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Abstract

In this paper, we present a combinatorial interpretation of Leonardo p-numbers in
terms of colored linear tilings and provide combinatorial proofs for several identities
involving them. We further explore the incomplete and hyper Leonardo p-numbers,
presenting their combinatorial interpretations. Additionally, we present a combina-
torial interpretation of the Lucas-Leonardo p-numbers, closely related to Leonardo
p-numbers, in terms of colored circular tilings and investigate their combinatorial
properties. Finally, we introduce hyper Lucas-Leonardo p-numbers and establish
connections with their incomplete counterparts.

1. Introduction

The Fibonacci sequence is among the most well-known sequences in mathematics.

The nth Fibonacci number, denoted as Fn, is defined by the recurrence relation

Fn = Fn−1 + Fn−2, n ≥ 2, with initial values F0 = 0 and F1 = 1. Fibonacci num-

bers and their extensions exhibit numerous fascinating properties and find diverse

applications across science and art. For more details, see [9].

Many authors have explored non-homogeneous extensions of the Fibonacci re-

currence relation. In particular, the Leonardo sequence {Ln}, which was used by

Dijkstra [8] as an integral part of his sorting algorithm, is defined by the non-

homogeneous recurrence relation

Ln = Ln−1 + Ln−2 + 1, n ≥ 2,

with initial values L0 = L1 = 1. For the history of Leonardo sequences, see

[A001595] in [10]. The properties of the Leonardo numbers have been explored
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by Catarino and Borges [6], Alp and Kocer [1], and Shannon [12]. For a fixed

positive integer k, Kuhapatanakul and Chobsorn [11] introduced the generalized

Leonardo sequence {Lk,n} through the non-homogeneous recurrence relation

Lk,n = Lk,n−1 + Lk,n−2 + k, n ≥ 2

with initial values Lk,0 = Lk,1 = 1. It is clear to see that when k = 1, it reduces to

the classical Leonardo sequence {Ln}. Additionally, Shattuck [13] provided combi-

natorial proofs of several identities satisfied by the generalized Leonardo numbers.

He also explored some combinatorial aspects of incomplete generalized Leonardo

numbers discussed in [7]. Furthermore, it is noteworthy that Bicknell [4] examined

a similar type of sequence with arbitrary initial values.

Motivated by the aforementioned studies, Tan and Leung [16] defined a gen-

eralization of Leonardo numbers, namely the Leonardo p-numbers. For any given

integer p > 0, the Leonardo p-numbers are defined by the non-homogeneous relation

Lp,n = Lp,n−1 + Lp,n−p−1 + p, n > p, (1)

with initial values Lp,0 = Lp,1 = · · · = Lp,p = 1. It is clear to see that when

p = 1, the Leonardo p-sequence reduces to the classical Leonardo sequence. For

the purposes of our paper, we require the following equations (2)-(4) related to the

Leonardo p-numbers, which can be found in [16]. The non-homogeneous relation of

the Leonardo p-sequence can be converted to the homogeneous relation

Lp,n = Lp,n−1 + Lp,n−p − Lp,n−2p−1, n > 2p. (2)

A relation between Leonardo p-numbers and Fibonacci p-numbers is given by

Lp,n = (p+ 1)Fp,n+1 − p, (3)

where {Fp,n} is the Fibonacci p-sequence defined by the recurrence relation Fp,n =

Fp,n−1 + Fp,n−p−1, n > p, with initial values Fp,0 = 0, Fp,i = 1 for i = 1, 2, . . . , p.

Note that when p = 1, the Fibonacci p-sequence reduces to the classical Fibonacci

sequence. For details on Fibonacci p-sequences and their generalizations, we refer

to [15]. The incomplete Leonardo p-numbers Lp,n (k) are defined as:

Lp,n (k) = (p+ 1)

k∑
i=0

(
n− pi

i

)
− p, 0 ≤ k ≤

⌊
n

p+ 1

⌋
. (4)

It is clear to see that Lp,n

(⌊
n

p+1

⌋)
= Lp,n.

On the other hand, Zhong et al.[17] recently studied a companion sequence of the

Leonardo p-sequence, called the Lucas-Leonardo p-sequence, and defined it using

the non-homogeneous recurrence relation

Rp,n = Rp,n−1 +Rp,n−p−1 + p, n > p (5)
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with initial values Rp,0 = p2+ p+1,Rp,1 = · · · = Rp,p = 1. For p = 1, it reduces to

the Lucas-Leonardo sequence {Rn}; see [A022319] in [10]. In a similar manner to

the Leonardo p-numbers, we require the following equations (6)-(10) for the Lucas-

Leonardo p-numbers, which can be found in [17].

