracelet in the form of $\lambda' \mathbf{p} s^{n-i}$ to λ'

Proposition 16. For $n \ge 0$, we have

$$\sum_{i=0}^{n} \mathcal{R}_{p,(p+1)i} = \mathcal{R}_{p,(p+1)n+1} - p(n-p-1).$$
(16)

Proof. The proof of the identity (16) is similar to that of Proposition 5, considering the position of the last square within ((p+1)n+1)-bracelets.

Now, we give a combinatorial interpretation of incomplete Lucas-Leonardo *p*-numbers.

Let $C_{p,n}$ denote the set consisting of *n*-bracelets λ . The first piece of λ is assigned one of p + 1 colors, provided λ is not the entire square bracelet. If λ is the entire square bracelet, then the first piece of λ is not assigned a color. Then, from the proof of relation (6), we have

$$|\mathcal{C}_{p,n}| = (p+1)(L_{p,n}-1) + 1 = (p+1)L_{p,n} - p = \mathcal{R}_{p,n}.$$

For $0 \leq k \leq \lfloor \frac{n}{p+1} \rfloor$, let $C_{p,n}(k)$ denote the subset of $C_{p,n}$ containing at most k *p*-minos. It is well known that $L_{p,n} = \sum_{i=0}^{\lfloor \frac{n}{p+1} \rfloor} \frac{n}{n-pi} \binom{n-pi}{i}$, then

$$|\mathcal{C}_{p,n}(k)| = (p+1)\sum_{i=0}^{k} \frac{n}{n-pi} \binom{n-pi}{i} - p.$$
 (17)

Comparing (17) with (8), we get $|\mathcal{C}_{p,n}(k)| = \mathcal{R}_{p,n}(k)$.

Proposition 17. For $0 \le k \le \left\lfloor \frac{n}{p+1} \right\rfloor$ and n > p, we have

$$\mathcal{R}_{p,n}(k+1) = \mathcal{R}_{p,n-1}(k+1) + \mathcal{R}_{p,n-p-1}(k) + p.$$

Proof. We condition on the last tile. If the last tile is square, there are $\mathcal{R}_{p,n-1}(k+1)$ ways to tile the remaining n-1 cells with at most k+1 *p*-minos. If the last tile is a *p*-mino, there are $\mathcal{R}_{p,n-p-1}(k)$ ways to tile the first n-p-1 cells with at most k *p*-minos. Note that the tiling of the form $s^{n-p-1}\mathbf{p}$ is counted without coloring. Hence, we must add p to account for these missed tilings.

Proposition 18. For $0 \le n \le \frac{n-p-r}{p+1}$, we have

$$\sum_{i=0}^{r} \binom{r}{i} \mathcal{R}_{p,n+pi}(k+i) + (2^{r}-1)p = \mathcal{R}_{p,n+(p+1)r}(k+r).$$
(18)

Proof. The proof is similar to the Proposition 7.

Now we establish a link between incomplete Lucas-Leonardo p-numbers and Leonardo p-numbers. To do this, we introduce the concept of hyper Lucas-Leonardo p-numbers.

The hyper Lucas-Leonardo *p*-number $\mathcal{R}_{p,n}^{(k)}$ counts the number of circular tilings of length n + (p+1)k with at least k *p*-minos. Such a tiling λ , the first tile is assigned one of p + 1 colors, except when λ has phase 1 bracelet with exactly k*p*-minos. In this case, the first tile of λ is not assigned a color. Thus, we give the following definition.

Definition 2. For $n \ge 1$ and $k \ge 1$, the hyper Lucas-leonardo p-numbers are defined by

$$\mathcal{R}_{p,n}^{(k)} = (p+1) \sum_{i=0}^{\left\lfloor \frac{n}{p+1} \right\rfloor} \frac{n+(p+1)k}{n+k-pi} \binom{n+k-pi}{i+k} - p\binom{n+k}{k},$$

with $\mathcal{R}_{p,n}^{(0)} = \mathcal{R}_{p,n}, \ \mathcal{R}_{p,0}^{(k)} = \mathcal{R}_{p,0} = p^2 + p + 1.$

Some special cases for the hyper Lucas-Leonardo *p*-sequence can be given as follows. For p = 1, we get the hyper Lucas-Leonardo sequence $\left\{\mathcal{R}_n^{(k)}\right\}$. In particular, we have

$$\begin{cases} \mathcal{R}_n^{(1)} \\ &= \{3, 4, 9, 16, 29, 50, 85, 122, \ldots\}, \\ \begin{cases} \mathcal{R}_n^{(2)} \\ &= \{3, 7, 16, 32, 61, 101, 186, 308, \ldots\}, \\ \begin{cases} \mathcal{R}_n^{(3)} \\ \end{cases} = \{3, 10, 26, 58, 119, 220, 406, 714, \ldots\}. \end{cases}$$

For p = 2, we get the hyper Lucas-Leonardo 2-sequence. In particular, we have

$$\begin{cases} \mathcal{R}_{2,n}^{(1)} \\ = & \{7, 8, 9, 19, 32, 48, 76, 119, 180, \ldots\}, \\ \\ \left\{ \mathcal{R}_{2,n}^{(2)} \right\} &= & \{7, 15, 24, 43, 75, 123, 199, 318, 498, \ldots\}, \\ \\ \left\{ \mathcal{R}_{2,n}^{(3)} \right\} &= & \{7, 22, 46, 89, 164, 287, 486, 804, 1302, \ldots\}. \end{cases}$$

We note that for p > 1, we observe that the hyper Lucas-Leonardo *p*-sequences are new additions in OEIS [10].

