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Abstract

Let k, l,m ∈ Z+. The generalized Schur number modulo m, Sm(k, l), is the greatest
N ∈ Z+ such that there exists a partition of S = {1, . . . , N} into k subsets, where
in each subset Si, if x1, . . . , xl ∈ Si and x1 + · · · + xl ≡ y (mod m), then y ̸∈ Si.
Note that the xj ’s need not be distinct. The values of Sm(k, l) for m = 1, 2, 3 were
explicitly determined by Chappelon et al. in 2013. In this paper, we obtain new
general results for Sm(k, l) and Spi(k, l) where p is a prime and i ≥ 1 is an integer.
Using these results, we determine the exact values of Sm(k, l) for m = 4, 5, 6, 7.

1. Introduction

In 1916, Schur [11] showed that in every partition of the set of integers from 1 up to

⌊k!e⌋ into k subsets, there exists a subset containing the numbers x, y, z satisfying

x+ y = z.

The Schur number, denoted by S(k), is the greatest N ∈ Z+ such that the

discrete interval [1, N ] admits a partition into k subsets, none of which contains

numbers x, y, z satisfying the equation x + y = z. Schur’s result [11] shows that
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S(k) is always finite for all positive integers k. The problem of determining the

values of S(k) was posed by Guy [6, Problem E11]. This problem is difficult in

general, and after more than a hundred years since Schur’s original work, we only

know the values of S(k) for integers 1 ≤ k ≤ 5.

Guy also posed a version of this problem in modular arithmetic [6, Problem

E12]. This idea was originally conceived by Abbott and Wang [1] in 1977 with the

intention to study new problems on sum-free sets of integers. They defined and

studied the numbers T (k), which is the greatest N ∈ Z+ such that the discrete

interval [1, N ] admits a partition into k subsets, none of which contains numbers

x, y, z satisfying

x+ y ≡ z (mod N + 1).

They were interested in the relationship between T (k) and S(k) and demonstrated

that T (k) = S(k) for integers 1 ≤ k ≤ 4. This led them to conjecture that equality

is true for all k ∈ Z+; the recent work of Heule [7, p. 6599] confirms this for k = 5.

Inspired by the problem of Guy and Abbott and Wang, a formal study of mod-

ular generalizations of the Schur numbers was initiated by Chappelon, Marchena,

and Domı́nguez [4]. The purpose of this paper is to further investigate such gener-

alizations and obtain bounds as well as explicit values.

1.1. Definitions and Recent Developments

Let k ∈ Z+. Partition a set of integers S into k subsets S1, . . . , Sk and set P =

{S1, . . . , Sk}, where Si ∩ Sj = ∅ for all i ̸= j. We call P a k-partition of S. Let

l ∈ Z+. Then S is called l-sum-free if x1, . . . , xl ∈ S and x1 + · · · + xl = y imply

y ̸∈ S. The variables x1, . . . , xl need not be distinct and some of the Si could be

empty sets.

The generalized Schur number, S(k, l) is the greatest N ∈ Z+ such that [1, N ]

has a k-partition into l-sum-free sets. Clearly, S(k, 2) = S(k). The following table

[2] summarizes the latest values and lower bounds of the Schur numbers (see also

[5, 7, 9, 10]).

k 1 2 3 4 5 6 7 8 9 10 11 12
S(k, 2) 1 4 13 44 160 ≥ 536 ≥ 1 696 ≥ 5 286 ≥ 17 803 ≥ 60 948 ≥ 203 828 ≥ 644 628

Table 1: Latest values and lower bounds of S(k, 2)

For a set of integers S and m ∈ Z+, if x1, . . . , xl ∈ S and x1 + · · · + xl ≡ y

(mod m) imply y ̸∈ S, then we say that the set S is l-sum-free modulo m. The

elements x1, . . . , xl ∈ S need not be distinct. The generalized Schur number modulo

m, Sm(k, l) is the greatest N ∈ Z+ such that the discrete interval [1, N ] has a

k-partition into l-sum-free sets modulo m.
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The generalized Schur number and its modular counterpart are intrinsically con-

nected by the bound

Sm(k, l) ≤ S(k, l),

for a set that is l-sum-free modulo m is also l-sum-free; the converse is not true. For

example, the set {1, 4, 6} is both 2-sum-free modulo 5 and 2-sum-free. In contrast,

the set {1, 4, 13} is 2-sum-free but not 2-sum-free modulo 5 because 1 + 13 ≡ 4

(mod 5). The numbers Sm(k, l) also have a trivial (but useful) upper bound shown

in [4]. Note that, for every positive integer m, the sum of l copies of m is congruent

to m modulo m. It follows that, if a set X is l-sum-free modulo m, then m is not

a member of X. For this reason,

Sm(k, l) ≤ m− 1. (1)

It is worth mentioning that the modular Schur numbers defined here are related to

the numbers T (k) defined by Abbott and Wang. As pointed out in [4] we have the

following equality from the definition of these numbers:

T (k) = max{N ∈ Z+ : SN+1(k, 2) = N}.

So, the problem of determining T (k) is the same as determining the maximum

m = N + 1 for which Inequality (1) holds for a fixed k. We do not pursue the

problem of determining T (k) in this paper.

Chappelon, Marchena, and Domı́guez explicitly determined the values of Sm(k, l)

for m = 1, 2, 3. For m = 1, the set {x} is never l-sum-free modulo 1 because the

sum of l copies of every integer x is congruent to x modulo 1. So S1(k, l) = 0 for

all k, l ≥ 1. It is also clear that if l = 1, then Sm(k, 1) = 0 for all positive integers

k,m. The values of Sm(k, l) for m = 2, 3 are as follows.

Theorem 1 ([4]). Let k, l ∈ Z+. Then S2(k, l) = 0 when l ≡ 1 (mod 2), and

S2(k, l) = 1 when l ≡ 0 (mod 2).

Theorem 2 ([4]). Let k, l ∈ Z+. If l ≡ 1 (mod 3), then S3(k, l) = 0. Furthermore,

for l not congruent to 1 modulo 3,

1. S3(k, l) = 1 for k = 1 and l ≡ 0, 2 (mod 3),

2. S3(k, l) = 2 for k ≥ 2 and l ≡ 0, 2 (mod 3).

It was mentioned at the end of [4] that it is difficult to determine the values of

Sm(k, l) when m is large. In this paper, we obtain new exact values for Sm(k, l).

In Section 2, we obtain a condition for when a singleton is not l-sum-free modulo

m and deduce general values of Sm(k, l) as a consequence. Our most general result

(Theorem 8) gives the explicit values of Spi(k, l) where p is prime and l ≥ pi − 1.