A relation between Lucas-Leonardo p-numbers and Lucas p-numbers is given by

Rp,n = (p+ 1)Lp,n − p, (6)

where {Lp,n} is the Lucas p-sequence defined by the recurrence relation Lp,n =

Lp,n−1+Lp,n−p−1, n > p, with initial values Lp,0 = p+1, Lp,i = 1 for i = 1, 2, . . . , p.

It is clear to see that when p = 1, the Lucas p-sequence reduces to the classical Lucas

sequence {Ln}. For details on Lucas p-numbers and their generalizations, see [15].

A relationship between Leonardo p-numbers and Lucas-Leonardo p-numbers is given

by

Rp,n = (p+ 1)Lp,n − pLp,n−1. (7)

The incomplete Lucas-Leonardo p-numbers [17] are defined as

Rp,n (k) = (p+ 1)

k∑
i=0

n

n− pi

(
n− pi

i

)
− p, (8)

where 0 ≤ k ≤
⌊

n
p+1

⌋
. For 0 ≤ k ≤

⌊
n−p−1
p+1

⌋
, the following relation is satisfied:

Rp,n(k + 1) = Rp,n−1(k + 1) +Rp,n−p−1(k) + p. (9)

A relationship between incomplete Leonardo p-numbers and incomplete Lucas-

Leonardo p-numbers is

Rp,n(k) = (p+ 1)Lp,n(k)− pLp,n−1(k). (10)

This paper offers a combinatorial perspective on Leonardo p-numbers, illustrating

them through colored linear tilings. We provide combinatorial demonstrations of

several identities associated with Leonardo p-numbers and incomplete Leonardo p-

numbers. In particular, we provide combinatorial proofs of the identities (2)-(4) and

more identities given in [16, Proposition 2-5]. Moreover, we establish a connection

between incomplete Leonardo p-numbers and hyper Leonardo p-numbers. Similarly,

we give a combinatorial interpretation of Lucas-Leonardo p-numbers and provide

combinatorial proofs of the identities (6)-(10). We also introduce the concept of

hyper Lucas-Leonardo p-numbers and give a relation between incomplete Lucas-

Leonardo p-numbers and hyper Lucas-Leonardo p-numbers. Our findings provide

combinatorial interpretations and present several novel identities associated with

hyper Lucas-Leonardo p-numbers.
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2. Combinatorial Interpretation of Leonardo p-numbers

Recall that a (linear) n-board is a board of length n with cells labeled 1, 2, . . . , n

from left to right. A (linear) n-tiling is a tiling of a (linear) n-board. Suppose that

the board is covered by squares and p-minos, where a square covers a single cell and

a p-mino covers p + 1 cells. Here, a square or a p-mino is indistinguishable from

other pieces of the same kind and is denoted by s or p, respectively.

Let fp,n denote the set of linear n-tilings consisting of squares and p-minos.

Considering whether the last piece within an n-tiling is s or p implies

|fp,n| = Fp,n+1

for n ≥ 0. Note that a member of fp,n containing exactly i p-minos must contain

n − (p+ 1) i squares, and hence there are
(
n−pi

i

)
such members of fp,n for 0 ≤

i ≤
⌊

n
p+1

⌋
. See [14] for more on the combinatorial interpretation of Fibonacci p-

numbers. Also, note that for p = 1, it reduces to the combinatorial interpretation

of classical Fibonacci numbers in terms of squares and dominos. For details, we

refer to the excellent book of Benjamin and Quinn [5].

To provide combinatorial proofs of identities involving Leonardo p-numbers, we

extend the arguments given in [13]. We define a new tile, called p-tile:

Definition 1. A p-tile is a rectangular tile defined as follows:

• It comes in one of p colors, which must occur as the initial piece in a tiling if

it is included in the arrangement at all.

• It has a length l with l ≥ p+ 1, and is denoted by Pl.

Let Kp,n denote the set of linear n-tilings using squares, p-minos, and p-tiles.

For simplicity, we denote these members of Kp,n using sequences in s,p, and Pl,

respectively. For example, for p = 3 and n = 4, we have K3,4 =
{
s4,p,P4

}
. See

Figure 1.

s s s s p P4

Figure 1: Tilings of length 4 for p = 3:

Since the P4 piece comes in one of 3 colors, we have

|K3,4| = 3 + 2 = 5 = L3,4.

