
#A6 INTEGERS 25 (2025)

A NOTE ON DELETIONS FROM COMPOUND SEQUENCES THAT
LEAVE THE FROBENIUS NUMBER INVARIANT

Edgar Federico Elizeche
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Abstract

For a numerical semigroup S, we denote by F(S) the Frobenius number of S. For
numerical semigroups generated by compound sequences C, we determine subse-
quences C⋆ of C for which F(⟨C⋆⟩) = F(⟨C⟩).

1. Introduction

A numerical semigroup S is a submonoid of Z≥0 that has a finite complement G(S)

in Z≥0. Given a set A = {a1, . . . , an} of positive integers with gcd(a1, . . . , an) = 1,

let

⟨A⟩ = {a1x1 + · · ·+ akxn : xi ≥ 0}

denote the numerical semigroup generated by A. Every numerical semigroup S is

of the form ⟨A⟩ for some finite set A. Moreover, every S has a unique minimal

generating set, the cardinality of which is called the embedding dimension of the

semigroup and denoted by e(S).

The Frobenius number of S is defined as the largest element in G(S):

F(S) = maxG(S).

A very useful tool in the study of numerical semigroups is the determination of

Apéry sets of the semigroup. Given a numerical semigroup S generated by A and

a ∈ S \ {0}, the Apéry set Ap(S, a) of S corresponding to a is given by

Ap
(
S, a

)
= {mx : 0 ≤ x ≤ a− 1} ,
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where mx denotes the least positive integer in S congruent to x modulo a. The

following result, due to Brauer and Shockley [1], shows how F(S) can be determined

from the Apéry set of S corresponding to any a ∈ S \ {0}.

Lemma 1 ([1]). Let S be the numerical semigroup generated by A, and let a ∈ A.

Then

F(S) =

(
max

1≤x≤a−1
mx

)
− a.

2. Main Results

Compound sequences were introduced and studied by Kiers, O’Neill, and Pono-

marenko [2]. Let {a1, . . . , an} and {b1, . . . , bn} be two sequences of positive integers

such that ai < bi for each i and gcd(ai, bj) = 1 for i ≥ j. The compound sequence

formed from these two sequences is the sequence {c0, c1, c2, . . . , cn}, where

c0 = a1a2a3 · · · an,
c1 = b1a2a3 · · · an,
c2 = b1b2a3 · · · an,
... =

...

cn = b1b2b3 · · · bn. (1)

Note that gcd(c0, . . . , cn) = 1. Two important special cases are:

(i) The compound sequence for a1 = . . . = an = a and b1 = . . . = bn = b,

gcd(a, b) = 1 is the geometric sequence

{an, an−1b, an−2b2, . . . , bn}.

This was studied by Ong and Ponomarenko [3], and independently by Tri-

pathi [5].

(ii) For pairwise coprime positive integers a1, . . . , an, the compound sequence for

{a2, a3, . . . , an} and {a1, a2, . . . , an−1} is the sequence{
P

a1
,
P

a2
, . . . ,

P

an

}
,

where P = a1a2 · · · an. This was studied by Tripathi [4].

Kiers et. al. determine an Apéry set and the Frobenius number for such sequences;

also see [6].
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Theorem 2 ([2], Theorem 15). Let {a1, . . . , an} and {b1, . . . , bn} be two sequences

of positive integers such that ai < bi for each i and gcd(ai, bj) = 1 for i ≥ j. If

C = {c0, . . . , cn} is the compound sequence of {ai} and {bi}, then the Apéry set for

S = ⟨C⟩ corresponding to c0 is given by

Ap
(
S, c0

)
=

{
n∑

i=1

cixi : 0 ≤ xi ≤ ai − 1, i = 1, . . . , n

}
.

In particular,

F(S) =

n∑
i=1

(ai − 1)ci − c0. (2)

Let C denote the sequence compounded by two sequences, and let C⋆ denote the

subsequence obtained from C by deletion of one element. Note that C⋆ need not

generate a numerical semigroup. Proposition 3 provides a characterization of those

subsequences C⋆ for which ⟨C⋆⟩ is a numerical semigroup.

Proposition 3. Let C = {c0, . . . , cn} be the sequence compounded by {a1, . . . , an}
and {b1, . . . , bn}. For a fixed j ∈ {0, 1, 2, . . . , n}, let C⋆ = {c0, . . . , cj−1, cj+1, . . . , cn}.
Then ⟨C⋆⟩ is a numerical semigroup if and only if either

0 < j < n and gcd(aj , bj+1) = 1, or j = n and aj = 1.

Proof. If j = 0, then b1 divides each element of C⋆. Since b1 > a1, gcd(C
⋆) > 1. If

j = n, then an divides each element of C⋆. If an > 1, then gcd(C⋆) > 1. If an = 1,

then C⋆ is compounded by {a1, . . . , an−1} and {b1, . . . , bn−1}.
Suppose 0 < j < n. Observe that C⋆ is the sequence compounded by {a′1, . . . , a′n−1}

and {b′1, . . . , b′n−1}, where

a′i =


ai if i < j,

ajaj+1 if i = j,

ai+1 if i > j,

and b′i =


bi if i < j,

bjbj+1 if i = j,

bi+1 if i > j,

provided gcd(a′r, b
′
s) = 1 for r ≥ s.