Proposition 19. For $n > p \ge 1$ and $k \ge 1$, we have

$$\mathcal{R}_{p,n}^{(k)} = \mathcal{R}_{p,n+(p+1)k} - \mathcal{R}_{p,n+(p+1)k}(k-1) - p\binom{n+k}{k}.$$

Proof. By using Definition 2 and relation (9), we get the desired result.

Finally, we give a relationship between hyper Leonardo p-numbers and hyper Lucas-Leonardo p-numbers.

Proposition 20. For $n > p \ge 1$ and $k \ge 1$, we have

$$\mathcal{R}_{p,n}^{(k)} = (p+1)\mathcal{L}_{p,n}^{(k)} - p\mathcal{L}_{p,n-1}^{(k)} + p^2 \binom{n+k-1}{k}.$$

Proof. From Proposition 11 and using the relations (7) and (10), we have

$$(p+1) \mathcal{L}_{p,n}^{(k)} - p\mathcal{L}_{p,n-1}^{(k)} = ((p+1) \mathcal{L}_{p,n+(p+1)k} - p\mathcal{L}_{p,n+(p+1)k-1}) - ((p+1) \mathcal{L}_{p,n+(p+1)k}(k-1) - p\mathcal{L}_{p,n+(p+1)k-1}(k-1)) - (p^2 + p) \binom{n+k}{k} + p^2 \binom{n+k-1}{k} = \mathcal{R}_{p,n+(p+1)k} - \mathcal{R}_{p,n+(p+1)k}(k-1) - p^2 \binom{n+k-1}{k-1} - p\binom{n+k}{k}.$$

By using Proposition 19, we get the desired result.

4. Concluding Remarks

This paper provides combinatorial interpretations of Leonardo *p*-numbers and Lucas-Leonardo *p*-numbers while also extending the incomplete and hyper analogs. Our results offer combinatorial interpretations and reveal several new identities related to hyper Lucas-Leonardo *p*-numbers. In future work, we plan to investigate additional identities and properties of hyper Lucas-Leonardo *p*-numbers.

Acknowledgements. The authors would like to thank the anonymous referee for their valuable comments and suggestions, which have contributed to improving the quality and clarity of the manuscript.

References

- Y. Alp and E. G. Kocer, Some properties of Leonardo numbers, Konuralp J. Math. 9 (1) (2021), 183-189.
- [2] N. Belaggoun, H. Belbachir, Hyper-Leonardo p-numbers and associated norms, Contrib. Math. 9 (2024), 46–55.
- [3] H. Belbachir and A. Belkhir, Tiling approach to obtain identities for generalized Fibonacci and Lucas numbers, Ann. Math. Inform. 41 (2013), 13-17.
- [4] M. Bicknell-Johnson and G. E. Bergum, The Generalized Fibonacci Numbers $\{C_n\}, C_n = C_{n-i} + C_{n-2} + k$. In: A. N. Philippou, A. F. Horadam, and G. E. Bergum (eds), Applications of Fibonacci Numbers, Springer, Dordrecht, 1988, 193-205.
- [5] A. T. Benjamin and J. J. Quinn, Proofs that Really Count: The Art of Combinatorial Proof, Mathematical Association of America, Washington DC, 2003.

- [6] P. Catarino and A. Borges, On Leonardo numbers, Acta Math. Univ. Comenianae 89 (1) (2019), 75–86.
- [7] P. Catarino and A. Borges, A note on incomplete Leonardo numbers, Integers 20 (2020), #A43.
- [8] E. W. Dijkstra, Archive: Fibonacci numbers and Leonardo numbers (EWD 797), 1981, https: //www.cs.utexas.edu/users/EWD/transcriptions/EWD07xx/EWD797.html
- [9] T. Koshy, Fibonacci and Lucas Numbers with Applications. Vol. 2, John Wiley & Sons, Inc., Hoboken, NJ, 2019.
- [10] OEIS Foundation Inc. (2024), The On-Line Encyclopedia of Integer Sequences, https:// oeis.org.
- [11] K. Kuhapatanakul and J. Chobsorn, On the generalized Leonardo numbers, Integers 22 (2022), #A48.
- [12] A. G. Shannon, A note on generalized Leonardo numbers, Notes Number Theory Discrete Math. 25 (3) (2019), 97-101.
- [13] M. Shattuck, Combinatorial proofs of identities for the generalized Leonardo numbers, Notes Number Theory Discrete Math. 28 (4) (2022), 778-790.
- [14] M. Shattuck, A Class of Generalized Incomplete p-Fibonacci Numbers, Journal of Combinatorics and Number Theory 9 (1) (2017), 23-40.
- [15] A. Stakhov and B. Rozin, Theory of Binet formulas for Fibonacci and Lucas p-numbers, *Chaos Solitons Fractals* 27 (5) (2006), 1162-1177.
- [16] E. Tan and H-H. Leung, On Leonardo p-numbers, Integers 23 (2023), #A7.
- [17] J. Zhong, J. Yao, and C-L. Chung, A Note on Incomplete Fibonacci–Lucas Relations, Symmetry 15 (12) (2023), 2113.