For p = 3, n = 5, we have K3,5 =
{
s5, sp,ps,P4s,P5

}
. See Figure 2.
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s s s s s s p p s

P4 s P5

Figure 2: Tilings of length 5 for p = 3

Since P4 and P5 pieces come in one of 3 colors, we have

|K3,5| = 3.2 + 3 = 9 = L3,5.

Proposition 1. If n ≥ 0, then |Kp,n| = Lp,n.

Proof. Considering whether the final piece of λ ∈ Kp,n, where n ≥ p + 1, is s or p

or if it equals Pn (in which case, it consists of a single p-tile of length n), we get

|Kp,n| = |Kp,n−1|+ |Kp,n−p−1|+ p.

Since p-tiles and p-minos have length greater than p, we have |Kp,n| = 1 = Lp,n for

n = 0, 1, . . . , p.

Proposition 2. For n ≥ 2p+ 1, we have

Lp,n = Lp,n−1 + Lp,n−p − Lp,n−2p−1,

with Lp,0 = Lp,1 = · · · = Lp,p = 1 and

Lp,p+1 = Lp,p + Lp,0 + p = 2 + p,

Lp,p+2 = Lp,p+1 + Lp,1 + p = 3 + 2p,

Lp,p+3 = Lp,p+2 + Lp,2 + p = 4 + 3p,

...

Lp,2p = Lp,2p−1 + Lp,p−1 + p = p2 + p+ 1.

Proof. The initial conditions follow from the definitions.

Suppose n ≥ 2p + 1 and note that there are Lp,n−1 members of Kp,n that ends

in s.

Let S denote the subset of Kp,n−p consisting of those tilings that do not end in

p. By subtraction, we have |S| = Lp,n−p − Lp,n−2p−1.

If λ ∈ S ends in s, then let λ′ be obtained from λ by replacing the final s with

a p. Otherwise, n ≥ 2p + 1 implies λ = Pn−p is also possible, where Pn−p comes

one of p colors. In this case, we let λ′ = Pn, keeping the color the same. Then
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the mapping λ → λ′ is a bijection from S to the subset of Kp,n whose members

do not end in s, and hence they number Lp,n−p − Lp,n−2p−1, which completes the

proof.

For example, consider

K3,7 =
{
s7,ps3, sps2, s2ps, s3p,P4s

3,P5s
2,P6s,P7

}
.

There are L3,6 = 13 members of K3,7 that end in s. Now consider the subset S of

K3,4 =
{
s4,p,P4

}
that do not end in p. So S =

{
s4,P4

}
. Since there is a bijection

from S to the subset of K3,7 whose members do not end in s, it is clear to see that

s4 ∈ S maps to s3p ∈K3,7 and P4 ∈ S maps to P7∈K3,7. Thus

|K3,7| = |K3,6|+ |S| = 13 + 4 = 17.

Proposition 3. For n ≥ 0, we have

Lp,n = (p+ 1)Fp,n+1 − p.

Proof. Let K∗
p,n := Kp,n − {sn} denote the subset of tilings that do not contain

only squares. There are Lp,n − 1 tilings in K∗
p,n. Now, K∗

p,n can be partitioned

into two disjoints subsets, K∗
p,n = K∗1

p,n ∪ K∗2
p,n, where the set K∗1

p,n contains tilings

with squares and at least one p-mino, and the set K∗2
p,n contains tilings with a p-tile,

squares, and p-minos. Then, |K∗1
p,n| = Fp,n+1 − 1 and

|K∗2
p,n| = p

n∑
l=p+1

Fp,n+1−l = p(Fp,n+1 − 1).

Hence, |K∗
p,n| = (p+ 1)(Fp,n+1 − 1) which gives the desired result.

Proposition 4. For n ≥ 0 , we have

n∑
i=0

Lp,i = Lp,n+p+1 − (n+ 1)p− 1.

Proof. Consider the (n+p+1)-tilings that do not contain any p-minos. Such tilings

are either in the form of sn+p+1 or Pls
n+p+1−l for p+ 1 ≤ l ≤ n+ p+ 1, resulting

in p(n + 1) + 1 such tilings. Since the number of (n + p + 1)-tilings is Lp,n+p+1,

excluding those that do not contain any p-minos yields the right-hand side of the

identity.

