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Abstract

We present extensions of combinatorial identites published by Muthumalai, Sabar,
Gould, Rathie and Lim, and we provide various related results. Among others, we
prove the following formula which involves the Stirling numbers of the second kind
and the Bernoulli numbers:

n∑
k=0

(−1)k
(
n+1
k+1

)(
r+k
k

)S(r + k, k) =

{
Br if 0 ≤ r ≤ n,
Bn+1 − (−1

2 )n+1(n+ 1)! if r = n+ 1.

The special case r = n is due to Muthumalai.

1. Introduction

Our work has been inspired by four papers published by Muthumalai [9], Sabar [14],

Gould [6], and Rathie and Lim [13]. In these papers, the authors present remarkable

identities for certain combinatorial sums. The aim of this paper is to extend these

results and to deduce various related formulas. Some of these formulas include

classical integer sequences, such as Stirling numbers and Euler numbers. Moreover,

we show that an identity which was originally proved for integers is also valid for

complex numbers, so that by differentiation we obtain new identities.

Throughout, we use the following notations. The rising and falling factorials are

defined by

xn = x(x+ 1) · · · (x+ n− 1), xn = x(x− 1) · · · (x− n+ 1),
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respectively. Kronecker’s delta function is given by

δnk =

{
1 if n = k,
0 if n ̸= k.

The harmonic numbers are defined by

H0 = 0, Hn =

n∑
k=1

1

k
(n ≥ 1).

Moreover, we apply the hypergeometric functions 3F2 and 2F1 and Euler’s gamma

function Γ; see Abramowitz and Stegun [1, Sections 6, 15], NIST [10, Sections 5,

15, 16].

2. Main Results

2.1. Stirling Numbers of the Second Kind

The Stirling numbers of the second kind S(n, k) denote the number of ways to

partition a set of n elements into k nonempty subsets. They are given by the

summation formula

S(n, k) =
1

k!

k∑
ν=0

(−1)ν
(
k

ν

)
(k − ν)n;

see NIST [10, p. 624]. In 2013, Muthumalai [9] offered a new connection between

the Stirling numbers of the second kind and the classical Bernoulli numbers Bn,

Bn =

n∑
k=0

(−1)k
(
n+1
k+1

)(
n+k
k

)S(n+ k, k). (1)

The attempt to generalize Equation (1) led us to the following identities.

Theorem 1. Let j ≥ 0, n ≥ 0 and r ≥ 0 and let f be an r-times differentiable

function. Then

n∑
k=0

(−1)k+1

(
n+ 1

k + 1

)
(f(x)k+1+j)(r) =

r∑
k=0

(
r

k

)(
f(x)j

)(k)[
(1− f(x))n+1 − 1

](r−k)
,

(2)

and if f has no zero, then

n∑
k=0

(
n+ 1

k + 1

)
(f(x)k+1−j)(r) =

r∑
k=0

(
r

k

)( 1

f(x)j

)(k)[
(1 + f(x))n+1 − 1

](r−k)
. (3)
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We show that Equations (2) and (3) can be applied to deduce new combinatorial

identities involving well-known integer sequences. Our second theorem presents an

extension of (1).

Theorem 2. Let n ≥ 0. Then

n∑
k=0

(−1)k
(
n+1
k+1

)(
r+k
k

)S(r + k, k) =

{
Br if 0 ≤ r ≤ n,
Bn+1 − (−1

2 )n+1(n+ 1)! if r = n+ 1.
(4)

The special case r = n gives (1). Using (4) and Pascal’s rule we obtain a combi-

natorial sum which is equal to 0.

Theorem 3. Let m ≥ 1 and r ≥ 0. Then

r+m∑
k=0

(−1)k
(
r+m
k

)(
r+k
k

) S(r + k, k) = 0. (5)

An application of (3) yields the following counterpart of (4).

Theorem 4. Let n ≥ 1 and r ≥ 1. Then

n−1∑
k=0

(−1)k
(
n+1
k+2

)(
r+k
k

)S(r + k, k)

=

{
rBr−1 + (n+ r)Br if 1 ≤ r ≤ n,
(−1

2 )n+1(n+ 1)! + (n+ 1)Bn + (2n+ 1)Bn+1 if r = n+ 1.
(6)

2.2. Stirling Numbers of the First Kind

The Stirling numbers of the first kind s(n, k) are given by the generating function

n∑
k=0

s(n, k)xk = xn.