Using these results, we completely determine previously unknown values of Sm(k, l)

for m = 4, 5, 6, and 7 (see Theorems 6, 7, 9, and 10, respectively).
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Our results may have potential applications in theoretical physics.1 In [8],

Martin-Delgado proposed a correlated exclusion principle: if two particles occupy

states corresponding to the quantum numbers x and y in the energy level E , then
a particle with quantum number x + y cannot be in E . This is mathematically

equivalent to saying that E is 2-sum-free. For example, say we have particles with

quantum numbers 1 to 13, and we want to fill the energy levels E1, E2, E3 while obey-
ing the correlated exclusion principle. This is the same as constructing a 3-partition

of [1, 13] into 2-sum-free sets; such a construction is possible because S(3, 2) = 13,

e.g.,

{E1, E2, E3} = {{1, 4, 10, 13}, {2, 3, 7, 11, 12}, {5, 6, 8, 9}}.

According to the paper, physically realizing such quantum systems require a lot

of resources due to how S(k, 2) grows. Thus, the construction of these quantum

systems with modular Schur numbers and modular sum-free sets were suggested

because modular arithmetic has a natural “cut-off” effect.

2. Some General Results for Sm(k, l)

To determine Sm(k, l) for general moduli m, it is beneficial to know for what values

of l is a set l-sum-free modulo m. Since we are allowed to repeatedly sum a single

number, we begin by determining when a singleton {a} is not l-sum-free modulo m

using the following well-known result from the theory of congruences.

Theorem 3 ([3]). Let a, b,m, x be integers such that m > 0. Let d = gcd(a,m).

Then the linear congruence ax ≡ b (mod m) has a solution if and only if d | b.
If d | b, then it has exactly d mutually incongruent solutions modulo m. If x0 is a

solution, then all the d mutually incongruent solutions are given by x ≡ x0+u(m/d)

(mod m), where 0 ≤ u ≤ d− 1.

Theorem 4. Let a, l,m be positive integers such that a ̸≡ 0 (mod m). Suppose

d = gcd(a,m). Then the following hold.

1. If d = 1, then {a} is not l-sum-free modulo m if and only if l ≡ 1 (mod m).

2. If d > 1, then {a} is not l-sum-free modulo m if and only if l ≡ 1 (mod m/d).

Proof. Let d = 1. Suppose {a} is not l-sum-free modulo m. Then

l∑
i=1

a =

l times︷ ︸︸ ︷
a+ a+ · · ·+ a = al ≡ a (mod m).

1We will need to borrow some terminology from physics but we will not give a rigorous physical
explanation.
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By Theorem 3, since d = 1, the linear congruence al ≡ a (mod m) has a unique

solution l ≡ 1 (mod m). The converse is clear by the definition of an l-sum-free set

modulo m.

Now, let d > 1. If {a} is not l-sum-free modulo m, then
∑l

i=1 a = al ≡ a

(mod m). By Theorem 3, since d > 1, al ≡ a (mod m) has exactly d incongruent

solutions modulo m. Clearly l ≡ 1 (mod m) is a solution and all the d incongruent

solutions modulo m are given by l ≡ 1 + u(m/d) (mod m), 0 ≤ u ≤ d − 1. Hence,

l ≡ 1 (mod m/d). The converse is clear by the definition of an l-sum-free set modulo

m.

When a = 1, Theorem 4 gives the following corollary which simplifies our argu-

ment for the case where l ≡ 1 (mod m).

Corollary 1. Let m > 0 be an integer. The set {1} is not l-sum-free modulo m if

and only if l ≡ 1 (mod m).

Since 0 ≤ Sm(k, l) ≤ m− 1, by Corollary 1, if l ≡ 1 (mod m), the set {1} is not

l-sum-free modulo m. Hence, the next corollary follows.

Corollary 2. Let k, l,m be positive integers. Then Sm(k, l) = 0 if and only if l ≡ 1

(mod m).

Corollary 3. Let k, l,m, a be positive integers and d = gcd(a,m). If 1 ≤ a ≤ m−1

and l ≡ 1 (mod m/d), then Sm(k, l) < a.

Proof. By Theorem 4, the set {a} is not l-sum-free modulo m. Therefore, every set

containing a is not l-sum-free modulo m.

Now the values of Sm(k, l) are known for m = 1, 2, 3, as stated in Theorems 1 and

2. So we consider those cases where m is greater than 3. If m is an even modulus,

we have the following.

Corollary 4. Let k, l, n be positive integers such that k, n ≥ 2 and l ̸≡ 1 (mod 2n).

Then S2n(k, l) = 1 when l ≡ n + 1 (mod 2n). Furthermore, S2n(k, l) ≥ 2 when

l ̸≡ n+ 1 (mod 2n).

Proof. Note that gcd(2, 2n) = 2. If l ≡ n + 1 (mod 2n), then l ≡ 1 (mod n). By

Corollary 3, S2n(k, l) < 2. Thus, S2n(k, l) = 1 follows from Corollary 2, because

l ≡ n+ 1 ̸≡ 1 (mod 2n).

Now for the second assertion. Suppose l ̸≡ n + 1 (mod 2n). Then by part

2 of Theorem 4, {2} is l-sum-free modulo 2n. This implies that {{1}, {2}} is a

2-partition of [1, 2] into l-sum-free-sets modulo 2n. Therefore, S2n(k, l) ≥ 2.

Corollary 5. Let k, l,m be positive integers such that l,m ≥ 2. Suppose l ̸≡ 1

(mod d) for all positive divisors d of m and d ̸= 1. If k ≥ m − 1, then Sm(k, l) =

m− 1.
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Proof. Let 1 ≤ a ≤ m − 1 and gcd(a,m) = d1. By our assumption, l ̸≡ 1

(mod m/d1). So, by part 2 of Theorem 4, {a} is l-sum-free modulo m. There-

fore, {{1}, {2}, . . . , {m− 1}} is a (m− 1)-partition of [1,m− 1] into l-sum-free-sets

modulo n. So, Sm(k, l) ≥ m−1. The corollary then follows from Inequality (1).

For k = 1, we have the following.

Theorem 5. Let l and m be positive integers such that l,m ≥ 2. Suppose l ̸≡ 1

(mod m). Then Sm(1, l) = 1 if and only if l = 2 or l ≥ m+1
2 .

Proof. By Corollary 2, Sm(1, l) ≥ 1.

Suppose l = 2 or l ≥ m+1
2 . If l = 2, clearly, 1 + 1 ≡ 2 (mod m). Thus,

Sm(1, l) < 2 and we conclude that Sm(1, l) = 1. If m+1
2 ≤ l ≤ m+ 1, then

2l−m−1︷ ︸︸ ︷
1 + · · ·+ 1+

m+1−l︷ ︸︸ ︷
2 + · · ·+ 2 ≡ 1 (mod m).

If l ≥ m+ 1, by letting l = am+ b where a ≥ 1 and 0 ≤ b < m, we have

l−m+b−1︷ ︸︸ ︷
1 + · · ·+ 1+

m−b+1︷ ︸︸ ︷
2 + · · ·+ 2 ≡ 1 (mod m).