Let λ be a tiling of length n+p+1 containing at least one p-mino. Conditioning

on the position of the last p-mino, which covers cells i+1, . . . , i+ p+1 (0 ≤ i ≤ n),

such a tiling must have the form λ = λ′psn−i for (1 ≤ i ≤ n) where λ′ ∈ Kp,i,

and there are Lp,i such tilings. Summing over i gives the left-hand side of the

identity.
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Next, we provide a combinatorial proof of the identity in [16, Theorem 2] for

m = 0.

Proposition 5. For n ≥ 0, we have

n∑
i=0

Lp,(p+1)i = Lp,(p+1)n+1 − pn.

Proof. Consider the (p + 1)n + 1-tilings that do not contain any squares. Such

tilings are in the form of P(p+1)i+1p
n−i for 1 ≤ i ≤ n, resulting in pn such tilings.

Since the number of (p+1)n+1-tilings is Lp,(p+1)n+1, excluding those that do not

contain any squares yields the right-hand side of the identity.

Let λ be a tiling of length n+ p+1 containing at least one square. Conditioning

on the position of the last square, which covers cell (p + 1)i where (0 ≤ i ≤ n),

such a tiling must have the form λ = λ′spn−i for 1 ≤ i ≤ n, where λ′ ∈ Kp,(p+1)i,

and there are Lp,(p+1)i such tilings. Summing over i gives the left-hand side of the

identity.

Now, we provide a combinatorial interpretation of the incomplete Leonardo p-

numbers Lp,n (k).

Let Ap,n denote the set consisting of tilings λ of length n such that the first piece

of λ is assigned one of p+ 1 colors provided λ is not all the square tiling, in which

case the first piece of λ is not assigned a color. Then, from Proposition 3, we have

|Ap,n| = (p+ 1) (Fp,n+1 − 1) + 1 = (p+ 1)Fp,n+1 − p = Lp,n.

For 0 ≤ k ≤
⌊

n
p+1

⌋
, let Ap,n (k) denote the subset of Ap,n containing at most k

p-minos. Then

|Ap,n (k)| = (p+ 1)

k∑
i=0

(
n− pi

i

)
− p. (11)

Comparing (11) with (4), we get |Ap,n (k)| = Lp,n (k) .

It is clear to see that
∣∣∣Ap,n

(⌊
n

p+1

⌋)∣∣∣ = Lp,n.

Proposition 6. For 0 ≤ k ≤
⌊

n
p+1

⌋
and n > p, we have

Lp,n(k + 1) = Lp,n−1(k + 1) + Lp,n−p−1(k) + p.

Proof. Let λ ∈ Ap,n(k + 1), we condition on the last tile. If the last tile is square,

there are Lp,n−1(k+ 1) ways to tile the remaining n− 1 cells with at most k+ 1 p-

minos. If the last tile is p-mino, there are Lp,n−p−1(k) ways to tile the first n−p−1

cells with at most k p-minos. Note that the tiling of the form sn−p−1p is counted

without coloring. Hence, we must add p to account for these missed tilings.
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Proposition 7. For 0 ≤ k ≤ n−p−r
p+1 , we have

r∑
i=0

(
r

i

)
Lp,n+pi(k + i) + (2r − 1)p = Lp,n+(p+1)r(k + r).

Proof. Let λ ∈ Ap,n+(p+1)r(k + r) be a tiling of length n + (p + 1)r containing at

most k + r p-minos. Suppose there are i p-minos among the last r tiles. Thus, λ is

of the form λ′λ′′ where λ′ ∈ Ap,n+p(r−i)(k + r − i) and λ′′ is a tiling with exactly i

p-minos. There are
(
r
i

)
ways to tiles λ′′ and Lp,n+pi(k+ i) possible ways to tiles λ′.

Note that the tilings of the form sn+p(r−i)λ′′ are counted without coloring. Thus,

we must multiply the number of such tilings by p, which gives us p(2r − 1).

Proposition 8. For n ≥ (p+ 1)(k + 1), we have

r−1∑
i=0

Lp,n−p+i(k) + rp = Lp,n+r(k + 1)− Lp,n(k + 1).

Proof. We will show that both sides of the identity count tilings of length n+r with

at most k + 1 p-minos such that the last p-mino from the right-hand side occupies

position (i + 1, . . . , i + p + 1) (n − p ≤ i ≤ n + r − p − 1). If there is a p-mino

at position (i+ 1, . . . , i+ p+ 1) then there are Lp,i(k) ways to tile the first i cells.

