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Abstract

A set D ⊆ N is called r-large if every r-coloring of N admits arbitrarily long
monochromatic arithmetic progressions a, a + d, . . . , a + (k − 1)d with gap d ∈ D.
Closely related to largeness is accessibility: a set D ⊆ N is called r-accessible if ev-
ery r-coloring of N admits arbitrarily long monochromatic sequences x1, x2, . . . , xk

with xi+1 − xi ∈ D. It is known that if D ⊆ N is 2-large, then the gaps between
elements in D cannot grow exponentially. In this paper, we show that if D is
2-accessible, then the gaps between elements in D cannot grow much faster than
exponentially. Additionally, we show that the notion of accessibility is equivalent
to that of topological recurrence.

1. Introduction

An r-coloring of a set A is a function χ : A → [r], where [r] = {1, 2, . . . , r}. We

say a subset A′ ⊆ A is monochromatic under χ if χ is constant on A′. One of the

goals of Ramsey theory is to find ‘order’ in seemingly ‘random’ structures. For ex-

ample, van der Waerden’s Theorem tells us that given any r-coloring of the positive

integers, there will exist arbitrarily long monochromatic arithmetic progressions.

The theorem places no requirement on the gap (or common difference), d, of the

arithmetic progression – it can be any natural number. With this in mind, in [7],

the authors introduce the notion of largeness.

Definition 1. A set D ⊆ N = {1, 2, 3, . . . } is called r-large if, for every r-coloring

of N, there exist arbitrarily long monochromatic arithmetic progressions with gap

d ∈ D. If D is r-large for every r ∈ N, we say D is large. We call an arithmetic

progression with gap d ∈ D a D-AP.

In an attempt to learn more about largeness, in [29], the authors study some

Ramsey properties of a larger family of sequences.
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Definition 2. Let D ⊆ N. A k-term sequence of integers x1, x2, . . . , xk satisfying

xi+1 − xi ∈ D for all 1 ≤ i ≤ k − 1 is called a k-term D-diffsequence.

Definition 3. A set D ⊆ N is called r-accessible if, for every r-coloring of N, there
exist arbitrarily long monochromatic sequences x1, x2, . . . , xk with xi+1 − xi ∈ D;

that is, there exist monochromatic k-term D-diffsequences for every k ≥ 1. If D is

r-accessible for every r ∈ N, we say D is accessible.

Equivalently – by a compactness argument – a set D ⊆ N is r-accessible if, for

every k ≥ 1, there exists a least positive integer ∆ = ∆(D, k; r) such that whenever

[∆] is r-colored, there exists a monochromatic k-term D-diffsequence. The same

is true for r-largeness. Given a set D ⊆ N, we define the degree of accessibility

of D, doa(D), to be the greatest positive integer r for which D is r-accessible. If

D is r-accessible for every r ∈ N, we write doa(D) = ∞. It follows immediately

from the definitions of largeness and accessibility that any set D ⊆ N that is r-large

is automatically r-accessible. Thus, all large sets are accessible; though, as shown

in [22], the converse need not be true. In Section 5, we explore the connections

between accessibility and topological recurrence; namely, we show that accessible

sets are precisely sets of topological recurrence. This connection motivates some

new questions and helps to shed light on many interesting examples of sets that are

accessible (but not large).

It is a consequence of the polynomial van der Waerden Theorem [3] that given

any polynomial p(x) ∈ Q[x] with positive leading term and zero constant term, the

set {p(n) : n ∈ N} ∩ N is large (and thus accessible). This gives us a nice family

of sets that are large. For example, the result tells us that the set {nk : n ∈ N} is

large for every k ≥ 2. Note that the preceding set has natural density 0 and is large,

while the set {2n+ 1 : n ≥ 0} of odd positive integers has natural density 1/2 and

is not even 2-accessible (color the odd positive integers red and the even positive

integers blue). This suggests that the natural density of a set does not give us much

information in regards to largeness or accessibility. However, in [7], the authors

show that if D = {d1, d2, d3, . . . } is a set of positive integers satisfying dn+1 ≥ 3dn
for all n ≥ 1, then D is not 2-large. In Question 5.5 of [8], the author asks if a

similar result holds for 2-accessibility: Does there exist an absolute constant C ≥ 2

such that there is no 2-accessible set D = {d1, d2, d3, . . . } satisfying dn+1 > Cdn for

all n ≥ 1? If yes, what is the smallest such C? We prove the following theorem.