Therefore, Sm(1, l) < 2 for l ≥ m+1
2 . Hence, Sm(1, l) = 1.

Suppose Sm(1, l) = 1. If l = 2, we are done. Suppose l ̸= 2. There exist positive

integers k1, k2 such that k1 + k2 = l and

k1︷ ︸︸ ︷
1 + · · ·+ 1+

k2︷ ︸︸ ︷
2 + · · ·+ 2 ≡ 1 or 2 (mod m),

i.e., k1 +2k2 = 1+ km or 2 + km for some k ≥ 0. Since l ≥ 3, we must have k ≥ 1.

So, k1 = 2(k1 + k2) − (k1 + 2k2) = 2l − 1 − km or 2l − 2 − km. In either case,

l ≥ km+1
2 ≥ m+1

2 , for k1 ≥ 0.

We will apply these results to determine the values of S4(k, l) and S6(k, l) in the

next two sections.

3. Establishing S4(k, l)

We will prove the following theorem.

Theorem 6. Let k, l ∈ Z+. If l ≡ 1 (mod 4), then S4(k, l) = 0. Furthermore, for

l not congruent to 1 modulo 4,

1. S4(k, l) = 1 for

{
k = 1,

k ≥ 2 and l ≡ 3 (mod 4),
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2. S4(k, l) = 3 for k ≥ 2 and l ≡ 0, 2 (mod 4).

Proof. By Corollary 2, if l ≡ 1 (mod 4), then S4(k, l) = 0. From here onwards, we

shall assume that l ̸≡ 1 (mod 4).

Suppose k = 1. Now, either l = 2 or l ≥ 3 > 4+1
2 = 5

2 . So, by Theorem 5,

S4(1, l) = 1. Additionally, by Corollary 4, S4(k, l) equals 1 when k ≥ 2, l ≡ 3

(mod 4).

Suppose k = 2. We claim that {{2}, {1, 3}} is a 2-partition of [1, 3] into l-sum-

free sets modulo 4 when l ≡ 0, 2 (mod 4). Note that
∑l

i=1 2 = 2l ≡ 0 (mod 4)

when l ≡ 0, 2 (mod 4). So {2} is l-sum-free modulo 4. Next, 1, 3 ≡ 1 (mod 2)

implies that
l−t∑
i=1

1 + 3t = l + 2t ≡ l ≡ 0 (mod 2).

So {1, 3} is l-sum-free modulo 4. Thus, S4(2, l) ≥ 3 when l ≡ 0, 2 (mod 4). Equality

follows from Inequality (1).

Let k ≥ 3. Since l ≡ 0, 2 (mod 4), we have l ̸≡ 1 (mod d) for all positive divisors

d of 4 and d ̸= 1. By Corollary 5, S4(k, l) equals 3.

4. Establishing S6(k, l)

We will prove the following theorem.

Theorem 7. Let k, l ∈ Z+. If l ≡ 1 (mod 6), then S6(k, l) = 0. Furthermore, for

l not congruent to 1 modulo 6,

1. S6(k, l) = 1 for

{
k = 1 and l ̸= 3,

k ≥ 2 and l ≡ 4 (mod 6),

2. S6(k, l) = 2 for

{
k = 1 and l = 3,

k ≥ 2 and l ≡ 3, 5 (mod 6),

3. S6(k, l) = 3 for k = 2 and l ≡ 0, 2 (mod 6), l ≥ 6,

4. S6(k, l) = 4 for k = 2 and l = 2,

5. S6(k, l) = 5 for k ≥ 3 and l ≡ 0, 2 (mod 6).

Proof. When l ≡ 1 (mod 6), Corollary 2 gives S6(k, l) = 0. So, we may assume

that l ̸≡ 1 (mod 6) from here onwards. The other cases will be considered below.

Case 1: k = 1. By Theorem 5, S6(1, l) = 1 for l = 2 or l ≥ 6+1
2 = 3.5. Thus,

S6(1, l) = 1 for l ̸= 3. Suppose l = 3. Note that the sum
∑3−t

i=1 1 + 2t = 3 + t, with
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0 ≤ t ≤ 3, is never congruent to 1 or 2 modulo 6. So, {1, 2} is 3-sum-free modulo 6

and S6(1, 3) ≥ 2. On the other hand, 2 + 2 + 3 ≡ 1 (mod 6) implies that {1, 2, 3}
is not 3-sum-free modulo 6. Therefore, S6(1, 3) = 2.

Case 2: k ≥ 2 and l ≡ 3, 4, 5 (mod 6). By Corollary 4, if k ≥ 2, we have S6(k, l) =

1 when l ≡ 4 (mod 6) and S6(k, l) ≥ 2 when l ̸≡ 4 (mod 6). Now, 3 = gcd(3, 6),

and l ≡ 3, 5 (mod 6) implies that l ≡ 1 (mod 2). So, by Corollary 3, S6(k, l) is

strictly less than 3. Hence, S6(k, l) = 2 for l ≡ 3, 5 (mod 6).

From here onwards, we may assume that l ̸≡ 1, 3, 4, 5 (mod 6).

Case 3: k = 2 and l ≡ 0, 2 (mod 6). First, we will show that S6(2, 2) = 4. We

claim that {{1, 4}, {2, 3}} is the only 2-partition of [1, 4] into 2-sum-free sets modulo

6. Now, {1, 2} is not a 2-sum-free set modulo 6, because 1 + 1 ≡ 2 (mod 6). Next,

4 + 4 ≡ 2 (mod 6) and 3 + 4 ≡ 1 (mod 6) imply that {2, 4} and {1, 3, 4} are not

2-sum-free sets modulo 6, respectively. By eliminating all the 2-partitions of [1, 4]

that contain any one of {1, 2}, {2, 4}, or {1, 3, 4}, we are left with {{1, 4}, {2, 3}}.
Note that, for all 0 ≤ t ≤ 2, the sum

∑2−t
i=1 1 + 4t = 2 + 3t ̸≡ 1 or 4 (mod 6) and∑2−t

i=1 2 + 3t = 4+ t ̸≡ 2 or 3 (mod 6). Thus, {{1, 4}, {2, 3}} is the only 2-partition

of [1, 4] into 2-sum-free sets modulo 6.

From 5+5 ≡ 4 (mod 6) and 2+3 ≡ 5 (mod 6), we see that {4, 5} and {2, 3, 5} are
not 2-sum-free sets modulo 6. Since no 2-partitions of [1, 5] can exist, we conclude

that S6(2, 2) = 4.

Now, we proceed to show that S6(2, l) = 3 for l ≡ 0, 2 (mod 6) and l ≥ 6. In

fact, we will show that {{2}, {1, 3}} is the only 2-partition of [1, 3] into l-sum-free

sets modulo 6.