Note that when the first i cells are covered only with squares, the tiling is counted

without coloring. There are r such tilings.

In [2], the authors define the hyper Leonardo p-numbers, L(k)
p,n, and provide the

following explicit formula

L(k)
p,n = (p+ 1)

⌊ n
p+1⌋∑
i=0

(
n+ k − pi

i+ k

)
− p

(
n+ k

k

)
. (12)

Now, we give a combinatorial interpretation of hyper Leonardo p-numbers. Let A(k)
p,n

be the set of tilings λ of length n+ (p+ 1)k that contain at least k p-minos, where

the first tile of λ is assigned one of p + 1 colors, except when λ contains exactly k

p-minos, in which case the first tile of λ is not assigned a color. Then, we have

|A(k)
p,n| = (p+ 1)

⌊ n
p+1⌋+k∑
i=k+1

(
n+ (p+ 1)k − pi

i

)
+

(
n+ (p+ 1)k − pk

k

)

= (p+ 1)

⌊ n
p+1⌋+k∑
i=k

(
n+ k − p(i− k)

i

)
− p

(
n+ k

k

)

= (p+ 1)

⌊ n
p+1⌋∑
i=0

(
n+ k − pi

i+ k

)
− p

(
n+ k

k

)
= L(k)

p,n.
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Proposition 9. For m,n ≥ 1 with m ≤ k, we have

L(k)
p,n+m =

m∑
i=0

(
m

i

)
L(k−i)
p,n+i.

Proof. The left-hand side corresponds to the number of (n +m + (p + 1)k)-tilings

with at least k p-minos. There are
(
m
i

)
ways to select the positions of i p-minos

that appear among the first m tiles. The number of ways to tile the remaining

n+p(k− i)+k-tilings with at least k− i p-minos is L(k−i)
p,n+i. Summing over all values

of i yields the right-hand side of the identity.

Next, we provide tiling proofs of the following two recurrences relations from [2].

Proposition 10. For n, k ≥ 1, we have

L(k)
p,n = L(k)

p,n−1 + L(k−1)
p,n .

with L(0)
p,n = Lp,n and L(k)

p,0 = Lp,0.

Proof. Let λ ∈ A(k)
p,n be a n + (p + 1)k-tiling with at least k p-minos. For k = 0,

we get |A(0)
p,n| = |Ap,n| = Lp,n, and for n = 0, we obtain |A(k)

p,0| = 1 = Lp,0. Now,

assuming n, k ≥ 1, if the last tile of λ is a square, then there are L(k)
p,n−1 ways to tile

the remaining n− 1+ (p+1)k-tiling with at least k p-minos. Otherwise, if the last

tile is a p-mino, then there are L(k−1)
p,n ways to tile the remaining n+(p+1)(k− 1)-

tilings with at least k − 1 p-minos. Considering both cases, we obtain the desired

result.

Proposition 11. For n > p and k ≥ 1, we have

Lp,n+(p+1)k = Lp,n+(p+1)k(k − 1) + L(k)
p,n + p

(
n+ k

k

)
.

Proof. For 0 ≤ i ≤
⌊

n
p+1

⌋
+ k, let Ap,n+(p+1)k,i ∈ Ap,n+(p+1)k be the subset of

n+ (p+ 1)k-tilings using exactly i p-minos. It is clear that

Ap,n+(p+1)k =
⋃
i

Ap,n+(p+1)k,i.

Using combinatorial intepretation of incomplete Leonardo p-numbers we get

k−1∑
i=0

|Ap,n+(p+1)k,i| = Lp,n+(p+1)k(k − 1). (13)
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Note that the first piece in the tilings of Ap,n+(p+1)k,k is assigned p+1 colors. Then,

from the combinatorial interpretation of hyper Leonardo numbers, we obtain

⌊ n
p+1⌋+k∑
i=k

|Ap,n+(p+1)k,i| = L(k)
p,n + p

(
n+ k

k

)
. (14)

Combining (13) and (14), we obtain the desired result.

3. Combinatorial Interpretation of Lucas-Leonardo p-numbers

In this section, we give a combinatorial interpretation of the Lucas-Leonardo p-

numbers. We provide combinatorial proofs of the identities (6)-(10). We also intro-

duce the hyper Lucas-Leonardo p-numbers, which is a new family of sequences in

OEIS [10].

