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Abstract

Let P(n) be the set of partitions of the positive integer n. For α = (α1, ..., αt) ∈
P(n) define the diagonal sequence δ(α) = (dk(α))k≥1 via dk(α) =

∣∣{i | 1 ≤ i ≤
k and αi + i − 1 ≥ k}

∣∣. We show that the set of all partitions in P(n) with the
same diagonal sequence is a partially ordered set under majorization with unique
maximal and minimal elements and we give an explicit formula for the number of
partitions with the same diagonal sequence.

1. Introduction

Let P(n) be the set of partitions of the natural number n, that is, for α =

(α1, ..., αl) ∈ P(n) we assume α1 ≥ α2 ≥ · · · ≥ αl ≥ 1, αi ∈ N, and
∑l

i=1 αi = n.

Let P(n, k) be the set of partitions of n with exactly k non-zero parts and let

P(n, k)∗ be the set of conjugates of P(n, k), that is, P(n, k)∗ is the set of all parti-

tions of n that have largest part equal to k.

Definition 1. For a partition α = (α1, · · · , αl) ∈ P(n), define its diagonal sequence

δ(α) = (dk)k≥1 via

dk = dk(α) =
∣∣{i | 1 ≤ i ≤ k and αi + i− 1 ≥ k}

∣∣.
We note that dk(α) is the number of boxes in the kth downward diagonal, from

right to left, of the Young diagram of the partition α. Since only finitely many dk(α)

are positive, we may omit writing trailing zeros for δ(α). Using Young diagrams,

we can visualize diagonal sequences in two ways. For example, the partition α =

(7, 7, 4, 1, 1, 1) ∈ P(21) has diagonal sequence δ(α) = (1, 2, 3, 4, 4, 4, 2, 1). In the
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Young diagram on the left in Figure 1 the number in a box indicates the position of

that box on the respective diagonal. In the Young diagram on the right in Figure

1 all the boxes on the same diagonal are marked with the same letter.

α α

1 1 1 1 1 1 1
2 2 2 2 2 2 1
3 3 3 3
4
4
4

a b c d e f g
b c d e f g h
c d e f
d
e
f

Figure 1: Young diagrams of the partition α = (7, 7, 4, 1, 1, 1)

Definition 2. Let ∆(n) = {δ(α) |α ∈ P(n)}.

This defines δ as a map from P(n) to ∆(n) with α → δ(α). The map δ is

surjective by definition and is not injective, as is easy to see. Different partitions

may have the same diagonal sequence. If we move a box of the Young diagram on

a diagonal in such a way that we end up with another Young diagram, then the

two partitions will have the same diagonal sequence. For example, the partition

β = (8, 6, 4, 3) ∈ P(21) in Figure 2 has the same diagonal sequence as the partition

α = (7, 7, 4, 1, 1, 1) in Figure 1. The h-box in row 2 of α moved to the last position in

row 1 of β, while the e-box in row 5 of α moved to the second position in row 4 of β,

and the f-box in row 6 of α moved to the fourth box in row 4 of β. The reader may

have noticed that there are more diagonal moves that yield different partitions with

the same diagonal sequence. Theorem 1 in Section 4 gives an explicit expression for

the number of partitions with the same diagonal sequence. The transition from α

to β moved boxes up along diagonals. In fact, the boxes of the Young diagram of

β are as high up along their respective diagonals as possible. We explore this idea

in Section 3. We can define an equivalence relation in P(n) via α ∼ β if and only

β β

1 1 1 1 1 1 1 1
2 2 2 2 2 2
3 3 3 3
4 4 4

a b c d e f g h
b c d e f g
c d e f
d e f

Figure 2: Young diagrams of the partition β = (8, 6, 4, 3)

if δ(α) = δ(β). The equivalence class of a partition α ∈ P(n) is characterized by

the invariant δ(α) = d. For d ∈ ∆(n), define [ d ] = δ−1(d) ⊆ P(n). In particular,
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the partition α ∈ P(n) and its conjugate α∗ have the same diagonal sequence and

consequently belong to the same equivalence class, i.e., α ∼ α∗ and δ(α) = δ(α∗).

The conjugate partition is obtained by reflecting the Young diagram about the

downward diagonal through the first box, which maps each downward diagonal

onto itself.

Diagonal sequences were used in [1] and in [5] to determine graphs and bipartite

graphs with maximal sums of squares of the degrees.

In the next section, we prove properties of δ(α) in preparation for the main

results of Sections 3 and 4. In Section 3 we show that [ d ] is a partially ordered set

under majorization with unique maximal and unique minimal element. In Section 4

we give an explicit formula for the size of [ d ]. In Section 5 we list the 36 partitions

in the equivalence class of α = (7, 7, 4, 1, 1, 1), that is, we list all α ∈ P(21) with

δ(α) = (1, 2, 3, 4, 4, 4, 2, 1).

2. Properties of δ(α)

We first prove that the sequence δ(α) increases from 1 to a positive integer q in

increments of 1 and continues in a non-increasing order.

Lemma 1. Let α = (α1, · · · , αl) ∈ P(n) with δ(α) = (dk)k≥1.

1. For all 1 ≤ j ≤ k + 1, dk+1 − dk ≤ 1 with equality if and only if dj = j .

2. If dk ≥ dk+1, then dk+1 ≥ dk+2.

Proof. By definition, dk+1 ≤ dk + 1. If for some 1 ≤ j ≤ k we have αj + j − 1 < k,

then

αj+1 + (j + 1)− 1 = αj+1 + j ≤ αj + j < k + 1.