Theorem 1. Let r ≥ 2 and let D = {d1 < d2 < d3 < · · · } be a set of positive

integers. If there exist a real number δ > 0 and a positive integer N such that

dn+1 ≥ (2 + (r − 1)−1 + δ)dn

for all n ≥ N , then doa(D) ≤ r − 1.

Letting r = 2, we immediately obtain the following corollary.
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Corollary 1. Let D = {d1 < d2 < d3 < · · · } be a set of positive integers. If there

exist a real number δ > 0 and a positive integer N such that

dn+1 ≥ (3 + δ)dn

for all n ≥ N , then D is not 2-accessible.

Remark 1. We note that since the upper bound doa(D) ≤ r − 1 of Theorem 1

grows with r, the result is only interesting for r = 2 and other small values of r. In

general, if dn+1 ≥ (1 + δ)dn, then doa(D) < ∞. In particular, a simple argument

shows that if dn+1 ≥ (2 + δ)dn, then doa(D) ≤ 15. See [23, 32, 35], which study

the chromatic number χ(ZD) of graphs ZD = (Z, E), where (x, y) ∈ E if and only

if |x− y| ∈ D. We can similarly define ND = (N, E), where (x, y) ∈ E if and only if

|x−y| ∈ D. It follows immediately that if χ(ND) ≤ r then doa(D) ≤ r−1. However,

no growth rate condition is sufficient to conclude χ(ND) ≤ 2 (and thus doa(D) = 1).

Indeed, take D = {(2k)n : n ≥ 0}. Then, {1, 2k+1, 4k+1, . . . , (2k)2 +1} is an odd

cycle in ND, and thus χ(ND) ≥ 3.

Corollary 1 is strikingly similar to the above mentioned growth rate condition

for 2-largeness, the only difference being the added δ > 0. The appearance of the

constant 3 in both results seems to be a coincidence, however. As we will see in

Section 2, the condition dn+1 ≥ 3dn in the 2-largeness result can be weakened to

dn+1 ≥ (1 + δ)dn, where δ > 0 is any positive constant. On the other hand, the set

{2n : n ≥ 0} is 2-accessible and satisfies dn+1 ≥ 2dn.

In [2], the authors ask about the degree of accessibility of the set of (positive)

Fibonacci numbers F = {1, 2, 3, 5, . . . } and show that 2 ≤ doa(F ) ≤ 5. Recently,

in [39], the author lowers the upper bound, showing doa(F ) ≤ 3. The author’s

proof of this improved upper bound uses various properties of the Fibonacci se-

quence to construct a 4-coloring of N that avoids arbitrarily long monochromatic

F -diffsequences. In this paper, we arrive at the same upper bound of doa(F ) ≤ 3

using mainly the growth rate of the Fibonacci sequence.

2. Some Background and Basic Results

First, we note that if D ⊆ N is a finite set, then D is neither 2-large nor 2-accessible.

Indeed, letting m = max(D), the 2-coloring χ : N → {1, 2} defined by

χ(x) =

{
1 : x mod 2m ∈ {1, 2, . . . ,m}
2 : otherwise

admits no monochromatic (m+ 1)-term D-AP or (m+ 1)-term D-diffsequence.

The following result gives us a quite powerful necessary condition for a set D to

be 2-large.
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Theorem 2 ([7], Theorem 2.1). If D ⊆ N is 2-large then D contains a multiple of

m for every m ∈ N.

The next result tells us that we can remove a finite number of elements from an

r-large set and preserve r-largeness. This is not in general true for accessibility; for

example, the set of odd positive integers D = {1, 3, 5, 7, . . . } is not 2-accessible but

D ∪ {2} is 3-accessible ([27], Theorem 10.27).

Theorem 3 ([7], Lemma 1). Let D ⊆ N be r-large. If F is a finite set, then D \F
is r-large.

The following tells us that if D = D1 ∪ D2 is large, then at least one of D1 or

D2 is also large. By induction, the result is easily extended to any finite union.

Theorem 4 ([7], Theorem 2.4). If D = D1 ∪D2 is large, then either D1 or D2 is

large.

We also have the previously mentioned growth rate condition for 2-largeness.