Recall that a circular n-board is obtained from an n-board by attaching the right

side of the nth cell to the left side of the first cell. A bracelet length n (or n-bracelet)

is a tiling of a circular n-board. Here, the cells and tiles are labeled in a clockwise

direction, with the first tile designated as the one that covers cell 1.

Let lp,n denote the set of n-bracelets that can be made using curved squares and

p-minos. A bracelet is said to have phase r (or r-phase) where 1 ≤ r ≤ p+ 1 if the

rth cell of the first tile covers cell 1. We denote by pr a curved p-mino whose rth

cell covers cell 1. Then, since there is only one way to tile a circular n-board using

only squares, we have |lp,n| = 1 for 1 ≤ n ≤ p. Since a circular (p+1)-board can be

tiled with squares or with one p-mino arranged in p + 1 different phases, we have

|lp,p+1| = p+2 for n = p+1. We define |lp,0| = p+1 and interpret this as the number

of phases. For n ≥ p+1, considering whether the last tile, the one that precedes the

first tile, of the n-bracelet is square or p-mino implies |lp,n| = |lp,n−1|+ |lp,n−p−1| .
Thus, we have

|lp,n| = Lp,n

for n ≥ 0. That is, the Lucas p-numbers count the number of ways to tile a circular

n-board using curved squares and p-minos. Note that for p = 1, it reduces to the

combinatorial interpretation of classical Lucas numbers. For details, we refer to [5].

In the Figure 3, we illustrate all 4-bracelets that can be made using curved

squares and 2-minos {p1s, sp, s
4,p2s, p3s}.

Now, we provide a combinatorial interpretation of Lucas-Leonardo p-numbers.

Throughout this section, we consider all tiles as curved tiles. We define a (curved)

p-tile as follows:

• A p-tile is a circular piece with length l ≥ p+1 coming in one of p colors, which

must occur as the first tile in an n-bracelet if it is included in the arrangement

at all.
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phase 1

phase 2 phase 3

Figure 3: All 4-bracelets that can be made using squares and 2-minos

• If the p-tile has length p + 1, then it can be in p + 1 phases. We denote by

Pr
p+1 a p-tile whose rth cell covers cell 1 of the bracelet. Otherwise, the p-tile

of length l with l > p+ 1, denoted by Pl, must start from cell 1.

Let Bp,n denote the set of n-bracelets that can be made using curved squares,

p-minos, and p-tiles. In Figure 4, we illustrate 13 possible bracelets for n = 4, p = 2.

The p-tiles Pr
3 (1 ≤ r ≤ 3) and P4 come in one of 2 possible colors.

B2,4 = {p1s, sp, s
4,p2s,p3s,P1

3s,P2
3s,P3

3s,P4}

Figure 4: All 4-bracelets that can be made using squares and 2-minos

Proposition 12. For n ≥ 0, we have |Bp,n| = Rp,n.

Proof. Considering whether the final piece of λ ∈ Bp,n where n ≥ p+ 1 is s or p or

if it equals Pn (in which case, it consists of a single p-tile of length n), we get

|Bp,n| = |Bp,n−1|+ |Bp,n−p−1|+ p.

Since p-tiles and p-minos have length greater than p, we have |Bp,n| = 1 = Rp,n for

n = 1, . . . , p, and |Bp,0| = p2+p+1 = Rp,0, where p+1 corresponds to the number
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of phases of a p-mino, and p2 is the number of colored phases of a p-tile excluding

phase 1.

Proposition 13. For n ≥ 0, we have

Rp,n = (p+ 1)Lp,n − p.

Proof. Let B∗
p,n := Bp,n−{sn} denote the subset of n-bracelets without only squares.

There are Rp,n−1 bracelets in B∗
p,n. Now, B∗

p,n can be partitioned into two disjoint

subsets, B∗
p,n = B∗1

p,n ∪ B∗2
p,n, where B∗1

p,n contains n-bracelets with squares and at

least one p-mino, and where B∗2
p,n contains n-bracelets with p-tiles, squares, and

p-minos. Then, we have |B∗1
p,n| = Lp,n − 1. To count the number of bracelets in

B∗2
p,n, we consider the following two cases.

If the p-tile has length p+ 1, then there are p+ 1 different phases to arrange it,

each in one of the p colors. The number of ways to tile the remaining n−p−1 cells

is given by Fp,n−p. Then,
∣∣B∗2

p,n

∣∣ = p(p+ 1)Fp,n−p.

If the p-tile has length l ≥ p+2, the number of ways to tile the remaining n−p−2

cells is
n−p−2∑
j=0

Fp,j+1 = Fp,n+1 − Fp,n−p − 1.