If l ≡ 0 (mod 6), then
∑l−3

i=1 2 + 3(3) = 2l + 3 ≡ 3 (mod 6). If l ≡ 2 (mod 6)

and l ≥ 8, then
∑l−4

i=1 2+3(4) = 2l+4 ≡ 2 (mod 6). Hence, {2, 3} is not l-sum-free

modulo 6. Next, {1, 2} is not l-sum-free modulo 6 for both cases, as
∑l−1

i=1 1+2 ≡ 1

(mod 6) when l ≡ 0 (mod 6) and
∑l−5

i=1 1 + 2(5) ≡ 1 (mod 6) when l ≡ 2 (mod 6)

and l ≥ 8. This implies that the only possible 2-partition of [1, 3] into l-sum-free

sets modulo 6 is {{2}, {1, 3}}.
Clearly, 2l ̸≡ 2 (mod 6) for both cases. So, {2} is l-sum-free modulo 6. It is left

to show that {1, 3} is l-sum-free modulo 6. Consider the sum
∑l−t

i=1 1 + 3t = l+ 2t,

with 0 ≤ t ≤ l. Since l ≡ 0, 2 (mod 6), l is even. So, regardless of the parity of t,

the sum l + 2t is even and is never congruent to 1 or 3 modulo 6. Hence, {1, 3} is

l-sum-free modulo 6. We have shown that S6(2, l) ≥ 3.

Finally, we will show that S6(2, l) < 4. It is sufficient to show that it is not

possible to extend {{2}, {1, 3}} to include 4. If l ≡ 0 (mod 6), then
∑l−1

i=1 2+4(1) =

2l + 2 ≡ 2 (mod 6) and
∑l−2

i=1 1 + 3(2) = l + 4 ≡ 4 (mod 6). If l ≡ 2 (mod 6) and

l ≥ 8, then 2l ≡ 4 (mod 6) and
∑l−1

i=1 1 + 3(1) = l + 2 ≡ 4 (mod 6). In both cases,

no 2-partitions of [1, 4] into l-sum-free sets modulo 6 can exist. This completes the

proof when k = 2 and l ≡ 0, 2 (mod 6).



INTEGERS: 25 (2025) 9

Case 4: k ≥ 3 and l ≡ 0, 2 (mod 6). Suppose k ≥ 5. Since l ≡ 0, 2 (mod 6), l ̸≡ 1

(mod d) for all positive divisors d of 6 and d ̸= 1. By Corollary 5, S6(k, l) = 5. So,

it is left to consider the cases k = 3 and 4.

By Inequality (1), S6(k, l) ≤ 5. So, to show S6(k, l) = 5 for k = 3, 4, it is sufficient

to exhibit a 3-partition of [1, 5] into l-sum-free sets modulo 6 when l ≡ 0, 2 (mod 6).

Assume k = 3. Suppose l ≡ 0 (mod 6). We claim that {{4}, {1, 3}, {2, 5}} is

a 3-partition of [1, 5] into l-sum-free sets modulo 6. This follows by noting that

4l ≡ 0 ̸≡ 4 (mod 6), the sum
∑l−t

i=1 2 + 5t = 2l + 3t ≡ 3t ̸≡ 2 or 5 (mod 6) for all

0 ≤ t ≤ l, and the sum
∑l−t

i=1 1+ 3t = l+2t ≡ 2t ̸≡ 1 or 3 (mod 6) for all 0 ≤ t ≤ l.

Suppose l ≡ 2 (mod 6). We claim that {{2}, {3, 5}, {1, 4}} is a 3-partition of [1, 5]

into l-sum-free sets modulo 6. This follows by noting that 2l ≡ 4 ̸≡ 2 (mod 6), the

sum
∑l−t

i=1 1 + 4t = l + 3t ≡ 2 + 3t ̸≡ 1 or 4 (mod 6) for all 0 ≤ t ≤ l, and the sum∑l−t
i=1 3 + 5t = 3l + 2t ≡ 2t ̸≡ 3 or 5 (mod 6) for all 0 ≤ t ≤ l.

Assume k = 4. We claim that {{2}, {3}, {4}, {1, 5}} is a 4-partition of [1, 5] into

l-sum-free sets modulo 6 when l ≡ 0, 2 (mod 6). Note that al ̸≡ a (mod 6) for all

2 ≤ a ≤ 4 when l ≡ 0, 2 (mod 6). Furthermore, the sum
∑l−t

i=1 1 + 5t = l + 4t ≡ 0

(mod 2), which cannot be congruent to 1 or 5 modulo 6.

Theorem 7 is thus proved.

5. Sm(k, l) when m is a Prime Power

We now consider the case where m is a prime power. We shall write m = pi where

p is a prime and i ≥ 1 is an integer. The following result is a direct consequence of

part 2 of Theorem 4.

Lemma 1. Let p be a prime and a, i, l ∈ Z+. If a ̸= 0 ∈ Z/piZ and l ̸≡ 1 (mod p),

then the singleton {a} is a l-sum-free set modulo pi.

Proof. Let pj = gcd(a, pi). Then 0 ≤ j < i because a ̸≡ 0 (mod pi). By part 2 of

Theorem 4, {a} is not l-sum-free modulo pi if and only if l ≡ 1 (mod pi−j). Since

l ̸≡ 1 (mod p) and i− j ≥ 1, we cannot have l ≡ 1 (mod pi−j). Thus, the set {a}
is l-sum-free modulo pi.

The above lemma gives rise to a nice lower bound for Spi(k, l) when k ≤ p − 1.

The matching upper bound and the case where k ≥ p will be proven in Theorem 8.

Corollary 6. Let p be a prime and i, k, l ∈ Z+. If l ̸≡ 1 (mod p), then Spi(k, l) ≥ k

for all 1 ≤ k ≤ p− 1.

Proof. According to Lemma 1, the set {a} is l-sum-free modulo p for all integers a,

1 ≤ a ≤ p − 1. Therefore, the set {{1}, {2}, . . . , {k}} is a k-partition of [1, k] into

l-sum-free sets modulo p for all 1 ≤ k ≤ p− 1.
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The next result follows from Theorems 1 and 2, and Corollary 5.

Corollary 7. Let p be a prime and i, k, l ∈ Z+. If l ̸≡ 1 (mod p), then Spi(k, l) =

pi − 1 for all k ≥ pi − 1.

Since the case for k ≥ pi − 1 is covered by Corollary 7, it would be ideal to find

exact values for Spi(k, l) for 1 ≤ k ≤ pi− 2. We will be able to do so when l is large

enough. First, we need the following lemmas.

Lemma 2. Let p be a prime and a, b, i, l ∈ Z+. Suppose l ≥ pi − 1 and l ̸≡ 1

(mod p).

1. If a and b belong to the same l-sum-free set modulo pi, then a ≡ b (mod p).

2. If gcd(k1, p) = 1 = gcd(k2, p), a = k1p
j1 , b = k2p

j2 where j1, j2 ≥ 1, and

1 ≤ a < b ≤ pi, then a and b do not belong to the same l-sum-free set modulo

pi.