Here, (−1)n−ks(n, k) is the number of permutations of n elements which contain

exactly k cycles. The Stirling numbers of the first and second kind are connected

by the elegant identities

n∑
j=0

s(n, j)S(j, k) =

n∑
j=0

s(j, k)S(n, j) = δn,k;
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see Quaintance and Gould [12, p. 171]. Applying (2) leads to our next result.

Theorem 5. Let j ≥ 0, n ≥ 0, and r ≥ 0. Then

n+1∑
k=0

(−1)k
(
n+1
k

)(
k+j+r

r

)s(k + j + r, k + j) =

{
0 if 0 ≤ r ≤ n,
(n+1)!
2n+1 if r = n+ 1.

(7)

2.3. Euler Numbers

The Euler numbers are defined by the Taylor series expansion

1

cosh(x)
=

∞∑
n=0

En
xn

n!
.

A connection between En and S(n, k) is given by the representation

E2n = −42n
2n∑
k=1

(−1)k
S(2n, k)

k + 1
(3/4)k;

see Jha [8]. Another application of (3) yields the following formula.

Theorem 6. Let n ≥ 1. Then

n−1∑
k=0

(
n

k

)
Ek

n+1∑
ν=0

(
n+ 1

ν

)
T (ν, n− k) + (2n+1 − 1)En =

n∑
k=0

(
n+ 1

k + 1

)
T (k, n),

where

T (k, n) =
1

2k

k∑
j=0

(
k

j

)
(k − 2j)n.

2.4. Ordered Bell Numbers

The ordered Bell numbers, denoted by a(n), count the weak orderings on a set of n

elements. They are given by the generating function

1

2− ex
=

∞∑
k=0

a(k)
xk

k!

and, explicitly, by the summation formula

a(n) =

n∑
k=0

k!S(n, k);
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see Can and Joyce [2], Sprugnoli [15]. We apply (3) to obtain a counterpart of

Theorem 6.

Theorem 7. Let n ≥ 1. Then

n−1∑
k=0

(
n

k

)
a(k)

n+1∑
ν=0

(
n+ 1

ν

)
A(n− k, ν) + (2n+1 − 1)a(n) =

n∑
k=0

(
n+ 1

k + 1

)
A(n, k), (8)

where

A(r, k) =

r∑
j=0

(−1)j
(
k

j

)
j!S(r, j).

2.5. Powers and Falling Powers

In 2021, Sabar [14] presented an elegant formula for the difference of powers and

falling powers,

np − np =

p−1∑
k=0

(−1)p−k−1kp
(
n

k

)(
n− k − 1

n− p

)
(p = 1, 2, ..., n).

We use induction to prove the following extension.

Theorem 8. Let p ≥ 1 and z ∈ C. Then

zp − zp =

p−1∑
k=0

(−1)p−k−1kp
(
z

k

)(
z − k − 1

p− k − 1

)
. (9)

By differentiation, from (9) we obtain the next formula.

Corollary 1. Let p ≥ 1 and z ∈ C \ {0, 1, ..., p− 1}. Then

pzp−1 − zp
p−1∑
k=0

1

z − k
=

p−1∑
k=0

(−1)p−k kp

z − k

(
z

k

)(
z − k − 1

p− k − 1

)
. (10)

Remark 1. If we set z = n ∈ N with n ≥ p, then (10) leads to a representation for

the difference of two harmonic numbers,

Hn −Hn−p =
p

n
+

1

np

p−1∑
k=0

(−1)p−k−1 kp

n− k

(
n

k

)(
n− k − 1

n− p

)
.



INTEGERS: 25 (2025) 6

The special case p = n gives

Hn = 1 +
1

nn

n−1∑
k=0

(−1)n−k−1 kn

n− k

(
n

k

)
. (11)

Remark 2. The following companion to (9) is given in Prudnikov et al. [11,

4.2.5.47] (see also Vassilev-Missana [16]):

zn =

n∑
k=0

(−1)k
(
n

k

)(
(n− k)z

n

)
(n ≥ 0; z ∈ C).

By differentiation, we get

(−1)nnzn−1 =

n∑
k=1

(−1)kk

(
n

k

)(
kz

n

) n−1∑
j=0

1

kz − j
. (12)

We set z = −1 and z = n ∈ N in (12), respectively. This gives

1 =

n∑
k=1

(−1)n+k

(
n− 1

k − 1

)(
n+ k − 1

n

)
(Hn+k−1 −Hk−1)

and

(−n)n =

n∑
k=1

(−1)kk

(
n

k

)(
kn

n

)
(Hnk −Hn(k−1)).