If neither r nor s equals j, then gcd(a′r, b
′
s) = 1 since C is a compound sequence.

Thus, we need to only consider the case where at least one of r, s equals j. If

r = j and s ̸= j, then gcd(a′r, b
′
s) = gcd(ajaj+1, bs+1) = 1 since gcd(aj , bs+1) =

gcd(aj+1, bs+1) = 1. A similar argument applies to the case where s = j and r ̸= j.

If r = s = j, then gcd(a′r, b
′
s) = gcd(ajaj+1, bjbj+1) = gcd(aj , bj+1).

We have shown that gcd(C⋆) = 1 if and only if the two conditions in the statement

of the proposition are met. Therefore, the same two conditions are necessary and

sufficient for ⟨C⋆⟩ to be a numerical semigroup.
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In most cases, the deletion of a single element from the compound sequence of two

sequences turns out to be the compound sequence of two other sequences, making

the problem of invariance under a single-element deletion easy to resolve in those

cases.

Theorem 4. Let C = {c0, . . . , cn} be the sequence compounded by {a1, . . . , an} and

{b1, . . . , bn}. For a fixed j ∈ {0, 1, 2, . . . , n}, let C⋆ = {c0, . . . , cj−1, cj+1, . . . , cn} be

such that gcd(C⋆) = 1. Then F(⟨C⋆⟩) = F(⟨C⟩) if and only if aj = 1.

Proof. We have

Ap
(
⟨C⋆⟩, c0

)
=

{
n−1∑
i=1

c′ixi : 0 ≤ xi ≤ a′i − 1, i = 1, . . . , n− 1

}
,

where

c′i =

{
ci if i < j,

ci+1 if i ≥ j,

by Theorem 2. Hence

F(⟨C⋆⟩) =

n−1∑
i=1

(a′i − 1)c′i − c0

=

j−1∑
i=1

(ai − 1)ci + (ajaj+1 − 1)cj+1 +

n−1∑
i=j+1

(ai+1 − 1)ci+1 − c0

=

j−1∑
i=1

(ai − 1)ci + (ajaj+1 − 1)cj+1 +

n∑
i=j+2

(ai − 1)ci − c0

=

n∑
i=1

(ai − 1)ci +
(
(ajaj+1 − 1)cj+1 − (aj − 1)cj − (aj+1 − 1)cj+1

)
− c0

=

n∑
i=1

(ai − 1)ci + (aj − 1)(aj+1cj+1 − cj)− c0

= F(⟨C⟩) + (aj − 1)(aj+1cj+1 − cj).

Since aj+1cj+1 ≥ cj+1 > cj , we have F(⟨C⋆⟩) = F(⟨C⟩) if and only if aj = 1.

Theorem 5 gives the embedding dimension of sequences compounded by two

sequences. We use this and Theorem 4 in Theorem 6 to show that the minimal

generating set of ⟨C⟩ is the subset of C of least cardinality among those with the

same Frobenius number.
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Theorem 5. Let C = {c0, . . . , cn} be the sequence compounded by {a1, . . . , an} and

{b1, . . . , bn}. Then the embedding dimension

e(C) = n− k + 1,

where k = |{i : ai = 1}|.

Proof. Let {ai1 , . . . , ain−k
} be the subsequence of ai’s obtained by removing each

ai = 1. Define the subsequence {bi1 , . . . , bin−k
} by

bi1 = b1 · · · bi1 , bi2 = bi1+1 · · · bi2 , . . . bin−k
= bin−k−1+1 · · · bin−k

.

We note that the sequence C compounded by {ai1 , . . . , ain−k
} and {bi1 , . . . , bin−k

}
is the subsequence {c0, ci1 , . . . , cin−k

} of C. Moreover, Ap
(
⟨C⟩, c0

)
= Ap

(
⟨C⟩, c0

)
by Theorem 2, so that C is a generating set for ⟨C⟩. Further, the deletion of any

element of C from C results in a change in the Frobenius number by Theorem 4,

thereby proving that C is the minimal generating set for ⟨C⟩.

Theorem 6. Let C = {c0, . . . , cn} be the sequence compounded by {a1, . . . , an} and

{b1, . . . , bn}. Then the subset of C of least cardinality among those with the same

Frobenius number is the minimal generating set for C.

Proof. Let C denote the minimal generating set for ⟨C⟩, as in Theorem 5. Then ⟨C⟩
and ⟨C⟩ have the same Frobenius number, whereas the deletion of any element from

C results in a numerical semigroup with a larger Frobenius number by Theorem 4.

Now suppose C ′ is a subset of C of smaller cardinality than C. Then there exists

cj ∈ C \ C ′, and the Frobenius number of ⟨C \ {cj}⟩ is larger than the Frobenius

number of ⟨C⟩. Therefore, ⟨C ′⟩ also has a larger Frobenius number than that of

⟨C⟩.
This completes the proof.
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