Therefore, if dj < j, then dj ≥ dj+1.

We use the notation x(t) to indicate that x is repeated t times in a sequence.

Corollary 1. For all partitions α ∈ P(n), there exist unique integers q > 0 and

s1, · · · , sq ≥ 0 such that

δ(α) =
(
1, 2, · · · , q − 1, q, q(sq), (q − 1)(sq−1), · · · , 1(s1)

)
.

with

q(q + 1)

2
+

q∑
k=1

k sk = n.

Let d = (d1, d2, · · · , dL) ∈ ∆(n). We characterize two special elements of [ d ].

The notations α and α will become clear in Section 3.



INTEGERS: 25 (2025) 4

Proposition 1. Let s1, · · · , sq ≥ 0 be integers such that q(q+1)
2 +

∑q
k=1 k sk = n.

Let αi = q − i+ 1 +
∑q

k=i sk for 1 ≤ i ≤ q. Then

1. α = (α1, · · · , αq) ∈ P(n),

2. α1 > α2 > · · · > αq,

3. δ(α) =
(
1, 2, · · · , q − 1, q, q(sq), (q − 1)(sq−1), · · · , 1(s1)

)
,

4. si = αi − αi+1 − 1, 1 ≤ i ≤ q − 1, and sq = αq − 1.

Proof. By definition α1 > α2 > · · · > αq and since

q∑
i=1

αi =

q∑
i=1

(q − i) +

q∑
i=1

q∑
k=i

sk =
q(q + 1)

2
+

q∑
k=1

k sk = n,

α = (α1, · · · , αq) ∈ P(n).

Next, we will show that

δ(α) =
(
1, 2, · · · , q − 1, q, q(sq), (q − 1)(sq−1), · · · , 1(s1)

)
.

If 1 ≤ k ≤ q, then αi + i− 1 = q+
∑q

j=i sj ≥ q ≥ k for 1 ≤ i ≤ k. Hence, dk = k

for 1 ≤ k ≤ q.

If q < k ≤ q + sq, then

αi + q − 1 = q +

q∑
j=i

sj ≥ q + sq ≥ k for 1 ≤ i ≤ q.

Hence, dk = q for q < k ≤ q + sq.

Similarly, if q +
∑q

j=i sj < k ≤ q +
∑q

j=i−1 sj , i ≥ 2, then

αj + j − 1 = q +

q∑
l=j

sl < k for j ≥ i and

αj + j − 1 = q +

q∑
l=j

sl ≥ k for j < i.

Hence, dk = i− 1 for q +
∑q

j=i sj < k ≤ q +
∑q

j=i−1 sj .

Lastly, we show how to compute the values of si, 1 ≤ i ≤ q, given α. Let

s = (s1, s2, , · · · , sq), v = (q, q − 1, · · · , 1), and

T =


1 1 1 · · · 1
0 1 1 · · · 1
0 0 1 · · · 1
...

...
...

. . .
...

0 0 0 · · · 1

 .
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It follows that α = v + Ts and s = T−1(α− v). Since

T−1 =



1 −1 0 0 · · · 0 0
0 1 −1 0 · · · 0 0
0 0 1 −1 · · · 0 0
...

...
...

. . .
. . .

...
...

...
...

...
...

. . .
. . .

...
0 0 0 0 · · · 1 −1
0 0 0 0 · · · 0 1


we get si = αi − αi+1 − 1 for 1 ≤ i < q and sq = αq − 1.

There are some consequences of Proposition 1 that are worth pointing out.

Corollary 2. For all positive integers n, |∆(n)| is equal to the number of partitions

of n with distinct parts which is equal to the number of partitions of n with odd parts.

Proof. By Proposition 1, for each diagonal sequence δ ∈ ∆(n) there is a unique

partition α with α1 > α2 > · · · > αq. The second part follows from a well-known

result that the number of partitions in P(n) with distinct parts is equal to the

number of partitions in P(n) with odd parts.

Let α = α∗ denote the conjugate partition of α .

Proposition 2. If α ∈ P(n) with

δ(α) =
(
1, 2, · · · , q − 1, q, q(sq), (q − 1)(sq−1), · · · , 1(s1)

)
,

then

α = (q(sq+1), (q − 1)(sq−1+1), · · · , 1(s1+1)).

Proof. Let α∗ = (α∗
1, α

∗
2, · · · , α∗

t ). Since α1 > α2 > · · · > αq, t = α1 and for

αi+1 < k ≤ αi we have α∗
k = αk = i. By Proposition 1, αi − αi+1 = si + 1 and the

result follows.

Figure 3 shows the Young diagrams of the partitions α, α∗, α and α.

Corollary 3. The multiset of integers of δ(α) = δ(α) is equal to the multiset of

integers of α.

Corollary 4. Assume α = (α1, α2, · · · , αt) ∈ P(n). If α ̸= α, then αi = αi+1 for

some 1 ≤ i ≤ t. Equivalently, if α ̸= α, then αi − αi+1 > 1 for some 1 ≤ i ≤ t.
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α α∗ α α

1 1 1 1 1 1 1
2 2 2 2 2 2 1
3 3 3 3
4
4
4

1 1 1 1 1 1
2 2 2
3 3 2
4 3 2
4 3
4 1
2 1

1 1 1 1 1 1 1 1
2 2 2 2 2 2
3 3 3 3
4 4 4

1 1 1 1
2 2 2 1
3 3 2 1
4 3 2
4 3
4 1
2
1

Figure 3: The Young diagrams of α, α∗, α and α

In the above example, α = (7, 7, 4, 1, 1, 1) ∈ P(21) has diagonal sequence

d(α) = (1, 2, 3, 4, 4, 4, 2, 1) = (1, 2, 3, 4, 4(2), 3(0), 2(1), 1(1)).