Remark 3. Since

∞∑
k=2

(−1)k

k
Hk = 1 +

1

2
log2(2)− 1

12
π2,

see de Doelder [4], we obtain from (11) the series formula

∞∑
n=2

1

nn+1

n−1∑
k=1

(−1)k−1 kn

n− k

(
n

k

)
= log(2) +

1

2
log2(2)− 1

12
π2.

2.6. Hypergeometric Functions

The identity
[m/2]∑
k=0

2−2k

(
m− k

k

)(
m+ x

m− k

)
= 2−m

(
2m+ 2x

m

)
(13)
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was published by Gould [6] in 1977. In 2023, Rathie and Lim [13] presented an

interesting counterpart of (13). They used properties of hypergeometric functions

to prove
[m/2]∑
k=0

2−2k

(
m
2k

)(
2k
k

)(
k+p
k

) = 2m
(p+ 1/2)m

(2p+ 1)m
. (14)

Does there exist an identity which includes both formulas, (13) and (14), as

special cases? The next theorem gives an affirmative answer.

Theorem 9. Let m ≥ 1 and p ∈ C \ {−1,−2, ...,−[m/2]}.
(i) Let x ∈ C \ {−1,−2, ...,−[m/2]}. Then

[m/2]∑
k=0

2−2k

(
m−k
k

)(
m+x
m−k

)(
k+p
k

) =
(x+ 1)m

m!
3F2

(
−m

2
,
1−m

2
, 1; p+ 1, x+ 1; 1

)
. (15)

(ii) Let ν ∈ {1, 2, ..., [m/2]}. Then

[m/2]∑
k=0

2−2k

(
m−k
k

)(
m−ν
m−k

)(
k+p
k

) = 2−2ν (m− ν)!

m!

(−m)2ν

(p+ 1)ν
2F1

(
ν−m

2
, ν−m− 1

2
; ν+p+1; 1

)
.

(16)

Since

3F2(a, b, 1; c, 1; 1) = 2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
, (17)

see Abramowitz and Stegun [1, (15.1.20)], we obtain

3F2

(
−m

2
,
1−m

2
, 1; t+ 1, 1; 1

)
=

m!

2m(t+ 1)m

(
2m+ 2t

m

)
= 2m

(t+ 1/2)m

(2t+ 1)m
. (18)

Using (18) and (
m− k

k

)(
m

m− k

)
=

(
m

2k

)(
2k

k

)
we conclude that (15) with p = 0 yields (13) and (15) with x = 0 gives (14). The

following corollary collects some special cases of (15).

Corollary 2. Let x ∈ C.
(i) Let m ≥ 2 be even. Then

m/2∑
k=0

2−2k

(
m−k
k

)(
m+x
m−k

)(
k−m/2−1/2

k

) =


x

x+m/2

(
x+m
m

)
if x ̸= −m/2,

2−m(−1)m/2 1

((m−1)/2
m/2 )

if x = −m/2.
(19)
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(ii) Let m ≥ 1 be odd. Then

(m−1)/2∑
k=0

2−2k

(
m−k
k

)(
m+x
m−k

)(
k−m/2−1

k

) =


x

x+(m−1)/2

(
x+m
m

)
if x ̸= (1−m)/2,

2−m(−1)(m−1)/2 m+1

( m/2
(m−1)/2)

if x = (1−m)/2.
(20)

(iii) Let m ≥ 1. Then

[m/2]∑
k=0

2−2k

(
m−k
k

)(
m+x
m−k

)(
k−m+1/2−x

k

)

=



x(x+m−1/2)
(x+m/2)(x+(m−1)/2)

(
x+m
m

)
if x ̸= −m/2, (1−m)/2,

2−m(−1)m/2 1

((m−3)/2
m/2 )

if m is even and x = −m/2,

2−m(−1)(m−1)/2 m+1

( m/2−1
(m−1)/2)

if m is odd and x = (1−m)/2.

(21)

3. Proofs

Proof of Theorem 1. The proofs of (2) and (3) are similar, so that it suffices to

consider (3). Let

F (x) = Fj,n(x) =
1

f(x)j
[
(1 + f(x))n+1 − 1

]
. (22)

The binomial formula gives for y ̸= 0

1

yj
[
(1 + y)n+1 − 1

]
=

n∑
k=0

(
n+ 1

k + 1

)
yk+1−j . (23)

We use (23) with y = f(x) and differentiate F r times. Then we conclude from

(22):

F (r)(x) =

n∑
k=0

(
n+ 1

k + 1

)
(f(x)k+1−j)(r). (24)

Next, we apply (23) and the Leibniz formula. It follows that

F (r)(x) =

r∑
k=0

(
r

k

)( 1

f(x)j

)(k)[
(1 + f(x))n+1 − 1

](r−k)
. (25)

From (24) and (25) we obtain (3). 2
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In what follows, we set

f(x) =
1− ex

x
(x ̸= 0), f(0) = −1.

