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Abstract

We show that certain sums studied in two recent papers are basically character
coordinates (as they are called in the literature). These sums involve values of
Dirichlet characters and powers of cot(πk/n), 1 ≤ k ≤ n− 1. We also show that a
basic tool for the study of these sums was already given in 1987, in the form of the
character coordinates of so-called cotangent numbers. By means of this tool, we
obtain the results of the said papers in a simple and lucid way. We also show that
the coefficients of the linear combinations used in the said papers are essentially the
same.

1. Introduction

Let n ≥ 2, r ≥ 1 be integers. Let ζn = e2πi/n and k ∈ Z, (k, n) = 1. Since

i cot(πk/n) = (1 + ζkn)/(1− ζkn), (1)

the numbers ir cotr(πk/n) lie in the nth cyclotomic field Q(ζn). Let χ be a Dirichlet

character mod n. In two recent papers the character sums

n∑
k=1

χ(k)ir cotr(πk/n) (2)

formed with these numbers have been expressed in terms of generalized Bernoulli

numbers and Gauss sums; see [8, Cor. 13], [3, Cor. 2.19].

However, the authors of these papers do not refer to the fact that (2) is basically

a character coordinate, more precisely, the χ-coordinate of ir cotr(π/n). Character

coordinates have useful properties; see Sections 2 and 4. They have been known

since 1959; see [9] and Section 2. In addition, they contain information about Galois

modules; see [4].
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Moreover, the said authors make no use of the fact that the number ir cot(π/n)

has natural components with respect to character coordinates, namely, the so-called

cotangent numbers ij cotj−1(π/n), 1 ≤ j ≤ r, where cotl is the lth derivative of the

function cot (in particular, cot0 = cot). Indeed, for these components the character

coordinates were given by the present author already in 1987; see [4]. This fact

has the following consequence. If we express the function ir cotr as a rational linear

combination of the functions ij cotj−1, 1 ≤ j ≤ r, j ≡ r mod 2 (if r is even, one must

include the constant function 1), we immediately obtain the character coordinates

of ir cot(π/n); see Theorem 1. This theorem is given in [8], whereas the paper [3]

has an equivalent result, but only for primitive characters (see Section 4). We think

that our approach to this theorem is the simplest one known so far.

Our plan is as follows. In Section 2 we recall some basic facts about character

coordinates and exhibit the χ-coordinates of the cotangent numbers. In Section 3

we express ir cotr as a linear combination of the functions ij cotj−1, as described

above (see Proposition 1), and obtain the said Theorem 1. In Section 4 we show that

the result of [3] gives the representation of ir cotr as a linear combination of the said

functions in a different form, see Theorem 2. Properties of character coordinates

play a decisive role in this connection.

The cotangent numbers i cot(πk/n), 1 ≤ k ≤ n, (k, n) = 1, or, more generally,

certain sums of these, give rise to relative class number formulas for abelian number

fields; see [5, 10]. Certain Q-linear combinations of these cotangent numbers play

an important role in connection with various questions of number theory, even with

the Riemann Hypothesis; see, for instance, [1, 2, 11, 12].

2. Character Coordinates

For a number a ∈ Q(ζn) and a Dirichlet character χ mod n, the χ-coordinate y(χ|a)
is defined by

y(χ|a)τ(χf ) =
∑

1≤k≤n
(k,n)=1

χ(k)σk(a); (3)

see [9]. Here f is the conductor of χ, χf the character mod f attached to χ, ( ) the

complex conjugation, and

τ(χf ) =

f∑
k=1

χf (k)ζ
k
f

the (primitive) Gauss sum; furthermore, σk is the Galois automorphism of Q(ζn)

defined by ζn 7→ ζkn, (k, n) = 1.

Let Q(χ) be the field of values of χ. Then y(χ|a) ∈ Q(χ) and the map

y(χ|−) : Q(ζn) → Q(χ) : a 7→ y(χ|a)
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is Q-linear and G-invariant, so

y(χ|σk(a)) = χ(k)y(χ|a).

From Equation (1) we obtain

σk(i cot(π/n)) = i cot(πk/n). (4)

In view of Equation (4), the sum given by Formula (2) has the form∑
1≤k≤n
(k,n)=1

χ(k)ir cotr(πk/n) = y(χ|ir cotr(π/n))τ(χf ).

A number a ∈ Q(ζn) is uniquely determined by its character coordinates, as the

reconstruction formula

a =
1

φ(n)

∑
χ∈X

y(χ|a)τ(χf )

shows, where X is the set of all Dirichlet characters mod n; see [9].

Let X+ = {χ ∈ X ;χ(−1) = 1} and X− = {χ ∈ X ;χ(−1) = −1}. If a ∈ Q(ζn)

is real, then y(χ|a) = 0 for all χ ∈ X−. If a ∈ Q(ζn) is purely imaginary, then

y(χ|a) = 0 for all χ ∈ X+.