Therefore, q = 4, s4 = 2, s3 = 0, s2 = 1, s1 = 1. Proposition 1 implies that α =

(8, 6, 4, 3) ∈ P(21) while Proposition 2 implies that α = (4, 4, 4, 3, 2, 2, 1, 1) ∈ P(21).

The partition α is obtained from the partition α by moving all boxes as far up

along their respective diagonals as possible. The partition α = (4, 4, 4, 3, 2, 2, 1, 1) is

obtained from the partition α by moving all boxes as far down along their respective

diagonals as possible.

Given a diagonal sequence d ∈ ∆(n) and α = (α1, · · · , αt) ∈ [ d ], the values of

α1 are restricted to a certain set. Define

A1 = {q, q + sq, q + sq + sq−1, · · · , q +
q∑

i=1

si}.

Proposition 3. If δ(α) =
(
1, 2, · · · , q − 1, q, q(sq), (q − 1)(sq−1), · · · , 1(s1)

)
, then

α1 ∈ A1. Equivalently, if δ(α) =
(
1, 2, · · · , q − 1, q, q(sq), (q − 1)(sq−1), · · · , 1(s1)

)
,

then α ∈ P(n, k)∗ for some k ∈ A1.

Proof. If α = (α1, α2, ...αt) with

δ(α) =
(
1, 2, · · · , q − 1, q, q(sq), (q − 1)(sq−1), · · · , 1(s1)

)
,

let α′ = (α2, ...αt). The lengths of the first α1 diagonals of α′ decrease by 1 while

the lengths of the other diagonals stay the same, that is, δ(α′) = (d′k)k≥1 with

d′i = di − 1 for 1 ≤ i ≤ α1 and d′i = di for i > α1. The constraints imposed by

Lemma 1 imply that α1 ∈ {q, q + sq, q + sq + sq−1, · · · , q +
∑q

i=1 si}.

For partitions with the same diagonal sequence, the sum of the squares of their

parts plus the sum of the squares of the parts of their conjugates is an invariant.
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For α = (α1, · · · , αt) ∈ P(n) define s(α) =
∑t

i=1 α
2
i . Let

α∗ = γ = (γ1, γ2, · · · , γr)

with r = α1. Since the Young diagram of α is contained in a t by r rectangle, it

follows that dk = 0 for all k ≥ t+ r. Let h = t+ r − 1.

Proposition 4. If α ∈ P(n), then s(α)+s(α∗) = (2, 4, · · · , 2r)·δ(α) = 2
∑h

k=1 k dk.

As a consequence, if δ(α) = δ(β), then s(α) + s(α∗) = s(β) + s(β∗).

Proof. We use the well-known fact that n2 is the sum of the first n odd integers.

Consider the box in the i-th row and j-th column of the Young diagram of α. Such

a box lies on the kth diagonal for k = i+ j− 1. As such, it contributes 2j− 1 to α2
i

and contributes 2i− 1 to β2
j . Therefore, such a box contributes 2k to s(α) + s(α∗).

Every box on the k-th diagonal contributes the same amount, 2k, to s(α) + s(α∗).

It follows that the total contributions of all the boxes on the k-th diagonal of the

Young diagram is 2kdk. Summing over k yields the result.

We note that the converse of Proposition 4 is not true. For example, let α =

(6, 2, 1) and β = (5, 4), both of which are members of P(9). It is easy to see that

δ(α) = (1, 2, 3, 1, 1, 1) ̸= (1, 2, 2, 2, 2) = δ(β) and s(α) + s(α∗) = s(β) + s(β∗) = 58.

3. Majorization Order on [ d ]

The set P(n) is a partially ordered set under majorization. Recall that if α =

(α1, α2, · · · , αs) ∈ P(n) and β = (β1, β2, · · · , βt) ∈ P(n), we say α majorizes β if∑k
i=1 αi ≥

∑k
i=1 βi for all 1 ≤ k ≤ min{s, t}. If α majorizes β, we write α ≻ β. This

partial order on P(n) induces a partial order on all subsets of P(n). In particular,

we will show that if d ∈ ∆(n), then the partially ordered set [ d ] has a unique

maximal element α and a unique minimal element α, where α and α are as defined

in Section 2.

Proposition 5. Let d ∈ ∆(n). If α ∈ [ d ] ⊆ P(n), then α ≻ α ≻ α.

Proof. It is well-known ([4] Theorem 7.B.5) that for α, β ∈ P(n), α ≻ β if and only

if β∗ ≻ α∗. Since α = α∗, we only need to show that α ≻ α for all α ∈ [ d ] . Let

α = (α1, α2, · · · , αs) ∈ [ d ] and α = (α1, α2, · · · , αt) ∈ [ d ].

In general, a box in the i-th row of the Young diagram of α ∈ P(n) is the j-th

box of its diagonal with j ≤ i. Since αi > αi+1, it follows that every box in the i-th

row of the Young diagram of α is the i-th box of its respective diagonal. Therefore,

k∑
i=1

αi ≥
k∑

i=1

αi for 1 ≤ k ≤ min{s, t},

which is what we had to show.
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We can further stratify the set [ d ] by the number of (non-zero) parts of the

partitions and, alternatively, by the size of the largest part of α ∈ [ d ]. Define

[ d ]k = [ d ] ∩ P(n, k) and [ d ]∗k = [ d ] ∩ P(n, k)∗.