We need four lemmas. The following formula is given in Gradshteyn and Ryzhik

[7, p. 1047].

Lemma 1. Let k ≥ 0 and r ≥ 0. Then

(f(x)k)(r)
∣∣∣
x=0

= (−1)k
S(r + k, k)(

r+k
k

) .

Lemma 2. Let k ≥ 0. Then ( 1

f(x)

)(k)∣∣∣
x=0

= −Bk.

Proof. We have

x

ex − 1
=

∞∑
k=0

Bk
xk

k!
.

It follows that

−
( 1

f(x)

)(k)∣∣∣
x=0

=
( x

ex − 1

)(k)∣∣∣
x=0

= Bk.

2

Lemma 3. Let r ≥ 0. Then[
(1 + f(x))n+1

](r)∣∣∣
x=0

=

{
0 if 0 ≤ r ≤ n,
(−1/2)n+1(n+ 1)! if r = n+ 1.

(26)

Proof. We have

1 + f(x) = x
(
−

∞∑
ν=0

xν

(ν + 2)!

)
.

It follows that

(1 + f(x))n+1 = (−1/2)n+1xn+1 + a1x
n+2 + ....

This leads to (26). 2

The next formula is due to Euler; see Chu and Zhou [3].
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Lemma 4. Let r ≥ 1. Then
r∑

ν=0

(
r

ν

)
BνBr−ν = −rBr−1 − (r − 1)Br. (27)

Proof of Theorem 2. We consider two cases.

Case 1: 0 ≤ r ≤ n. Using Lemma 1 gives

n∑
k=0

(
n+ 1

k + 1

)
(f(x)k)(r)

∣∣
x=0

=

n∑
k=0

(−1)k
(
n+ 1

k + 1

)
S(r + k, k)(

r+k
k

) .

Next, we apply Lemmas 2 and 3. We obtain

r∑
k=0

(
r

k

)( 1

f(x)

)(k)∣∣∣
x=0

[
(1 + f(x))n+1 − 1

](r−k)
∣∣∣
x=0

=

r−1∑
k=0

(
r

k

)( 1

f(x)

)(k)∣∣∣
x=0

[
(1 + f(x))n+1 − 1

](r−k)
∣∣∣
x=0

+
( 1

f(x)

)(r)∣∣∣
x=0

[
(1 + f(x))n+1 − 1

]∣∣∣
x=0

=

r−1∑
k=0

(
r

k

)
(−Bk) · 0 + (−Br) · (−1) = Br.

From (3) with j = 1 we conclude that (4) holds.

Case 2: r = n+ 1. Using Lemma 1 gives

n∑
k=0

(
n+ 1

k + 1

)
(f(x)k)(n+1)

∣∣∣
x=0

=

n∑
k=0

(
n+ 1

k + 1

)
(−1)k

S(k + n+ 1, k)(
k+n+1

k

)
and using Lemmas 2 and 3 yields

n+1∑
k=0

(
n+ 1

k

)( 1

f(x)

)(k)∣∣∣
x=0

[
(1 + f(x))n+1 − 1

](n+1−k)∣∣
x=0

=
1

f(0)

[
(1 + f(x))n+1

](n+1)∣∣
x=0

+

n∑
k=1

(
n+ 1

k

)( 1

f(x)

)(k)∣∣∣
x=0

[
(1 + f(x))n+1 − 1

](n+1−k)∣∣
x=0

+
( 1

f(x)

)(n+1)∣∣∣
x=0

[
(1 + f(0))n+1 − 1

]
= −

(−1

2

)n+1

(n+ 1)! + 0 +Bn+1.
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Applying (3) with j = 1 leads to (4). 2

Proof of Theorem 3. We define

U(r,m) =

r+m∑
k=0

(
r +m+ 1

k + 1

)
Vk(r)

with

Vk(r) = (−1)k
S(r + k, k)(

r+k
k

) .