Theorem 5 ([7], Theorem 2.2). Let D = {d1, d2, d3, . . . } be a set of positive integers

such that dn+1 ≥ 3dn for all n ≥ 1. Then D is not 2-large.

As previously mentioned, the condition of Theorem 5 can be weakened. To do

so, we introduce some new notation. A sequence of positive integers S = (mn)
∞
n=1

is said to be lacunary if there exists λ > 1 such that mn+1 ≥ λmn for all n ≥ 1 (if

the elements of D ⊆ N form a lacunary sequence we will also call D lacunary). Let

{x} = x − ⌊x⌋ denote the fractional part of x ∈ R. Let ∥x∥ = min({x}, 1 − {x}),
that is, the distance from x ∈ R to the nearest integer. It has long been known

that if S = (mn)
∞
n=1 is lacunary then there exist α ∈ R and ε > 0 such that

infn∈N ∥αmn∥ = ε (this was first proven in 1926 by Khintchine [24], forgotten, and

then subsequently proven by both Pollington and Mathan in the late 1970s [9, 33]).

More recently, Peres and Schlag proved the following.

Theorem 6 ([32], Theorem 3.1). Let S1,S2, . . . ,Sℓ be lacunary sequences and let

S = S1 ∪ S2 ∪ · · · ∪ Sℓ. Then, there exist α ∈ R and ε > 0 such that

inf
s∈S

∥αs∥ = ε.

The next result was first proven in [21] (Lemma 7.4) and the following quantita-

tive version of it appears in [14].

Theorem 7 ([14], Theorem 2). Let D ⊆ N be a set of positive integers such that

there exist α ∈ R and ε > 0 satisfying ∥αd∥ ≥ ε for all d ∈ D. Then, there exists a

2-coloring of N that admits no monochromatic D-AP of length ℓ = ⌈1/2ε⌉+ 1.

Remark 2. Theorem 7 implies Theorem 2 since if D ⊆ N contains no multiple of

m ∈ N, then ∥m−1d∥ ≥ m−1 for all d ∈ D.



INTEGERS: 25 (2025) 5

As a consequence of Theorems 6 and 7, we obtain the following significant im-

provement to Theorem 5.

Theorem 8 ([14]). Let D1, D2, . . . , Dn ⊆ N be lacunary sets and let D =
⋃n

i=1 Di.

Then, D is not 2-large.

The following is a corollary of the polynomial van der Waerden Theorem and

gives us a nice family of large sets.

Theorem 9 ([7], Theorem 3.1). Let p(x) be a polynomial with integer coefficients,

a positive leading term, and p(0) = 0. Then, N ∩ {p(n) : n ∈ N} is large.

Remark 3. In the above theorem, it states that the polynomial must have integer

coefficients. This is not necessary; the polynomial need only have rational coeffi-

cients. To see why, let p(x) = anx
n + an−1x

n−1 + · · · + a1x be a polynomial with

an, an−1, . . . , a1 ∈ Q. Then, we can write

an =
pn
qn

, an−1 =
pn−1

qn−1
, . . . , a1 =

p1
q1

where gcd(pi, qi) = 1. Let ℓ = lcm(q1, q2, . . . , qn). Then, q(x) = p(ℓx) is a polyno-

mial with integer coefficients and we can apply Theorem 9 to q(x).

Reguarding r-accessibility, the following gives us a sufficient condition.

Theorem 10 ([26], Lemma 2.1). Let c ≥ 0 and r ≥ 2, and let D ⊆ N. If every

(r − 1)-coloring of D yields arbitrarily long monochromatic (D + c)-diffsequences,

then D + c is r-accessible.

Most useful is the case when r = 2 and c = 0, in which case we have the following.

Corollary 2. Let D ⊆ N. If D itself contains arbitrarily long D-diffsequences, then

D is 2-accessible.

This corollary gives us the lower bound of 2 for the degree of accessibility of

the Fibonacci numbers, F . Since F = {fn : n ∈ N} and fn = fn−1 + fn−2, we

have fn − fn−1 = fn−2 for all n ≥ 3. Thus, the set of Fibonacci numbers contains

arbitrarily long Fibonacci diffsequences, and is thus 2-accessible by Corollary 2.

Given some set D ⊆ N, it is often useful to work with a subset of D, as opposed

to D itself. The next theorem is a generalization of a result that appears in [28]

and [39].