By Proposition 3, [ d ]k = [ d ]∗k = ∅, unless k ∈ A1. If d = (d1, d2, · · · , dL) and

α = (α1, α2, · · · , αk) ∈ [ d ]k, then α′ = α1 − 1, α2 − 1, · · · , αk − 1 ∈ P(n− k) with

diagonal sequence

d′ = (d2 − 1, · · · , dk − 1, dk+1, · · · , dL).

Let α′ = (α′
1, α

′
2, · · · , α′

k) be the maximal element in [ d′ ]. Then α(k) = (α′
1 +

1, α′
2 + 1, · · · , α′

k + 1) is the maximal element in [ d ]k. It follows that α(k)∗ is the

minimal element in [ d ]∗k.

Now we describe how to construct the maximal element γ = (γ1, γ2, · · · , γt) ∈
[ d ]∗k for k ∈ A1. Let γ1 = k. Then d′ = (d2 − 1, · · · , dk − 1, dk+1, · · · , dL) is the

diagonal sequence of some partition γ′ ∈ P(n − k). By Proposition 3, largest part

of γ′ is restricted to a set A′
1. Let γ2 the largest element in A′

1 less than or equal

to k. This process continues in the obvious way and leads to the maximal element

γ ∈ [ d ]∗k. It follows that γ
∗ = α(k) is the minimal element in [ d ]k.

We illustrate this construction with an example. Let d = (1, 2, 3, 4, 4, 4, 2, 1) and

k = 6.

Step 1: Set γ1 = 6. Then d′ = (1, 2, 3, 3, 3, 2, 1) which implies A′
1 = {3, 5, 6, 7}.

Step 2: Set γ2 = 6. Then d′′ = (1, 2, 2, 2, 1, 1) which implies A(3) = {1, 4, 6}.
Step 3: Set γ3 = 6. Then d(3) = (1, 1, 1) which implies A

(4)
1 = {3}.

Step 4: Set γ4 = 3 and the process ends.

We get γ = (6, 6, 6, 3) and α(6) = (4, 4, 4, 3, 3, 3).

4. The Cardinality of [ d ]

Definition 3. Let M = {0(b0), 1(b1), · · · , t(bt)} be a multiset with bi elements equal

to i. Let b = b0+b1+ · · ·+bt. A vn-arrangement of the elements of M is a sequence

(v1, v2, · · · , vb) such that vi+1 − vi ≤ 1 for 0 ≤ i < b.

Proposition 6. The number of vn-arrangements of M is
∏t−1

i=0

(
bi+bi+1

bi

)
.

Proof. For t = 0, there is nothing to prove. When t = 1, any arrangement of

the b0 elements equal to 0 and the b1 elements equal to 1 are vn-arrangements.

There are
(
b0+b1
b0

)
such sequences. So assume the result holds for t ≥ 1. Let

M = {0(b0), 1(b1), · · · , t(bt), (t + 1)(bt+1)}. Any vn-arrangement of M arises from a

vn-arrangement of M ′ = {0(b0), 1(b1), · · · , t(bt)} by adding any number of elements

equal to t + 1 at the very beginning of the arrangement or after an element equal
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to t. Since there are bt+1 elements equal to t + 1, which can be placed in bt + 1

slots, there are
(
bt+bt+1

bt

)
vn-arrangements of M for every vn-arrangement of M ′.

By induction, the result holds.

The result generalizes and holds for any finite multiset {a(b0), (a+1)(b1), · · · , (a+
t)(bt)} = a+M , a ∈ Z. It is worth pointing out the special case when bi = 1 for all

1 ≤ i ≤ t.

Corollary 5. If M is any set of t consecutive integers, then the number of vn-

arrangements of M is 2t−1.

The idea of vn-arrangements is related to the beautiful theory of counting se-

quences according to rises and falls, which was developed by Carlitz and others. For

example, see [3] and [2]. As an aside, we can extend the definition of vn-arrangement

as follows.

Definition 4. Let M = {0(b0), 1(b1), 2(b2), · · · , t(bt)} be a multiset with bi elements

equal to i. Let b = b0+b1+ · · ·+bt. A k-vn-arrangement, 0 ≤ k ≤ t, of the elements

of M is a sequence (v1, v2, · · · , vb) such that vi+1 − vi ≤ k for 1 ≤ i < b.

There is an explicit formula for the number of k-vn-arrangments of a given mul-

tiset. We adopt the convention that an empty product has value 1.

Proposition 7. Let M = {0(b0), 1(b1), 2(b2), · · · , t(bt)} be a multiset with bi elements

equal to i. The number of k-vn-arrangements of M is(
b0 + b1 + · · ·+ bk
b0, b1, · · · , bk

) t−k∏
i=1

(
bi + bi+1 + · · ·+ bi+k

bi+k

)
.

Proof. For t < k, there are no constraints on the arrangements. The number of

arrangements is the multinomial coefficient. So assume now t ≥ k.

For k = 0, there is only one arrangement, (t(bt), (t− 1)(bt−1), · · · 1(b1), · · · , 0(b0)),
and the result holds. For k = 1, we get the result of Proposition 6. Now assume k ≥
2. We proceed by induction on t ≥ k. If t = k, the results hold. Now assume that the

result holds for some t ≥ k. Let M = {0(b0), 1(b1), · · · , t(bt), (t+1)(bt+1)}. Any k-vn-

arrangement of M arises from a k-vn-arrangement of M ′ = {0(b0), 1(b1), · · · , t(bt)}
by adding any number of elements equal to t+ 1 at the very beginning or after an

element equal to t + 1 − k, t + 2 − k, · · · , t. Since there are bt+1 elements equal to

t+ 1, which can be placed in bt+1−k + bt+2−k + · · ·+ bt slots, the result follows by

induction.