From (4) with n = r +m we obtain

Br = U(r,m) (r ≥ 0;m ≥ 0). (28)

Let m ≥ 1. We apply (
N + 1

ν

)
=

(
N

ν

)
+

(
N

ν − 1

)
(29)

with N = r +m, ν = k + 1. Then

U(r,m) =

r+m∑
k=0

((
r +m

k + 1

)
+

(
r +m

k

))
Vk(r)

=

r+m−1∑
k=0

(
r +m

k + 1

)
Vk(r) +

r+m∑
k=0

(
r +m

k

)
Vk(r)

= U(r,m− 1) +

r+m∑
k=0

(
r +m

k

)
Vk(r). (30)

From (28) and (30) we get (5). 2

Proof of Theorem 4. We consider two cases.

Case 1: 1 ≤ r ≤ n. Applying Lemmas 1 and 2 yields

n∑
k=0

(
n+ 1

k + 1

)
(f(x)k−1)(r)

∣∣
x=0

= (n+ 1)
( 1

f(x)

)(r)∣∣∣
x=0

+

n−1∑
k=0

(
n+ 1

k + 2

)
(f(x)k)(r)

∣∣
x=0

= (n+ 1)(−Br) +

n−1∑
k=0

(
n+ 1

k + 2

)
(−1)k

S(r + k, k)(
r+k
k

) . (31)



INTEGERS: 25 (2025) 12

The Cauchy product formula gives

1

f(x)2
=

( x

ex − 1

)2

=

∞∑
m=0

m∑
ν=0

(
m

ν

)
BνBm−ν

xm

m!
.

Hence ( 1

f(x)2

)(m)∣∣∣
x=0

=

m∑
ν=0

(
m

ν

)
BνBm−ν . (32)

Using (32) and (26) gives

r∑
k=0

(
r

k

)( 1

f(x)2

)(k)∣∣∣
x=0

[
(1 + f(x))n+1 − 1

](r−k)
∣∣∣
x=0

=

r−1∑
k=0

(
r

k

)( 1

f(x)2

)(k)∣∣∣
x=0

[
(1 + f(x))n+1

](r−k)
∣∣∣
x=0

+
( 1

f(x)2

)(r)∣∣∣
x=0

[
(1 + f(0))n+1 − 1

]
= −

r∑
ν=0

(
r

ν

)
BνBr−ν . (33)

We apply (3) with j = 2. Then, from (31) and (33), we obtain

−(n+ 1)Br +

n−1∑
k=0

(−1)k
(
n+1
k+2

)(
r+k
k

)S(r + k, k) = −
r∑

ν=0

(
r

ν

)
BνBr−ν . (34)

Using (27) and (34) we conclude that (6) holds.

Case 2: r = n+ 1. We have

n∑
k=0

(
n+ 1

k + 1

)
(f(x)k−1)(n+1)

∣∣∣
x=0

= (n+ 1)
( 1

f(x)

)(n+1)∣∣∣
x=0

+

n∑
k=1

(
n+ 1

k + 1

)∣∣∣
x=0

(f(x)k−1)(n+1)
∣∣∣
x=0

= (n+ 1)(−Bn+1) +

n∑
k=1

(
n+ 1

k + 1

)
(−1)k−1S(n+ k, k − 1)(

n+k
k−1

)
and

n+1∑
k=0

(
n+ 1

k

)( 1

f(x)2

)(k)∣∣∣
x=0

[
(1 + f(x))n+1 − 1

](n+1−k)∣∣
x=0
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=
1

f(0)2
[
(1 + f(x))n+1

](n+1)∣∣
x=0

+

n∑
k=1

(
n+ 1

k

)( 1

f(x)2

)(k)∣∣∣
x=0

[
(1 + f(x))n+1

](n+1−k)∣∣
x=0

+
( 1

f(x)2

)(n+1)∣∣∣
x=0

[
(1 + f(0))n+1 − 1

]
=

(−1

2

)n+1

(n+ 1)! + 0 +
( 1

f(x)2

)(n+1)∣∣∣
x=0

· (−1)

=
(−1

2

)n+1

(n+ 1)! + (n+ 1)Bn + nBn+1.

Applying (3) with j = 2 we conclude that (6) is valid. 2

Proof of Theorem 5. We define

g(x) =
log(1 + x)

x
(−1 < x ̸= 0), g(0) = 1.

Then

g(x) =

∞∑
k=0

(−1)k

k + 1
xk (−1 < x ≤ 1).

Let m ≥ 0. Using the series representation

g(x)m = m!