Proof. Consider the equation

l−t∑
i=1

a+ bt = a(l − t) + bt ≡ a (mod pi),

which is equivalent to the congruence

(b− a)t ≡ a(1− l) (mod pi). (2)

We prove part 1. Now, a and b belonging to the same l-sum-free set modulo

pi means that no integer t (0 ≤ t ≤ l) can satisfy Congruence (2). On the other

hand, if b− a ̸≡ 0 (mod p), then b− a ̸≡ 0 (mod pi). So, gcd(b− a, pi) = 1, and by

Theorem 3, an integer t that satisfies Congruence (2) can be found. Furthermore,

the integer t can be chosen so that 0 ≤ t ≤ pi − 1 ≤ l. This contradicts the fact

that a and b belong to the same l-sum-free set modulo pi. Hence, a ≡ b (mod p).

Now we prove part 2. We may assume that i ≥ j2 ≥ j1. Now, Congruence (2)

becomes

(k2p
j2 − k1p

j1)t ≡ k1p
j1(1− l) (mod pi),

which is equivalent to

(k2p
j2−j1 − k1)t ≡ k1(1− l) (mod pi−j1).

Suppose j2 = i. Then k2 = 1 and from a < b, we see that j1 < j2 = i. So, i−j1 ≥ 1.

If j2 < i, then i− j1 ≥ 1. Thus, in either case i− j1 ≥ 1.

If gcd(k2p
j2−j1 − k1, p) = p, then we must have k1(l− 1) ≡ 0 (mod p). This im-

plies that l ≡ 1 (mod p) for gcd(k1, p) = 1. So, this case cannot occur. This means
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the only possibility is gcd(k2p
j2−j1 − k1, p) = 1, i.e., gcd(k2p

j2−j1 − k1, p
i−j1) = 1.

By Theorem 3, an integer t (0 ≤ t ≤ pi − 1 ≤ l) satisfying the above equation can

be found. So, {a, b} is not a l-sum-free set modulo pi, and thus a and b do not

belong to the same l-sum-free set modulo pi.

Theorem 8. Let p be a prime and i, l ∈ Z+. Suppose l ≥ pi−1 and l ̸≡ 1 (mod p).

Then

Spi(k, l) =


k, if 1 ≤ k ≤ p− 1 and i ≥ 1,

up− 1, if k = p+ (u− 2), i ≥ 2 and 2 ≤ u ≤ pi−1,

pi − 1, if k ≥ p+ (pi−1 − 2) and i ≥ 1.

Proof. We split the proof into three cases.

Case 1: 1 ≤ k ≤ p−1 and i ≥ 1. By Corollary 6, Spi(k, l) ≥ k for all 1 ≤ k ≤ p−1.

If Spi(k, l) ≥ k + 1, then there are two integers a, b with 1 ≤ a < b ≤ k + 1 such

that both a, b belong to the same l-sum-free set modulo pi. By part 1 of Lemma 2,

a ≡ b (mod p). This is not possible as 1 ≤ a < b ≤ k + 1 ≤ p. Hence, Spi(k, l) = k

for all 1 ≤ k ≤ p− 1.

Case 2: k = p+ (u− 2), i ≥ 2, and 2 ≤ u ≤ pi−1. For each 1 ≤ j ≤ p− 1, let

Sj = {x ∈ [1, up− 1] : x ≡ j (mod p)} .

For each d ∈ [1, up− 1] and gcd(d, p) = p, let Sd = {d}.
Suppose Sj0 is not a l-sum-free set modulo pi for some 1 ≤ j0 ≤ p − 1. Then

there are a1, a2, . . . , al, al+1 ∈ Sj0 such that

a1 + a2 + · · ·+ al ≡ al+1 (mod pi).

This implies that lj0 ≡ j0 (mod p) as ar ≡ j0 (mod p) for all r (1 ≤ r ≤ l + 1).

Since gcd(j0, p) = 1, we have l ≡ 1 (mod p), a contradiction. Thus, Sj is l-sum-free

for all 1 ≤ j ≤ p− 1.

According to Lemma 1, Sd is l-sum-free for all d ∈ [1, up− 1] with gcd(d, p) = p.

Hence, {
S1, S2, . . . , Sp−1, Sp, S2p, . . . , S(u−1)p

}
is a k-partition of [1, up− 1] into l-sum-free sets modulo pi and Spi(k, l) ≥ up− 1.

Suppose Spi(k, l) ≥ up. By part 2 of Lemma 2, any pair in {p, 2p, . . . , up} cannot

be in the same l-sum-free set modulo pi. Together with part 1 of Lemma 2, we see

that any pair in {1, 2, . . . , p− 1, p, 2p, . . . , up} cannot be in the same l-sum-free set

modulo pi. Therefore, k ≥ p − 1 + u, but this is not possible as k = p + (u − 2).

Hence, Spi(k, l) = up− 1.
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Case 3: k ≥ p + (pi−1 − 2) and i ≥ 1. By Inequality (1), Spi(k, l) ≤ pi − 1. It is

sufficient to find a k-partition of [1, pi − 1] into l-sum-free sets modulo pi. Now, for

each 1 ≤ j ≤ p− 1, let

S∗
j =

{
x ∈ [1, pi − 1] : x ≡ j (mod p)

}
.

Suppose i ≥ 2. For each d ∈ [1, pi − 1] and gcd(d, p) = p, let S∗
d = {d}. Clearly,{

S∗
1 , S

∗
2 , . . . , S

∗
p−1, S

∗
p , S

∗
2p, . . . , S

∗
(pi−1−1)p

}
(3)

is a k-partition of [1, pi − 1] into l-sum-free sets modulo pi. Note that, if i = 1, Set

(3) becomes

{S1, S2, . . . , Sp−1} ,

which is also a k-partition of [1, p− 1] where each Si is l-sum-free modulo p.

This completes the proof of the theorem.

We end this section with some consequences of Theorem 8. Firstly, we can recover

part of Theorem 6 (for even l ≥ 3):

S4(k, l) =

{
1, if k = 1,

3, if k ≥ 2.

By taking i = 1 in Theorem 8, the second consequence is as follows.

Corollary 8. Suppose l ≥ p− 1 is a positive integer and l ̸≡ 1 (mod p). Then

Sp(k, l) =

{
k, if 1 ≤ k ≤ p− 1,

p− 1, if k ≥ p− 1.

Furthermore, by Theorem 8, we may obtain some of the values of S8(k, l) and

S9(k, l). For brevity, we give an example when p = 2, i = 3, k = 4, and l = 8.

Example 1. By Theorem 8, S8(4, 8) = 7. To obtain the lower bound, we follow

the proof of Theorem 8 and set

S1 = {x ∈ [1, 7] : x ≡ 1 (mod 2)} = {1, 3, 5, 7}.