For a partition α = (α1, ..., αt) ∈ P(n), define v(α) = (v1, v2, · · · , vt) where

vi = αi + i− 1 for 1 ≤ i ≤ t. The definition of δ(α) = (dk)k≥1 can now be restated

as

dk =
∣∣{i | 1 ≤ i ≤ k and vi ≥ k}

∣∣. (1)
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Since vi = αi + i − 1, we have vi ≥ i for 1 ≤ i ≤ t. Since α is a non-increasing

sequence, we have vi+1 − vi ≤ 1 for 1 ≤ i < L. In the special case of α, we

have vi = q +
∑q

k=i sk for 1 ≤ i ≤ q. In particular, v1 = q +
∑q

i=1 si = L and

vq = q + sq = l.

In what follows, we assume δ = (1, 2, · · · , q, dq+1, dq+2, · · · , dL) ∈ ∆(n), q ≥
dq+1. Set bi = di − di+1 for q ≤ i < L and bL = dL. By Proposition 3, if α ∈ [ d ],

then α ∈ P(n, k) for some k ∈ A1. Let [ d ]k = [ d ]∩P(n, k). Our first result counts

the number of elements in [ d ]q, that is, those partitions in P(n) that have exactly

q parts.

Proposition 8. The cardinality of [d]q is given by

∣∣ [ d ]q| = ∣∣ [ d ] ∩ P(n, q)
∣∣ = L−1∏

i=q

(
bi + bi+1

bi

)
.

Proof. Let α = (α1, α2, · · · , αq) ∈ [d]q and v(α) = (α1, α2 + 1, · · · , αq + q − 1).

We will show that v(α) is a vn-arrangement of the multiset {v1, v2, · · · , vq}. Since
αi ≤ αi+1 for all 1 ≤ i < q, it follows that vi+1 − vi ≤ 1 which implies that v(α) is

a vn-arrangement. Since α, α ∈ [ d ], Equation (1) implies that

dk =
∣∣{i | 1 ≤ i ≤ k and vi ≥ k}

∣∣ = ∣∣{j | 1 ≤ j ≤ k and vj ≥ k}
∣∣ for all q ≤ k.

Since dk = 0 for k > L and
∑q

i=1 vi =
∑q

j=1 vj , we conclude that {v1, v2, · · · , vq} =

{v1, v2, · · · , vq} as multisets.

Writing the elements of v as a multiset of consecutive integers, we have

M = {q(bq), · · · , l(bl), (l + 1)(bl+1), · · · , L(bL)}.

By Proposition 3, bi ̸= 0 if and only if i ∈ A1. The result now follows from

Proposition 6.

The expression for the cardinalities of
∣∣ [ d ]k∣∣ when k > q are more complicated.

Proposition 9. If k > q, then

∣∣ [ d ]k ∣∣ = ∣∣ [ d ] ∩ P(n, k)
∣∣ = (

bk−1 + bk
bk−1 + 1

) k−2∏
i=q

(
bi + bi+1 + 1

bi + 1

) L−1∏
i=k

(
bi + bi+1

bi

)

When bk = 0, the binomial coefficient
(
bk−1+bk
bk−1+1

)
equals 0. This implies

∣∣ [ d ]k ∣∣ ̸= 0

if and only if k ∈ A1.

Proof. We proceed by induction on n. The result is straightforward to verify for

small values of n. Let d = (1, 2, · · · q, dq+1 · · · , dL), be a diagonal sequence of

some partition α ∈ P(n) with k ∈ A1. If k ̸∈ A1, there is nothing to prove.
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For k ∈ A1, there exists a partition α = (α1, · · ·αk) ∈ P(n) with αk > 0 and

δ(α) = d. Hence, the partition α′ = (α1 − 1 · · ·αk − 1) belongs to P(n − k) and

δ(α′) = d′ = (d′i)1≤i≤L−1 = (1, 2, · · · , q − 1, dq − 1, · · · , dk−1 − 1, dk, · · · , dL−1).

If β = (β1, · · ·βl) ∈ [ d′ ]l for some l ≤ k, then (β1 + 1, · · ·βl + 1, 1(k−l)) ∈ [ d ]k
and vice versa. Hence, ∣∣ [ d ]k ∣∣ = k∑

l=q−1

∣∣ [ d′ ]l ∣∣.
We observe that for i ≥ k − 1, ck−1 = d′k − d′k−1 = dk+1 − dk − 1 = bk − 1 while

for i ̸= k − 1, ci = d′i+1 − d′i = di+2 − di+1 = bi+1. By induction,

∣∣ [ d′ ]q ∣∣ = L−2∏
i=q−1

(
ci + ci+1

ci

)
and ∣∣ [ d′ ]l ∣∣ = (

cl−1 + cl
cl−1 + 1

) l−3∏
i=q−1

(
ci + ci+1 + 1

ci + 1

) L−2∏
i=l−1

(
ci + ci+1

ci

)
for l > q − 1.