∞∑
k=0

s(m+ k,m)
xk

(m+ k)!
,

(see Quaintance and Gould [12, (13.34)]) gives, for r ≥ 0,

(g(x)m)(r)
∣∣∣x=0 =

s(m+ r,m)(
m+r
r

) .

From

(1− g(x))n+1 = xn+1
(
(1/2)n+1 + c1x+ · · ·

)
,

we conclude that

[(1− g(x))n+1 − 1](r)
∣∣∣x=0 =

 −1 if r = 0,
0 if 1 ≤ r ≤ n,
(n+ 1)!/2n+1 if r = n+ 1.

Let j ≥ 0 and 0 ≤ r ≤ n+ 1. It follows that

n∑
k=0

(−1)k+1

(
n+ 1

k + 1

)
(g(x)k+1+j)(r)

∣∣∣x=0

=

n∑
k=0

(−1)k+1

(
n+1
k+1

)(
k+1+j+r

r

)s(k + 1 + j + r, k + 1 + j) (35)
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and

r∑
k=0

(
r

k

)(
g(x)j

)(k)∣∣∣x=0

[
(1− g(x))n+1 − 1

](r−k)
∣∣∣x=0

=

 − s(j+r,j)

(j+r
r )

if 0 ≤ r ≤ n,

(n+1)!
2n+1 − s(j+n+1,j)

(j+n+1
j )

if r = n+ 1.
(36)

From (2), (35) and (36) we obtain (7). 2

Proof of Theorem 6. Let h(x) = cosh(x). Then( 1

h(x)

)(k)∣∣∣x=0 = Ek.

From

h(x)k =
(e−x + ex

2

)k

=
1

2k

k∑
ν=0

(
k

ν

)
e(k−2ν)x,

we obtain

(h(x)k)(n)
∣∣∣x=0 =

1

2k

k∑
ν=0

(
k

ν

)
(k − 2ν)n = T (k, n).

Let

Lk,n(x) = [(1 + h(x))n+1 − 1](n−k).

Then

Ln,n(0) = 2n+1 − 1.

Let 0 ≤ k ≤ n− 1. We have

Ln,k(x) = [(1+h(x))n+1](n−k) =

n+1∑
ν=0

(
n+ 1

ν

)
(h(x)ν)(n−k) =

n+1∑
ν=0

(
n+ 1

ν

)
T (ν, n−k).

Using (3) with j = 1 and r = n gives

n∑
k=0

(
n+ 1

k + 1

)
T (k, n) =

n−1∑
k=0

(
n

k

)
Ek

n+1∑
ν=0

(
n+ 1

ν

)
T (ν, n−k)+(2n+1−1)En. 2

Proof of Theorem 7. Let w(x) = 2− ex. We obtain( 1

w(x)

)(k)∣∣∣
x=0

= a(k)

and

(w(x)k)(n)
∣∣
x=0

= 2kZ(k, n)
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with

Z(k, n) =

k∑
ν=0

(
−1

2

)ν
(
k

ν

)
νn.

Let

Rk,n(x) =
[
(1 + w(x))n+1 − 1

](n−k)
.

We have

Rn,n(0) = 2n+1 − 1,

and if 0 ≤ k ≤ n− 1, then

Rk,n(0) =
[
(1 + w(x))n+1

](n−k)∣∣
x=0

=

n+1∑
ν=0

(
n+ 1

ν

)
2νZ(ν, n− k).

Applying (3) with j = 1 and r = n yields

n∑
k=0

(
n+ 1

k + 1

)
2kZ(k, n) =

n−1∑
k=0

(
n

k

)
a(k)

n+1∑
ν=0

(
n+ 1

ν

)
2νZ(ν, n− k) + (2n+1 − 1)a(n).

(37)

In Gould [5, (1.126)] we find

n∑
ν=0

(
n

ν

)
νrxν = (1 + x)n

r∑
j=0

(−1)j
(
n

j

)( x

x+ 1

)j
j∑

k=0

(−1)k
(
j

k

)
kr. (38)

Using (38) with x = −1/2 and

S(r, j) =
1

j!

j∑
k=0

(−1)j+k

(
j

k

)
kr

gives

2nZ(n, r) =

r∑
j=0

(
n

j

)
(−1)jj!S(r, j). (39)

From (37) and (39) we conclude that (8) holds. 2

Proof of Theorem 8. We use induction on p. If p = 1, then both sides of (9) are

equal to 0. Next, we assume that (9) is valid. We denote the sum on the right-hand

side of (9) by Sp(z). Applying the induction hypothesis gives

zp+1 − zp+1 = zp+1 − (p+ 1)!