Note that if S1 is not an 8-sum-free set modulo 8, then there exists a1, . . . , al, al+1 ∈
S1 such that

a1 + · · ·+ al ≡ al+1 (mod 8).

Since all the ai’s are congruent to 1 modulo 2, the above congruence implies that

l ≡ 1 (mod 2), a contradiction. So S1 is 8-sum-free modulo 8. Next we isolate each

d ∈ [1, 7] with gcd(d, 2) = 2 as a singleton, Sd = {d}. That is, put

S2 = {2}, S4 = {4}, S6 = {6}.
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By Lemma 1, each of these Sd’s are 8-sum-free modulo 8. Thus, the set

{S1, S2, S4, S6} = {{1, 3, 5, 7}, {2}, {4}, {6}}

is a 4-partition of [1, 7] into 8-sum-free sets modulo 8, which implies that S8(4, 8) ≥
7.

To get the upper bound, we argue that [1, 8] has no 4-partition into 8-sum-free

sets modulo 8. Notice that part 2 of Lemma 2 implies that no two numbers from

{2, 4, 6, 8} can belong to the same 8-sum-free set modulo 8. Combining this with

part 1 of Lemma 2, we infer that the only way to partition [1, 8] into sets that are

8-sum-free modulo 8 is to put each number in a singleton. That is, we would need

at least an 8-partition of [1, 8]. However, this is not possible because we are only

considering 4-partitions of [1, 8]. Therefore, S8(4, 8) ≤ 7 and equality follows.

In the next two sections, we apply the above general results to determine the

values of S5(k, l) and S7(k, l).

6. Establishing S5(k, l)

We will prove the following theorem.

Theorem 9. Let k, l ∈ Z+. If l ≡ 1 (mod 5), then S5(k, l) = 0. Furthermore, for

l not congruent to 1 modulo 5,

1. S5(k, l) = 1 for k = 1,

2. S5(k, l) = k for k = 2, 3 and l ̸= 2,

3. S5(k, l) = 4 for

{
k = 2, 3 and l = 2,

k ≥ 4.

Proof. When l ≡ 1 (mod 5), we have S5(k, l) = 0, by Corollary 2. From here

onwards, we assume l ̸≡ 1 (mod 5). By Theorem 5, S5(1, l) = 1 if and only if l ≥ 2.

By Corollary 8, for l ≥ 4, S5(k, l) = k if 1 ≤ k ≤ 4 and S5(k, l) = 4 if k ≥ 4. By

Corollary 5, S5(k, l) = 4 for all k ≥ 4. So, it is left to show that S5(k, 3) = k for

k = 2, 3 and S5(k, 2) = 4 for k = 2, 3.

By Corollary 6, S5(2, 3) ≥ 2. Now, 2+2+2 ≡ 1 (mod 5), 1+1+1 ≡ 3 (mod 5),

and 2 + 3 + 3 ≡ 3 (mod 5) imply that {1, 2}, {1, 3}, and {2, 3} are not 3-sum-free,

respectively. Thus, S5(2, 3) = 2.

By Corollary 6, S5(3, 3) ≥ 3. Now, 1+4+4 ≡ 4 (mod 5), 4+4+4 ≡ 2 (mod 5),

and 3 + 3 + 3 ≡ 4 (mod 5) imply that {1, 4}, {2, 4}, and {3, 4} are not 3-sum-free,

respectively. Therefore, S5(3, 3) = 3.



INTEGERS: 25 (2025) 14

Let us consider S5(2, 2). The sum
∑2−t

i=1 2 + 3t = 4 + t, with 0 ≤ t ≤ 2, is never

congruent to 2 or 3 modulo 5. Furthermore, the sum
∑2−t

i=1 1 + 4t = 2 + 3t, with

0 ≤ t ≤ 2, is never congruent to 1 or 4 modulo 5. So {{1, 4}, {2, 3}} is a 2-partition

of [1, 4] into 2-sum-free sets modulo 5. This implies that S5(2, 2) ≥ 4. Together

with Inequality (1), S5(2, 2) = 4.

Lastly, let us consider S5(3, 2). Since
∑2−t

i=1 1 + 4t = 2 + 3t, with 0 ≤ t ≤ 2, is

never congruent to 1 or 4 modulo 5, {{1, 4}, {2}, {3}} is a 3-partition of [1, 4] into

2-sum-free sets modulo 5. This implies that S5(3, 2) ≥ 4. It follows from Inequality

(1) that S5(3, 2) = 4.

This completes the proof of the theorem.

7. Establishing S7(k, l)

We will fully determine the values of S7(k, l) in this section. Since the proof is

rather technical, we briefly outline it here. We start by using some of the general

results we have proven thus far to immediately obtain certain values of S7(k, l). In

particular, we will need Corollaries 2, 5, 8, and Theorem 5. Then we will deal with

the remaining cases using Lemma 1 and Corollary 6. Moreover, anytime we need to

show that S7(k, l) = 6, we shall appeal to Inequality (1) for the upper bound and

construct a suitable k-partition of [1, 6] for the lower bound.

Theorem 10. Let k, l ∈ Z+. If l ≡ 1 (mod 7), then S7(k, l) = 0. Furthermore, for

l not congruent to 1 modulo 7,

1. S7(k, l) = 1 for k = 1 and l ̸= 3,

2. S7(k, l) = 2 for

{
k = 1 and l = 3,

k = 2 and l ≥ 4,

3. S7(k, l) = 3 for

{
k = 2 and l = 2, 3,

k = 3 and l ≥ 5,

4. S7(k, l) = 4 for k = 4 and l ≥ 5,

5. S7(k, l) = 5 for

{
k = 3 and l = 3,

k = 5 and l ≥ 5,

6. S7(k, l) = 6 for


k = 3 and l = 2, 4,

k = 4 and l = 2, 3, 4,

k = 5 and l = 2, 3, 4,

k ≥ 6.
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Proof. When l ≡ 1 (mod 7), we have S7(k, l) = 0 by Corollary 2. From here

onwards, we shall assume that l ̸≡ 1 (mod 7). By Theorem 5, S7(1, l) = 1 if and

only if l = 2 or l ≥ 4. By Corollary 8, for l ≥ 6, S7(k, l) = k for 1 ≤ k ≤ 6 and

S7(k, l) = 6 if k ≥ 6. By Corollary 5, S7(k, l) = 6 for all k ≥ 6. So, it is left to show

that

(a) S7(1, 3) = 2,

(b) S7(2, l) =

{
3, if l = 2, 3,

2, if l = 4, 5,

(c) S7(3, l) =


6, if l = 2, 4,

5, if l = 3,

3, if l = 5,

(d) S7(4, l) =

{
6, if l = 2, 3, 4,

4, if l = 5,

(e) S7(5, l) =

{
6, if l = 2, 3, 4,

5, if l = 5.

We shall consider each of these cases separately.