Notice that

∣∣ [ d′ ]q−1

∣∣+ ∣∣ [ d′ ]q ∣∣ = L−2∏
i=q−1

(
ci + ci+1

ci

)

+

(
cq−1 + cq
cq−1 + 1

) q−2∏
i=q−1

(
ci + ci+1 + 1

ci + 1

) L−2∏
i=q

(
ci + ci+1

ci

)

=

(
cq−1 + cq + 1

cq−1 + 1

) L−2∏
i=q

(
ci + ci+1

ci

)
,

and, by induction,

∣∣ [ d ]k ∣∣ = k∑
l=q−1

∣∣ [ d′ ]l ∣∣ = k∏
i=q

(
ci−1 + ci + 1

ci−1 + 1

) L−2∏
i=k

(
ci + ci+1

ci

)

=

(
bk−1 + bk
bk−1 + 1

) k−2∏
i=q

(
bi + bi+1 + 1

bi + 1

) L−1∏
i=k

(
bi + bi+1

bi

)
.

The cardinality of [ d ] now follows by addition of the cardinalities of [ d ]k for

q ≤ k ≤ L with a similar and somewhat simpler argument.
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Theorem 1. Assume δ = (1, 2, · · · , q, dq+1, dq+2, · · · , dL) ∈ d(n). Set bi = di−di+1

for q ≤ i < L and bL = dL. The number of partitions α ∈ P(n) with d(α) = d is

∣∣ [ d ] ∣∣ = L−1∏
i=q

(
bi + bi+1 + 1

bi + 1

)
. (2)

Proof. Clearly
∣∣ [ d ] ∣∣ = ∑L

k=q

∣∣ [ d ]k ∣∣ and
L∑

k=q

∣∣ [ d ]k ∣∣ = L−1∏
i=q

(
bi + bi+1

bi

)

+
L∑

k=q+1

(
bk−1 + bk
bk−1 + 1

) k−2∏
i=q

(
bi + bi+1 + 1

bi + 1

) L−1∏
i=k

(
bi + bi+1

bi

)
.

Notice that

∣∣ [ d ]q ∣∣+ ∣∣ [ d ]q+1

∣∣ = L−1∏
i=q

(
bi + bi+1

bi

)

+

(
bq + bq+1

bq + 1

) q−1∏
i=q

(
bi + bi+1 + 1

bi + 1

) L−1∏
i=q+1

(
bi + bi+1

bi

)

=

(
bq + bq+1 + 1

bq + 1

) L−1∏
i=q+1

(
bi + bi+1

bi

)
and, by induction,

∣∣ [ d ] ∣∣ = L∑
k=q

∣∣ [ d ]k ∣∣ = L−1∏
i=q

(
bi + bi+1 + 1

bi + 1

)
.

We point out some corollaries to the main result.

Corollary 6. 1. If si ≥ 2 for all 1 ≤ i < q, then
∣∣ [ d ]q∣∣ = 1.

2. If si ≥ 2 for all 1 ≤ i < q and sq ≥ 1, then
∣∣ [ d ] ∣∣ = ∏L

i=q(bi + 1).

3. If m is a natural number, then there exists a partition α ∈ P(n) for some n

such that δ(α) = d and | [ d ] | = m.

4. Let d = (1, 2, · · · , q, k(sk), (k− 1)(sk−1), · · · , 2(s2), 1(s1)) with k < q and sk ≥ 2

and define d′ = (1, 2, · · · , k, k(sk), (k−1)(sk−1), · · · , 2(s2), 1(s1)). Then
∣∣ [ d ] ∣∣ =∣∣ [ d′ ] ∣∣.
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5. Let d = (1, 2, · · · , q, q(sq), (q − 1)(sq−1), · · · , 2(s2), 1(s1)). Let σi = min{si, 2}
for 1 ≤ i ≤ q and define d′ = (1, 2, · · · , q, q(σq), (q − 1)(σq−1), · · · , 2(σ2), 1(σ1)).

Then
∣∣ [ d ] ∣∣ = ∣∣ [ d′ ] ∣∣.

Proof. 1. Part 1 follows from the fact that if sk ≥ 2 for all 1 ≤ k < q, then bi = 0

or bi+1 = 0 for all q ≤ i < L. It follows that
(
bi+bi+1

bi

)
= 1 for all q ≤ i < L.

2. For the proof of part 2 assume sk ≥ 2 for 1 ≤ k ≤ q and sq ≥ 1. This implies

that if bi ̸= 0, then bi−1 = bi+1 = 0. It follows that(
bi−1 + bi + 1

bi−1 + 1

)(
bi + bi+1 + 1

bi + 1

)
= (bi + 1) · 1 = bi + 1.

3. Part 3 follows from part 2 by factoring m.

4. Part 4 follows from the fact that sk ≥ 2 implies bq+1 = 0 and
(
bq+bq+1

bq+1

)
= 1

for any choice of bq.

5. Part 5 follows the fact that if si > 2, then bj = bj+1 = 0 for some j and(
bj+bj+1+1

bj+1

)
= 1.

Given Equation (2), we can characterize diagonal sequences d ∈ ∆(n) and the

sets [ d ] for which
∣∣ [ d ] ∣∣ is small or a prime number.

Corollary 7. Assume d ∈ ∆(n) for some positive integer n.

1. If
∣∣ [ d ] ∣∣ = 1, then there exists a positive integer q such that n =

(
q+1
2

)
,

d = (1, 2, · · · , q − 1, q), and [ d ] = {(q, q − 1, · · · , 2, 1)}.

2. If
∣∣ [ d ] ∣∣ = 2, then there exist integers q ≥ 1, k ≥ 2 such that n =

(
q+1
2

)
+k, d =

(1, 2, · · · , q, 1(k)), and [ d ] = {(q + k, q − 1, · · · , 2, 1), (q, q − 1, · · · , 2, 1, 1(k))},
or n = 2, d = (1, 1), and [ d ] = {(2), (1, 1)}.