(
z

p+ 1

)
= pzp + (z − p)Sp(z). (40)

We have

(z − p)

(
z − k − 1

p− k − 1

)
= (p− k)

(
z − k − 1

p− k

)
. (41)
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Using (40) and (41) yields

zp+1 − zp+1 − Sp+1(z) = pTp(z), (42)

where

Tp(z) = zp − pp
(
z

p

)
−

p−1∑
k=0

(−1)p−kkp
(
z

k

)(
z − k − 1

p− k

)
.

Next, we apply (9), (29), and the two formulas(
z

k

)(
z − k

p− k

)
=

(
p

k

)(
z

p

)
,

n∑
k=0

(−1)kkn
(
n

k

)
= (−1)nn!;

see Gould [5, (1.13)]. Then we obtain

Tp(z) =
(
p!− pp)

(
z

p

)
−

p−1∑
k=0

(−1)p−kkp
(
z

k

)[(
z − k − 1

p− k − 1

)
+

(
z − k − 1

p− k

)]

=
(
p!− pp

)(z
p

)
−

p−1∑
k=0

(−1)p−kkp
(
z

k

)(
z − k

p− k

)

=
(
p!− pp

)(z
p

)
−
(
z

p

) p−1∑
k=0

(−1)p−kkp
(
p

k

)

=

(
z

p

)[
p!−

p∑
k=0

(−1)p−kkp
(
p

k

)]
= 0. (43)

From (42) and (43) we conclude that (9) holds with p+ 1 instead of p. 2

Proof of Corollary 1. Let Lp(z) and Rp(z) be the expressions given on the left-hand

side and on the right-hand side of (9), respectively. We have

d

dz

(
z

p

)
=

(
z

p

) p−1∑
k=0

1

z − k
. (44)

Applying (44) gives

L′
p(z) = pzp−1 − p!

(
z

p

) p−1∑
k=0

1

z − k
(45)

and

R′
p(z) =

p−1∑
k=0

(−1)p−k−1kp
(
z

k

)(
z − k − 1

p− k − 1

)p−1∑
j=0

1

z − j
− 1

z − k


=

(
zp − p!

(
z

p

)) p−1∑
j=0

1

z − j
+

p−1∑
k=0

(−1)p−k kp

z − k

(
z

k

)(
z − k − 1

p− k − 1

)
. (46)
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Since L′
p(z) = R′

p(z), we conclude from (45) and (46) that (10) holds. 2

Proof of Theorem 9. (i) Let 0 ≤ k ≤ [m/2] and p, x /∈ {−1,−2, ...,−[m/2]}. We

have (
m− k

k

)(
m+ x

m− k

)
=

(−m)2k

m!k!

(x+ 1)m

(x+ 1)k

and (
k + p

k

)
=

(p+ 1)k

k!
, 2−2k(−m)2k =

(−m

2

)k(1−m

2

)k

.

It follows that

[m/2]∑
k=0

2−2k

(
m−k
k

)(
m+x
m−k

)(
k+p
k

) =
(x+ 1)m

m!

[m/2]∑
k=0

(−m/2)k((1−m)/2)k

(p+ 1)k(x+ 1)k

=
(x+ 1)m

m!
3F2

(
−m

2
,
1−m

2
, 1; p+ 1, x+ 1; 1

)
.

(ii) Let ν ∈ {1, ..., [m/2]}. We use the limit relation

lim
σ→−n

1

Γ(σ)
3F2(a, b, c; d, σ; z) =

zn+1

(n+ 1)!

an+1bn+1cn+1

dn+1

×3F2(a+ n+ 1, b+ n+ 1, c+ n+ 1; d+ n+ 1, n+ 2; z),

where n is a nonnegative integer; see Prudnikov et al. [11, p. 438]. Then we obtain

lim
x→−ν

(x+ 1)m

m!
3F2

(
−m

2
,
1−m

2
, 1; p+ 1, x+ 1; 1

)

= lim
x+1→1−ν

Γ(x+ 1 +m)

m!
· 1

Γ(x+ 1)
3F2

(
−m

2
,
1−m

2
, 1; p+ 1, x+ 1; 1

)
=

Γ(1− ν +m)

m!
· (−m/2)ν((1−m)/2)ν1ν

ν!(p+ 1)ν

×3F2

(
−m

2
+ ν,

1−m

2
+ ν, 1 + ν; p+ 1 + ν, ν + 1; 1

)
= 2−2ν (m− ν)!

m!