Case 1: k = 1 and l = 3. Since
∑3−t

i=1 1 + 2t = 3 + t, with 0 ≤ t ≤ 3, is never

congruent to 1 or 2 modulo 7, {1, 2} is 3-sum-free modulo 7. So S7(k, l) ≥ 2. Now,

1 + 1 + 1 ≡ 3 (mod 7) and 3 + 3 + 3 ≡ 2 (mod 7) imply that {1, 3} and {2, 3} are

not 3-sum-free modulo 7, respectively. Thus, S7(1, 3) = 2.

Case 2: k = 2 and l = 4, 5. We will show that S7(2, l) = 2. By Corollary 6,

S7(2, l) ≥ 2. Now, 2 + 2 + 2 + 2 ≡ 1 (mod 7), 2 + 2 + 3 + 3 ≡ 3 (mod 7), and

1 + 3 + 3 + 3 ≡ 3 (mod 7) imply that {1, 2}, {2, 3}, and {1, 3} are not 4-sum-free

modulo 7, respectively. Thus, S7(2, 4) = 2.

Next, 1 + 1 + 2 + 2 + 2 ≡ 1 (mod 7), 3 + 3 + 3 + 3 + 3 ≡ 1 (mod 7), and

2+2+2+2+2 ≡ 3 (mod 7) imply that {1, 2}, {1, 3}, and {2, 3} are not 5-sum-free

modulo 7, respectively. Hence, S7(2, 5) = 2.

Case 3: k = 2 and l = 2, 3. We will show that S7(2, l) = 3. Suppose l = 2.

Note that, for all 0 ≤ t ≤ 2, the sum
∑2−t

i=1 1 + 3t = 2 + 2t is never congruent to

1 or 3 modulo 7, and
∑2−t

i=1 2 + 3t = 4 + t is never congruent to 2 or 3 modulo 7.

Now, {1, 2} is not 2-sum-free modulo 7 because 1+1 ≡ 2 (mod 7). So {{2}, {1, 3}}
and {{1}, {2, 3}} are the only two possible 2-partitions of [1, 3] into 2-sum-free sets

modulo 7. Thus, S7(2, 2) ≥ 3. However, note that 4+ 4 ≡ 1 (mod 7) and 2+2 ≡ 4

(mod 7). We infer that 4 cannot belong to the same 2-sum-free set modulo 7 as 1

or 2. This implies that S7(2, 2) = 3.
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Suppose l = 3. From the proof in Case 1, {1, 3} and {2, 3} are not 3-sum-free

modulo 7 but {1, 2} is 3-sum-free modulo 7. Therefore, {{3}, {1, 2}} is the only

possible 2-partition of [1, 3] into 3-sum-free sets modulo 7, implying that S7(2, 3) ≥
3. However, 1 + 1 + 2 ≡ 4 (mod 7) and 3 + 3 + 4 ≡ 3 (mod 7) imply that {1, 2, 4}
and {3, 4} are not 3-sum-free modulo 7, respectively. Hence, S7(2, 3) = 3.

Case 4: k = 3 and l = 5. By Corollary 6, S7(3, 5) ≥ 3. Now, 1 + 1+ 1+ 4+ 4 ≡ 4

(mod 7), 2+2+4+4+4 ≡ 2 (mod 7), and 3+3+3+4+4 ≡ 3 (mod 7) imply that

{1, 4}, {2, 4}, and {3, 4} are not 5-sum-free modulo 7, respectively. From the proof

in Case 2, {1, 2}, {1, 3}, and {2, 3} are not 5-sum-free modulo 7. So no 3-partition

of [1, 4] into 5-sum-free sets modulo 7 can exist. Thus S7(3, 5) = 3.

Case 5: k = 3 and l = 3. We shall show that

{{1}, {2, 4}, {3, 5}}, {{2}, {1, 4}, {3, 5}}, {{4}, {1, 2}, {3, 5}} (4)

are the only possible 3-partitions of [1, 5] into 3-sum-free sets modulo 7. From the

proof in Case 3, {1, 3}, {2, 3}, {3, 4}, {1, 2, 4} are not 3-sum-free sets modulo 7.

Note that 2+5+5 ≡ 5 (mod 7), 5+5+5 ≡ 1 (mod 7), and 4+4+4 ≡ 5 (mod 7).

So {2, 5}, {1, 5}, and {4, 5} are not 3-sum-free modulo 7. Then eliminating all

the 3-partitions of [1, 5] containing any one of {1, 3}, {2, 3}, {3, 4}, {1, 2, 4}, {1, 5},
{2, 5}, or {4, 5}, we are left with those shown in (4).

Note that, for all 0 ≤ t ≤ 3, the sum
∑3−t

i=1 1 + 4t = 3 + 3t is never congruent

to 1 or 4 modulo 7,
∑3−t

i=1 2 + 4t = 6 + 2t is never congruent to 2 or 4 modulo 7,

and
∑3−t

i=1 3 + 5t = 9 + 2t is never congruent to 3 or 5 modulo 7. Moreover, {1, 2}
is 3-sum-free modulo 7 from the proof in Case 1. So the sets in (4) are the only

3-partitions of [1, 5] into 3-sum-free sets modulo 7.

Finally, note that none of the 3-partitions in (4) can be extended to include 6

because 1 + 6 + 6 ≡ 6 (mod 7), 2 + 2 + 2 ≡ 6 (mod 7), 6 + 6 + 6 ≡ 4 (mod 7),

and 3 + 5+ 5 ≡ 6 (mod 7). Since no 3-partitions of [1, 6] into 3-sum-free can exist,

S7(3, 3) = 5.

Case 6: k = 3 and l = 2, 4. We will show that S7(3, l) = 6. By Inequality (1), it

is sufficient to find a 3-partition of [1, 6] into l-sum-free sets modulo 7.

Suppose l = 2. Note that, for all 0 ≤ t ≤ 2, the sum
∑2−t

i=1 1 + 5t = 2 + 4t is

never congruent to 1 or 5 modulo 7,
∑2−t

i=1 2 + 6t = 4 + 4t is never congruent to 2

or 6 modulo 7, and
∑2−t

i=1 3 + 4t = 6 + t is never congruent to 3 or 4 modulo 7. So

{{1, 5}, {2, 6}, {3, 4}} is a 3-partition of [1, 6] into 2-sum-free sets modulo 7, which

implies that S7(3, 2) = 6.