3. If
∣∣ [ d ] ∣∣ = 3, then

(a) there exist integers q ≥ 2, k ≥ 2 such that n =
(
q+1
2

)
+ 2k, d =

(1, 2, · · · , q, 2k), and

[ d ] = {(q+k, q−1+k, q−2, · · · , 2, 1), (q, q−1, · · · , 2(k+1), 1), (q+k, q−
1, · · · , 2, 1(k+1)}; or

(b) d = (1, 2, 1) and [ d ] = {(3, 1), (2, 2), (2, 1, 1)}; or
(c) d = (1, 2, 2) and [ d ] = {(3, 2), (3, 1, 1), (2, 2, 1)}.

4. If
∣∣ [ d ] ∣∣ = 4, then
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(a) there exist integers q ≥ 3, k ≥ 2, such that n =
(
q+1
2

)
+ 3k, d =

(1, 2, · · · , q, 3(k)), and

[ d ]={(q+k, q− 1+k, q−2+k, q−3, · · · , 2, 1), (q+k, q− 1+k, q− 2, · · · , 2,
1(k+1), (q + k, q − 1, · · · , 3, 2(k+1), 1), (q, q − 1, · · · , 3(k+1), 2, 1)}; or

(b) there exist integers q, k, l ≥ 2, such that n =
(
q+1
2

)
+ 2k + l, d =

(1, 2, · · · , q, 2(k), 1(l)), and

[ d ] = {(q + k + l, q + k, q − 2, · · · , 1),(q + k + l, q − 1, · · · , 1(k+1)),

(q + k, q − 1, · · · , 1(k+l+1)), (q, q − 1, · · · , 2(k+1), 1(l+1))}; or

(c) there exist an integer k ≥ 2, such that n = 5 + k, d = (1, 2, 2, 1(k)), and

[ d ] = {(3 + k, 2), (3 + k, 1, 1), (3, 1(k+2)), (2, 2, 1(k+1))}; or
(d) d = (1, 2, 3, 3) and [ d ] = {(4, 3, 2),(4, 3, 1, 1),(4, 2, 2, 1),(3, 3, 2, 1)}.

We leave it to the reader to generalize parts (2) and (3) and find all partitions α

and d = δ(α) such that
∣∣ [ d ] ∣∣ = p, where p is a prime.

Proof. 1. If
∣∣ [ d ] ∣∣ = 1, then

(
bi+bi+1+1

bi+1

)
= 1 for q ≤ i < L, which implies

bi = 0 for q < i ≤ L and bq = q. Hence, d = (1, 2, · · · , q) and [ d ] =

{(q, q − 1, · · · , 2, 1)}.

2. If
∣∣ [ d ] ∣∣ = 2, then there exists a q ≤ j < L with

(
bj+bj+1+1

bj+1

)
= 2 while(

bi+bi+1+1
bi+1

)
= 1 for all q ≤ i ̸= j < L. Hence, bL = 1 while bi = 0 for all

q < i < L, which implies d = (1, 2, · · · , q, 1, 1, · · · , 1) and n =
(
q+1
2

)
+ k for

some positive integer k. It follows that [ d ] = {(q + k, q − 1, · · · , 2, 1), (q, q −
1, · · · , 2, 1, 1(k))}.

3. If
∣∣ [ d ] ∣∣ = 3, then

(
bL−1+bL+1

bL−1+1

)
= 3, while

(
bj+bj+1+1

bj+1

)
= 1 for all q ≤ j < L−1,

which implies there exist integers q ≥ 2, k > 1 such that d = (1, 2, · · · , q, 2(k))
or d = (1, 2, 1). The result follows.

4. If
∣∣ [ d ] ∣∣ = 4, then

(
bL−1+bL+1

bL−1+1

)
= 4, L ≥ q + 2, while

(
bi+bi+1+1

bi+1

)
= 1 for

q < i < L−1, or there exist integers k ≥ q+2, L ≥ k = 2 with
(
bk+bk+1+1

bk+1

)
= 2

and
(
bL−1+bL+1

bL−1+1

)
= 2 while

(
bi+bi+1+1

bi+1

)
= 1 for all i > q, i ̸= k, L − 1. The

result follows.

5. Examples

We illustrate the results using our example α = (7, 7, 4, 1, 1, 1) ∈ P(21) with diago-

nal sequence δ(α) = (1, 2, 3, 4, 4, 4, 2, 1). It follows that q = 4 and b4 = b5 = 0, b6 =
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2, b7 = b8 = 1. By Proposition 3, if α ∈ [ d ], then α ∈ [ d ]4 ∪ [ d ]6 ∪ [ d ]7 ∪ [ d ]8. By

Proposition 8, Proposition 9, and Theorem 1 we get

∣∣ [ d ]4 ∣∣ = (
0 + 0

0

)(
0 + 2

0

)(
2 + 1

2

)(
1 + 1

1

)
= 1 · 1 · 3 · 2 = 6,

∣∣ [ d ]6 ∣∣ = (
2

1

)(
1

1

)(
3

1

)(
2

1

)
= 2 · 1 · 3 · 2 = 6,

∣∣ [ d ]7 ∣∣ = (
3

3

)(
1

1

)(
3

1

)(
2

1

)
= 1 · 1 · 3 · 2 = 6,

∣∣ [ d ]8 ∣∣ = (
2

2

)(
1

1

)(
3

1

)(
4

3

)
= 1 · 1 · 3 · 4 = 12, and

∣∣ [ d ] ∣∣ = (
0 + 0 + 1

0 + 1

)(
0 + 2 + 1

0 + 1

)(
2 + 1 + 1

2 + 1

)(
1 + 1 + 1

1 + 1

)
= 1 · 3 · 4 · 3 = 36.