(−m)2ν

(p+ 1)ν
2F1

(
ν − m

2
, ν − m− 1

2
; ν + p+ 1; 1

)
. (47)

From (15) and (47) we conclude that (16) is valid. 2

Proof of Corollary 2. (i) Let m ≥ 2 be even. First, let x /∈ {−1, ...,−m/2}. Using
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(15) with p = −(m+ 1)/2 and the second formula in (17) gives

m/2∑
k=0

2−2k

(
m−k
k

)(
m+x
m−k

)(
k−m/2−1/2

k

) =
(x+ 1)m

m!
3F2

(
−m

2
,
1−m

2
, 1;

1−m

2
, x+ 1; 1

)
=

(x+ 1)m

m!
2F1

(
−m

2
, 1;x+ 1; 1

)
=

x

x+m/2

(
x+m

m

)
.

By continuity, we conclude that (19) holds for all x ̸= −m/2. Since

lim
x→−m/2

x

x+m/2

(
x+m

m

)
= 2−m(−1)m/2 1(

(m−1)/2
m/2

) ,
we obtain (19) for x = −m/2.

(ii) Let m ≥ 1 be odd and x /∈ {−1, ...,−(m − 1)/2}. We apply (15) with

p = −m/2− 1. This gives

(m−1)/2∑
k=0

2−2k

(
m−k
k

)(
m+x
m−k

)(
k−m/2−1

k

) =
(x+ 1)m

m!
2F1

(1−m

2
, 1;x+ 1; 1)

=
x

x+ (m− 1)/2

(
x+m

m

)
.

By continuity, (20) holds for all x ̸= (1−m)/2. Using the limit relation

lim
x→(1−m)/2

x

x+ (m− 1)/2

(
x+m

m

)
= 2−m(−1)(m−1)/2 m+ 1(

m/2
(m−1)/2

) ,
we conclude that (20) is also valid for x = (1−m)/2.

(iii) Let m ≥ 1, x ∈ C, p = 1/2−m− x. First, we assume that

p /∈ {−1, ...,−[m/2]} and x /∈ {−1, ...,−[m/2]}.

It follows that x ̸= −m/2 and x ̸= (1−m)/2. We have

3F2(−n, a, b; c, a+ b− c− n+ 1; 1) =
(c− a)n(c− b)n

cn(c− a− b)n
; (48)

see Prudnikov et al. [11, (7.4.4.88)]. To prove (21) we consider two cases.

Case 1: m ≥ 2 is even. We apply (48) with

n =
m

2
, a =

1−m

2
, b = 1, c = x+ 1,
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and (15) with p = 1/2−m− x. This gives

[m/2]∑
k=0

2−2k

(
m−k
k

)(
m+x
m−k

)(
k−m+1/2−x

k

) =
(x+ 1)m

m!

(x+ (m+ 1)/2))m/2

(x+ (m− 1)/2)m/2

xm/2

(x+ 1)m/2

=
x(x+m− 1/2)

(x+m/2)(x+ (m− 1)/2)

(
x+m

m

)
. (49)

Case 2: m ≥ 1 is odd. Using (48) with

n =
m− 1

2
, a = −m

2
, b = 1, c = x+ 1,

and (15) with p = 1/2−m− x leads to

[m/2]∑
k=0

2−2k

(
m−k
k

)(
m+x
m−k

)(
k−m+1/2−x

k

) =
(x+ 1)m

m!

(x+m/2 + 1)(m−1)/2

(x+m/2)(m−1)/2

x(m−1)/2

(x+ 1)(m−1)/2

=
x(x+m− 1/2)

(x+m/2)(x+ (m− 1)/2)

(
x+m

m

)
. (50)

By continuity, we conclude from (49) and (50) that (21) is valid for all x ̸= −m/2

and x ̸= (1−m)/2.

The limit relation for m even

lim
x→−m/2

x(x+m− 1/2)

(x+m/2)(x+ (m− 1)/2)

(
x+m

m

)
= 2−m(−1)m/2 1(

(m−3)/2
m/2

) ,
and the limit relation for m odd

lim
x→(1−m)/2

x(x+m− 1/2)

(x+m/2)(x+ (m− 1)/2)

(
x+m

m

)
= 2−m(−1)(m−1)/2 m+ 1(

m/2−1
(m−1)/2

) ,
give that (21) also holds if m is even and x = −m/2 and if m is odd and x =

(1−m)/2. This completes the proof of Corollary 2. 2
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