Suppose l = 4. Note that, for all 0 ≤ t ≤ 4, the sum
∑4−t

i=1 1 + 6t = 4 + 5t is

never congruent to 1 or 6 modulo 7,
∑4−t

i=1 2 + 5t = 8 + 3t is never congruent to 2

or 5 modulo 7, and
∑4−t

i=1 3 + 4t = 12+ t is never congruent to 3 or 4 modulo 7. So

{{1, 6}, {2, 5}, {3, 4}} is a 3-partition of [1, 6] into 4-sum-free sets modulo 7 and so

S7(3, 4) = 6.
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Case 7: k = 4 and l = 5. By Corollary 6, S7(4, 5) ≥ 4. Note that 1+1+1+4+4 ≡ 4

(mod 7), 2+2+4+4+4 ≡ 2 (mod 7), and 3+3+4+4+4 ≡ 4 (mod 7). So the set

{a, 4}, with 1 ≤ a ≤ 3, is not 5-sum-free modulo 7. Furthermore, 1+1+1+1+1 ≡ 5

(mod 7), 2 + 2 + 2 + 5 + 5 ≡ 2 (mod 7), 3 + 3 + 3 + 5 + 5 ≡ 5 (mod 7), and

5 + 5 + 5 + 5 + 5 ≡ 4 (mod 7). So the set {a, 5}, with 1 ≤ a ≤ 4 is not 5-sum-free

modulo 7. From the proof in Case 2, {1, 2}, {1, 3}, and {2, 3} are not 5-sum-free

modulo 7. Hence, no 4-partitions of [1, 5] into 5-sum-free sets modulo 7 can exist.

Thus, S7(4, 5) = 4.

Case 8: k = 4 and l = 2, 3, 4. We will show that S7(4, l) = 6. By Inequality (1), it

is sufficient to find a 4-partition of [1, 6] into l-sum-free sets modulo 7.

Suppose l = 2. Note that, for all 0 ≤ t ≤ 2, the sum
∑2−t

i=1 1 + 6t = 2 + 5t

is never congruent to 1 or 6 modulo 7, and
∑2−t

i=1 2 + 5t = 4 + 3t is never con-

gruent to 2 or 5 modulo 7. This implies that {1, 6} and {2, 5} are 2-sum-free sets

modulo 7. By Lemma 1, {3} and {4} are 2-sum-free sets modulo 7. Therefore,

{{3}, {4}, {1, 6}, {2, 5}} is a 4-partition of [1, 6] into 2-sum-free sets modulo 7, im-

plying that S7(4, 2) = 6.

Suppose l = 3. Note that, for all 0 ≤ t ≤ 3, the sum
∑3−t

i=1 3 + 6t = 9 + 3t is

never congruent to 3 or 6 modulo 7. From the proof in Case 1, {1, 2} is 3-sum-free

modulo 7. It follows from Lemma 1 that {{4}, {5}, {1, 2}, {3, 6}} is a 4-partition of

[1, 6] into 3-sum-free sets modulo 7. So, S7(4, 3) = 6.

Suppose l = 4. From the proof in Case 6, {1, 6} and {2, 5} are 4-sum-free modulo

7. By Lemma 1, {{3}, {4}, {1, 6}, {2, 5}} is a 4-partition of [1, 6] into 4-sum-free sets

modulo 7. Hence, S7(4, 3) = 6.

Case 9: k = 5 and l = 5. By Corollary 6, S7(5, 5) ≥ 5. Observe that 1 + 1 + 6 +

6 + 6 ≡ 6 (mod 7), 6 + 6 + 6 + 6 + 6 ≡ 2 (mod 7), 3 + 3 + 6 + 6 + 6 ≡ 3 (mod 7),

4 + 4 + 4 + 4 + 4 ≡ 6 (mod 7), and 5 + 5 + 5 + 6 + 6 ≡ 6 (mod 7). So the set

{a, 6}, 1 ≤ a ≤ 5, is not 5-sum-free modulo 7. From the proof in Case 7, the set

{a, 4}, with 1 ≤ a ≤ 3, is not 5-sum-free modulo 7, the set {a, 5}, with 1 ≤ a ≤ 4 is

not 5-sum-free modulo 7, and {1, 2}, {1, 3}, and {2, 3} are not 5-sum-free modulo

7. Hence, no 5-partitions of [1, 6] into 5-sum-free sets modulo 7 can exist. Thus,

S7(5, 5) = 5.

Case 10: k = 5 and = 2, 3, 4. We will show that S7(5, l) = 6. By Inequality (1), it

is sufficient to find a 5-partition of [1, 6] into l-sum-free sets modulo 7.

Suppose l = 2. From the proof in Case 8, {1, 6} is 2-sum-free modulo 7. It

follows from Lemma 1, that {{2}, {3}, {4}, {5}, {1, 6}} is a 5-partition of [1, 6] into

2-sum-free sets modulo 7.

Suppose l = 3. From the proof in Case 8, {3, 6} is 3-sum-free modulo 7. So,

by Lemma 1, {{1}, {2}, {4}, {5}, {3, 6}} is a 5-partition of [1, 6] into 3-sum-free sets

modulo 7.

Suppose l = 4. From the proof in Case 8, {1, 6} is 4-sum-free modulo 7. Again,
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by Lemma 1, {{2}, {3}, {4}, {5}, {1, 6}} is a 5-partition of [1, 6] into 4-sum-free sets

modulo 7.

Theorem 10 is thus proved.

8. Concluding Remarks

In this paper, we determined previously unknown values of Sm(k, l). In particular,

we determined the exact values of Sm(k, l) when l ≡ 1 (mod m) (Corollary 2).

When l ̸≡ 1 (mod m), we also obtained exact values when m = 2n and l ≡ n + 1

(mod 2n), when k ≥ m−1, for all l ̸≡ 1 (mod d), where d > 1 divides m, and when

l = 2 or l ≥ (m+ 1)/2 (Corollaries 4, 5, and Theorem 5). Our most comprehensive

result is Theorem 8, which gives, for big enough l, the exact values of Spi(k, l).

Additionally, we completely established the values of Sm(k, l) when m = 4, 5, 6,

and 7 in Theorems 6, 7, 9, and 10, respectively. These results leave the following

unresolved cases.

Problem 1. Let i, k, l,m, n ∈ Z+ and p be a prime.

1. What are the values of S2n(k, l) when l ̸≡ 1, n+ 1 (mod 2n), n ≥ 4?

2. For all l ̸≡ 1 (mod d), where d > 1 divides m ≥ 8, what are the values of

Sm(k, l) when k < m− 1?

3. What are the values of Sm(1, l) when 2 < l < m+1
2 ,m ≥ 8?

4. What are the values of Spi(k, l) when l < pi − 1 ?

5. What are the values of Sm(k, l) when m ≥ 8?

Since we now fully know Sm(k, l) for 1 ≤ m ≤ 7, a natural step is to look at

m = 8 and 9; this would make progress on parts 4 and 5 of Problem 1. As mentioned

before, Theorem 8 gives some of the values of S8(k, l) and S9(k, l) whenever l is at

least 7 or 8, respectively. Furthermore, the method in this paper can work to resolve

these two cases. But if the proof of S7(k, l) (Theorem 10) is any indication, then

there remains a nontrivial amount of case analysis to fully determine S8(k, l) and

S9(k, l). This suggests that a different approach is needed to explicitly determine

the values of Sm(k, l) for large values of m.
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