Thus, we have

|B∗2
p,n| = p(p+ 1)Fp,n−p + p(Fp,n+1 − Fp,n−p − 1) = p(Lp,n − 1).

Hence, |B∗
p,n| = (p+ 1)Lp,n − p− 1 which gives the desired result.

Proposition 14. For n ≥ 0, we have

Rp,n = (p+ 1)Lp,n − pLp,n−1.

Proof. Let λ be an n-bracelet. There are two cases to consider.

If λ is breakable at cell n (i.e., the first tile starts at cell 1), then λ can be

converted into a linear tiling, and there are Lp,n such tilings.

If λ is unbreakable at cell n, then the first tile is either a p-mino or a p-tile of

length p+ 1 at phase r (2 ≤ r ≤ p+ 1). If the first tile is a p-mino, then there are

p ways to arrange it, and Fp,n−p ways to tile the remaining cells. If the first tile is

a p-tile of length p + 1, then there are p ways to arrange it, each in one of the p

colors, and Fp,n−p ways to tile the remaining cells. So, we have

p(pFp,n−p + Fp,n−p) = p(Lp,n − Lp,n−1).

Considering both cases, we obtain the desired results.



INTEGERS: 25 (2025) 13

Proposition 15. For n ≥ 0, we have

n∑
i=0

Rp,i = Rp,n+p+1 − p(n+ 1)− 1. (15)

Proof. Consider the (n + p + 1)-bracelets that do not contain any p-minos. Such

tilings are either in the form of sn+p+1 or P1
p+1s

n, Pls
n+p+1−l for p+2 ≤ l ≤ n+p+1,

resulting in p(n+ 1) + 1 such bracelets. Since the number of (n+ p+ 1)-bracelets

is Rp,n+p+1, excluding those that do not contain any p-minos yields the right-hand

side of the identity.

The remaining bracelets must have at least one p-mino and have one of the

following forms:

1. Pr
p+1s

n for 2 ≤ r ≤ p+ 1,

2. prsn for 1 ≤ r ≤ p+ 1,

3. λ′psn−i for 1 ≤ i ≤ n, where λ′ ∈ Bp,i.

There are p2 bracelets of the first form and p+1 bracelets of the second form, giving

a total of p2 + p + 1 = Rp,0. For the third type of bracelets, we condition on the

position of the last p-mino, which covers cells i+1, . . . , i+p+1 for 1 ≤ i ≤ n. These

bracelets can be transformed into i-bracelets by removing the pieces psn−i. Gluing

the remaining pieces together results in Rp,i such bracelets (see Figure 5). Summing

over i gives
∑n

i=1 Rp,i. Combining these three cases, we obtain the left-hand side

of the identity.

last p-mino

first tile

first tile

Figure 5: Transforming a bracelet in the form of λ′psn−i to λ′

Proposition 16. For n ≥ 0, we have

n∑
i=0

Rp,(p+1)i = Rp,(p+1)n+1 − p(n− p− 1). (16)
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Proof. The proof of the identity (16) is similar to that of Proposition 5, considering

the position of the last square within ((p+ 1)n+ 1)-bracelets.

Now, we give a combinatorial interpretation of incomplete Lucas-Leonardo p-

numbers.

Let Cp,n denote the set consisting of n-bracelets λ. The first piece of λ is assigned

one of p + 1 colors, provided λ is not the entire square bracelet. If λ is the entire

square bracelet, then the first piece of λ is not assigned a color. Then, from the

proof of relation (6), we have

|Cp,n| = (p+ 1) (Lp,n − 1) + 1 = (p+ 1)Lp,n − p = Rp,n.

For 0 ≤ k ≤
⌊

n
p+1

⌋
, let Cp,n (k) denote the subset of Cp,n containing at most k

p-minos. It is well known that Lp,n =
∑⌊ n

p+1 ⌋
i=0

n
n−pi

(
n−pi

i

)
, then

|Cp,n (k)| = (p+ 1)

k∑
i=0

n

n− pi

(
n− pi

i

)
− p. (17)

Comparing (17) with (8), we get |Cp,n (k)| = Rp,n (k) .

Proposition 17. For 0 ≤ k ≤
⌊

n
p+1

⌋
and n > p, we have

Rp,n(k + 1) = Rp,n−1(k + 1) +Rp,n−p−1(k) + p.