The cotangent number ir cotr−1(π/n) is real, if r is even, and purely imaginary, if

r is odd. Accordingly, y(χ|ir cotr−1(π/n)) vanishes in the cases “r is even, χ ∈ X−”

and “r is odd, χ ∈ X+”. In the remaining cases we have

y(χ|ir cotr−1(π/n)) =
χ(−1)(2n)r

rfr

∏
p |n

(
1−

χf (p)

pr

)
Br,χf

, (5)

see [4, Thm. 2]. Here

Br,χf
= fr−1

f∑
k=1

Br(k/f)χf (k),

where Br(x) is the rth Bernoulli polynomial; see [13, Prop. 4.1].

3. Cotangent Powers and Cotangent Derivatives

Let k ≥ 1 be an integer. Our main tool in this section is a special case of Lemma

4.1 in [6] for certain functions in t, namely,

1

(1− et)k
=

1

(k − 1)!

k∑
j=1

S(k, j)
dj−1

dtj−1

(
1

1− et

)
, (6)
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where S(k, j) is the absolute value of the respective Stirling number of the first kind

(i.e., the number of permutations of k objects with exactly j cycles). Since

1

1− et
=

i

2
cot(−it/2) +

1

2
,

we have, for j ≥ 2,

dj−1

dtj−1

(
1

1− et

)
= (−1)j−1(i/2)j cotj−1(−it/2).

If we insert this into Equation (6), we obtain

1

(1− et)k
=

1

2
+

1

(k − 1)!

k∑
j=1

S(k, j)(−1)j−1(i/2)j cotj−1(−it/2). (7)

On the other hand,

i cot(−it/2) =
2

1− et
− 1.

Therefore, the binomial formula yields

(i cot(−it/2))r = (−1)r +

r∑
k=1

(
r

k

)
2k

(1− et)k
(−1)r−k.

In this identity, we replace 1/(1 − et)k by the right-hand side of Equation (7) and

change the order of summation in the resulting double sum. This gives

(i cot(−it/2))r = C +

r∑
j=1

ij cotj−1(−it/2)
(−1)j−1

2j

r∑
k=j

(−1)r−k2k

(k − 1)!

(
r

k

)
S(k, j),

with

C = (−1)r +
1

2

r∑
k=1

(
r

k

)
2k(−1)r−k =

(−1)r + 1

2
.

Thus, we may write

(i cot(−it/2))r =
(−1)r + 1

2
+

r∑
j=1

cr,j i
j cotj−1(−it/2),

with

cr,j = (−1)r−1
r∑

k=j

(−2)k−j

(k − 1)!

(
r

k

)
S(k, j). (8)

The change of variables (−it/2) 7→ x yields the following proposition.
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Proposition 1. For r ≥ 1, we have

ir cotr =
(−1)r + 1

2
+

r∑
j=1

cr,j i
j cotj−1

with cr,j as in Equation (8).

Since the functions ij cotj−1, j ≥ 1, are Q-linearly independent, we have cr,j = 0

if r ̸≡ j mod 2. If r is odd, we may write, therefore,

ir cotr =
∑

1≤j≤r
j≡1mod 2

cr,j i
j cotj−1 . (9)

If r is even, we obtain

ir cotr = 1 +
∑

1≤j≤r
j≡0mod 2

cr,j i
j cotj−1 . (10)

Let χ0 denote the principal character mod n. We have, for χ ∈ X ,

y(χ|1) =
{

0, if χ ̸= χ0;
φ(n), if χ = χ0.

(11)

Since the χ-coordinate is Q-linear, Equation (5) gives the following result.

Theorem 1. If r ≥ 1 is odd and χ ∈ X− has the conductor f , then

y(χ|ir cotr(π/n)) = −
∑

1≤j≤r
j≡1mod 2

cr,j
(2n)j

jf j

∏
p |n

(
1−

χf (p)

pj

)
Bj,χf

with cr,j as in Equation (8). If r ≥ 2 is even and χ ∈ X+ has the conductor f , then

y(χ|ir cotr(π/n)) = y(χ|1) +
∑

1≤j≤r
j≡0mod 2

cr,j
(2n)j

jf j

∏
p |n

(
1−

χf (p)

pj

)
Bj,χf

with y(χ|1) as in Equation (11) and cr,j as in Equation (8).

Theorem 1 is given in [8, Cor. 13] (for a preliminary version see [7, Cor. 4.4]). We

think, however, that our simple access to this theorem, i.e., via cotangent derivatives

and the old result (5), deserves to be noted.
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4. Another Form of the Coefficients cr,j

In the paper [3], formulas for y(χ|ir cotr(π/n)), χ ∈ X primitive, are given that

involve coefficients dr,j seemingly different from the above cr,j . In this section

we use properties of character coordinates in order to show that cr,j and dr,j are

basically the same.

For an integer r ≥ 1, we put

X r =

{
X−, if r is odd;
X+, if r is even.

Let χ ∈ X r be a primitive character mod n. Formulas (2.29) and (2.30) of [3] say,

in our terminology,

y(χ|ir cotr(π/n)) = −2r
∑

1≤j≤r
j≡rmod 2

dr,jBj,χ/j!, (12)

with

dr,j =
∑

j1,...,jr≥0
j+2j1+...+2jr=r

r∏
t=1

B2jt/(2jt)!. (13)

Here the numbers B2jt are ordinary Bernoulli numbers.