The 36 partitions α ∈ [ d ] = [ d ]4 ∪ [ d ]6 ∪ [ d ]7 ∪ [ d ]8 are listed in Table 1.

4A (8, 6, 4, 3) 7A (8, 5, 4, 1, 1, 1, 1)
4B (8, 5, 5, 3) 7B (8, 5, 2, 2, 2, 1, 1)
4C (8, 5, 4, 4) 7C (8, 3, 3, 3, 2, 1, 1)
4D (7, 7, 4, 3) 7D (6, 5, 2, 2, 2, 2, 2)
4E (6, 6, 6, 3) 7E (6, 3, 3, 3, 2, 2, 2)
4F (6, 5, 5, 5) 7F (4, 4, 4, 3, 2, 2, 2)
6A (8, 6, 4, 1, 1, 1) 8A (7, 5, 4, 1, 1, 1, 1, 1)
6B (8, 6, 2, 2, 2, 1) 8B (7, 5, 2, 2, 2, 1, 1, 1)
6C (8, 5, 5, 1, 1, 1) 8C (7, 3, 3, 3, 2, 1, 1, 1)
6D (8, 5, 2, 2, 2, 2) 8D (6, 6, 4, 1, 1, 1, 1, 1)
6E (8, 3, 3, 3, 3, 1) 8E (6, 6, 2, 2, 2, 1, 1, 1)
6F (8, 3, 3, 3, 2, 2) 8F (6, 5, 5, 1, 1, 1, 1, 1)
6G (7, 7, 4, 1, 1, 1) 8G (6, 5, 2, 2, 2, 2, 1, 1)
6H (7, 7, 2, 2, 2, 1) 8H (6, 3, 3, 3, 3, 1, 1, 1)
6I (6, 6, 6, 1, 1, 1) 8I (6, 3, 3, 3, 2, 2, 1, 1)
6J (6, 3, 3, 3, 3, 3) 8J (4, 4, 4, 4, 2, 1, 1, 1)
6K (4, 4, 4, 4, 4, 1) 8K (4, 4, 4, 3, 3, 1, 1, 1)
6L (4, 4, 4, 3, 3, 3) 8L (4, 4, 4, 3, 2, 2, 1, 1)

Table 1: Partitions with diagonal sequence (1, 2, 3, 4, 4, 4, 2, 1) ordered by length.
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Alternatively, we can collect the elements of [ d ]∗ = [ d ]∗4 ∪ [ d ]∗6 ∪ [ d ]∗7 ∪ [ d ]∗8 by

the size of α1 ∈ A1 as in Table 2.

4A∗ (4, 4, 4, 3, 2, 2, 1, 1) 7A∗ (7, 3, 3, 3, 2, 1, 1, 1)
4B∗ (4, 4, 4, 3, 3, 1, 1, 1) 7B∗ (7, 5, 2, 2, 2, 1, 1, 1)
4C∗ (4, 4, 4, 4, 2, 1, 1, 1) 7C∗ (7, 5, 4, 1, 1, 1, 1, 1)
4D∗ (4, 4, 4, 3, 2, 2, 2) 7D∗ (7, 7, 2, 2, 2, 1)
4E∗ (4, 4, 4, 3, 3, 3) 7E∗ (7, 7, 4, 1, 1, 1)
4F ∗ (4, 4, 4, 4, 4, 1) 7F ∗ (7, 7, 4, 3)
6A∗ (6, 3, 3, 3, 2, 2, 1, 1) 8A∗ (8, 3, 3, 3, 2, 1, 1)
6B∗ (6, 5, 2, 2, 2, 2, 1, 1) 8B∗ (8, 5, 2, 2, 2, 1, 1)
6C∗ (6, 3, 3, 3, 3, 1, 1, 1) 8C∗ (8, 5, 4, 1, 1, 1, 1)
6D∗ (6, 6, 2, 2, 2, 1, 1, 1) 8D∗ (8, 3, 3, 3, 2, 2)
6E∗ (6, 5, 5, 1, 1, 1, 1, 1) 8E∗ (8, 5, 2, 2, 2, 2)
6F ∗ (6, 6, 4, 1, 1, 1, 1, 1) 8F ∗ (8, 3, 3, 3, 3, 1)
6G∗ (6, 3, 3, 3, 2, 2, 2) 8G∗ (8, 6, 2, 2, 2, 1)
6H∗ (6, 5, 2, 2, 2, 2, 2) 8H∗ (8, 5, 5, 1, 1, 1)
6I∗ (6, 3, 3, 3, 3, 3) 8I∗ (8, 6, 4, 1, 1, 1)
6J∗ (6, 6, 6, 1, 1, 1) 8J∗ (8, 5, 4, 4)
6K∗ (6, 5, 5, 5) 8K∗ (8, 5, 5, 3)
6L∗ (6, 6, 6, 3) 8L∗ (8, 6, 4, 3)

Table 2: Partitions with diagonal sequence (1, 2, 3, 4, 4, 4, 2, 1) ordered by largest
part.

Furthermore,

α(4) = α = (8, 6, 4, 3) α(4) = (6, 5, 5, 5)
α(6) = (8, 6, 4, 1, 1, 1) α(6) = (4, 4, 4, 3, 3, 3)
α(7) = (8, 5, 4, 1, 1, 1, 1) α(7) = (4, 4, 4, 3, 2, 2, 2)
α(8) = (7, 5, 4, 1, 1, 1, 1, 1) α(8) = α = (4, 4, 4, 3, 2, 2, 1, 1).
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