Proof. We condition on the last tile. If the last tile is square, there are Rp,n−1(k+1)

ways to tile the remaining n− 1 cells with at most k + 1 p-minos. If the last tile is

a p-mino, there are Rp,n−p−1(k) ways to tile the first n − p − 1 cells with at most

k p-minos. Note that the tiling of the form sn−p−1p is counted without coloring.

Hence, we must add p to account for these missed tilings.

Proposition 18. For 0 ≤ n ≤ n−p−r
p+1 , we have

r∑
i=0

(
r

i

)
Rp,n+pi(k + i) + (2r − 1)p = Rp,n+(p+1)r(k + r). (18)

Proof. The proof is similar to the Proposition 7.

Now we establish a link between incomplete Lucas-Leonardo p-numbers and

Leonardo p-numbers. To do this, we introduce the concept of hyper Lucas-Leonardo

p-numbers.

The hyper Lucas-Leonardo p-number R(k)
p,n counts the number of circular tilings

of length n + (p + 1)k with at least k p-minos. Such a tiling λ, the first tile is

assigned one of p + 1 colors, except when λ has phase 1 bracelet with exactly k

p-minos. In this case, the first tile of λ is not assigned a color. Thus, we give the

following definition.
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Definition 2. For n ≥ 1 and k ≥ 1, the hyper Lucas-leonardo p-numbers are

defined by

R(k)
p,n = (p+ 1)

⌊ n
p+1⌋∑
i=0

n+ (p+ 1) k

n+ k − pi

(
n+ k − pi

i+ k

)
− p

(
n+ k

k

)
,

with R(0)
p,n = Rp,n, R(k)

p,0 = Rp,0 = p2 + p+ 1.

Some special cases for the hyper Lucas-Leonardo p-sequence can be given as fol-

lows. For p = 1, we get the hyper Lucas-Leonardo sequence
{
R(k)

n

}
. In particular,

we have {
R(1)

n

}
= {3, 4, 9, 16, 29, 50, 85, 122, . . .} ,{

R(2)
n

}
= {3, 7, 16, 32, 61, 101, 186, 308, . . .} ,{

R(3)
n

}
= {3, 10, 26, 58, 119, 220, 406, 714, . . .} .

For p = 2, we get the hyper Lucas-Leonardo 2-sequence. In particular, we have{
R(1)

2,n

}
= {7, 8, 9, 19, 32, 48, 76, 119, 180, . . .} ,{

R(2)
2,n

}
= {7, 15, 24, 43, 75, 123, 199, 318, 498, . . .} ,{

R(3)
2,n

}
= {7, 22, 46, 89, 164, 287, 486, 804, 1302, . . .} .

We note that for p > 1, we observe that the hyper Lucas-Leonardo p-sequences are

new additions in OEIS [10].

Proposition 19. For n > p ≥ 1 and k ≥ 1, we have

R(k)
p,n = Rp,n+(p+1)k −Rp,n+(p+1)k(k − 1)− p

(
n+ k

k

)
.

Proof. By using Definition 2 and relation (9), we get the desired result.

Finally, we give a relationship between hyper Leonardo p-numbers and hyper

Lucas-Leonardo p-numbers.

Proposition 20. For n > p ≥ 1 and k ≥ 1, we have

R(k)
p,n = (p+ 1)L(k)

p,n − pL(k)
p,n−1 + p2

(
n+ k − 1

k

)
.
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Proof. From Proposition 11 and using the relations (7) and (10), we have

(p+ 1)L(k)
p,n − pL(k)

p,n−1 =
(
(p+ 1)Lp,n+(p+1)k − pLp,n+(p+1)k−1

)
−
(
(p+ 1)Lp,n+(p+1)k(k − 1)− pLp,n+(p+1)k−1(k − 1)

)
−
(
p2 + p

)(n+ k

k

)
+ p2

(
n+ k − 1

k

)
= Rp,n+(p+1)k −Rp,n+(p+1)k(k − 1)− p2

(
n+ k − 1

k − 1

)
−p

(
n+ k

k

)
.

By using Proposition 19, we get the desired result.

4. Concluding Remarks

This paper provides combinatorial interpretations of Leonardo p-numbers and Lucas-

Leonardo p-numbers while also extending the incomplete and hyper analogs. Our

results offer combinatorial interpretations and reveal several new identities related

to hyper Lucas-Leonardo p-numbers. In future work, we plan to investigate addi-

tional identities and properties of hyper Lucas-Leonardo p-numbers.
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