On the other hand, Equation (5) says, since χ is primitive,

y(χ|ij cotj−1(π/n)) =
(−1)r2j

j
Bj,χ

for the numbers j ≡ r mod 2, 1 ≤ j ≤ n. Hence we may express the numbers Bj,χ

of Equation (12) in terms of y(χ|ij cotj−1(π/n)). Thereby, we obtain

y(χ|ir cotr(π/n)) =
∑

1≤j≤r
j≡rmod 2

(−1)r+12r−j

(j − 1)!
dr,j y(χ|ij cotj−1(π/n))

The Q-linearity of the χ-coordinate yields

y(χ|ir cotr(π/n)) = y(χ|
∑

1≤j≤r
j≡rmod 2

(−1)r+12r−j

(j − 1)!
dr,j i

j cotj−1(π/n)). (14)

Now suppose that n = p is a prime. First we assume that r is odd. Then

all characters χ ∈ X r are primitive. Thus, Equation (14) holds for all χ ∈ X r.

However, for χ ∈ X r+1 both sides of Equation (14) vanish. So this equation holds

for all χ ∈ X . In Section 2 we have seen that this means

ir cotr(π/p) =
∑

1≤j≤r
j≡rmod 2

(−1)r+12r−j

(j − 1)!
dr,j i

j cotj−1(π/p).
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On the other hand, Equation (9) implies

ir cotr(π/p) =
∑

1≤j≤r
j≡rmod 2

cr,ji
j cotj−1(π/p).

We shall see below that, for a sufficiently large prime p, the numbers ij cotj−1(π/p),

1 ≤ j ≤ r, j ≡ r mod 2, are Q-linearly independent. Under this assumption, we

may compare the coefficients on the right-hand sides of the last two identities and

get

cr,j =
(−1)r+12r−j

(j − 1)!
dr,j , 1 ≤ j ≤ r, j ≡ r mod 2. (15)

If r is even, there are minor differences. Again, let n = p be a prime. Then all

characters χ ∈ X r are primitive except the principal character χ0. Hence Equation

(14) holds for all χ ∈ X ∖ {χ0}. Suppose that

y(χ0| cotr(π/p)) = C1 ∈ Q and

y(χ0|
∑

1≤j≤r
j≡rmod 2

(−1)r+12r−j

(j − 1)!
dr,j i

j cotj−1(π/n)) = C2 ∈ Q.

Now we use Formula (11) and φ(p) = p − 1. Therefore, the χ-coordinate of

ir cotr(π/p)− C1/(p− 1) agrees withe the χ-coordinate of∑
1≤j≤r

j≡rmod 2

(−1)r+12r−j

(j − 1)!
dr,j i

j cotj−1(π/n)− C2/(p− 1)

for each χ ∈ X , and so these numbers are equal. Thus,

ir cotr(π/p) =
∑

1≤j≤r
j≡rmod 2

(−1)r+12r−j

(j − 1)!
dr,j i

j cotj−1(π/n) + (C1 − C2)/(p− 1).

In a similar way as above, we use the fact that the family (1; ij cotj−1(π/p) : 1 ≤ j ≤
r, j ≡ r mod 2) is Q-linearly independent for a sufficiently large prime p. Equation

(10) implies

ir cotr(π/n) =
∑

1≤j≤r
j≡rmod 2

cr,j i
j cotj−1(π/n) + 1.

On comparing the coefficients on the right-hand side of the last two identities, we

see that Equation (15) holds also in this case. Altogether, we have the following

theorem.

Theorem 2. The coefficients cr,j and dr,j are connected by Equation (15).
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We still have to show the aforesaid linear independence. By Equation (4), the

conjugates of i cot(π/p) are just the numbers

i cot(πk/p), 1 ≤ k ≤ p− 1.

Since the cotangent function is strictly monotonous in (0, π), these numbers are

pairwise different. Accordingly, the minimal polynomial of i cot(π/p) (over Q) has

the degree p− 1. This means that the numbers

ij cot(π/p)j , j = 0, . . . , p− 2,

are Q-linearly independent.

Now we choose p such that p− 2 ≥ r. If r is odd, the families (ij cotj : 1 ≤ j ≤
r, j ≡ r mod 2) and (ij cotj−1 : 1 ≤ j ≤ r, j ≡ r mod 2) span the same Q-vector

space. This is also true for the families (ij cotj(π/p) : 1 ≤ j ≤ r, j ≡ r mod 2) and

(ij cotj−1(π/p) : 1 ≤ j ≤ r, j ≡ r mod 2). Accordingly, one of the latter families

is Q-linearly independent if, and only if, the other is Q-linearly independent. But

we have shown the Q-linear independence of the first of the latter families. So the

second family is also Q-linearly independent.

If r is even, we work with the families (1; ij cotj(π/p) : 1 ≤ j ≤ r, j ≡ r mod 2)

and (1; ij cotj−1(π/p) : 1 ≤ j ≤ r, j ≡ r mod 2) instead.

Acknowledgement. The author thanks Brad Isaacson for the important reference

[8].
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