Theorem 11. Let A ⊆ N and let d ∈ N. Let B =
{

a
d : a ∈ A

}
∩ N and let

C = {a ∈ A : a ≡ 0 (mod d)}. Then the following hold:

(i) if A is rd-accessible, then B is r-accessible;
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(ii) if A is rd-accessible, then C is r-accessible.

Proof. In both cases, we will prove the contrapositive. First, assume that B is

not r-accessible. Then, there exists a positive integer k ≥ 1 and an r-coloring

χ : N → [r] of N such that χ admits no monochromatic k-term B-diffsequence.

Assume, for the sake of contradiction, that A is rd-accessible. Define the rd-coloring

χ′ : N → {0, 1, . . . , d− 1} × [r] by

χ′(x) =

(
x mod d, χ

(
x− x mod d

d
+ 1

))
.

Since A is rd-accessible, there exists a monochromatic k-term A-diffsequence, say

X = {x1, x2, . . . , xk}, under χ′. By definition of χ′, every element of X is congruent

to c (mod d) for some c ∈ {0, 1, . . . , d− 1}. Thus,

χ

(
x1 − c

d
+ 1

)
= χ

(
x2 − c

d
+ 1

)
= · · · = χ

(
xk − c

d
+ 1

)
and (

xi+1 − c

d
+ 1

)
−
(
xi − c

d
+ 1

)
=

(
xi+1 − xi

d

)
∈ B

for all 1 ≤ i ≤ k − 1, a contradiction.

Now, assume that C is not r-accessible. Then, there exists a positive integer

k ≥ 1 and an r-coloring χ : N → [r] of N such that χ admits no monochromatic k-

term C-diffsequence. Assume, for the sake of contradiction, that A is rd-accessible.

Define the rd-coloring χ′ : N → {0, 1, . . . , d− 1} × [r] by

χ′(x) = (x mod d, χ(x)) .

Since A is rd-accessible, there exists a monochromatic k-term A-diffsequence, say

X = {x1, x2, . . . , xk}, under χ′. By definition of χ′, every element of X is congruent

to c (mod d) for some c ∈ {0, 1, . . . , d− 1}. Thus, we have

χ(x1) = χ(x2) = · · · = χ(xk)

and xi+1−xi ≡ 0 (mod d), so xi+1−xi ∈ C for all 1 ≤ i ≤ k−1, which contradicts

our assumption.

Remark 4. Theorem 11 will be useful for showing doa(F ) ≤ 3. By letting FE =

{f3n : n ∈ N} = {2, 8, 34, . . . }, we see that FE = {f ∈ F : f ≡ 0 (mod 2)}. Thus,

if we can show doa(FE) = 1, we will have doa(F ) ≤ 3.
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3. Proof of Theorem 1

We begin by giving a proof of our main result, Theorem 1. Our proof, and result, is

similar in flavor to that of Theorem 2 in [35], and the same sort of nested interval

construction can be found in [11]. The first part of the proof uses the fact that

dn+1 ≥ (2 + (r − 1)−1 + δ)dn to construct an α ∈ R satisfying {αdn} ∈
[
ε, r−1

r

]
for all n ∈ N, where ε > 0 is some fixed positive constant. The second part shows

that this condition on the fractional parts {αdn} is sufficient to conclude D is not

r-accessible.

Proof of Theorem 1. Let D = {d1 < d2 < d3 < · · · } be a set of positive integers.

Suppose that there exist δ > 0 and a positive integer N such that dn+1 ≥ (2+ (r−
1)−1 + δ)dn for all n ≥ N . Set qn = dn+N−1. Then, qn+1 ≥ (2 + (r − 1)−1 + δ)qn
for all n ≥ 1. We construct a sequence of nested intervals I1 ⊇ I2 ⊇ I3 ⊇ · · · such

that

In =

[
zn + ε

qn
,
rzn + (r − 1)

rqn

]
,

where zn ∈ N ∪ {0} and ε > 0 is fixed. Set

ε =
δ(r − 1)

r (2 + (r − 1)−1 + δ)

and define I1 =
[

ε
q1
, r−1
rq1

]
. Assume we have defined I1 ⊇ I2 ⊇ · · · ⊇ Ik as above.

Thus, we have

Ik =

[
zk + ε

qk
,
rzk + (r − 1)

rqk

]
.

Note that Ik = I
(1)
k ∪ I

(2)
k where

I
(1)
k =

[
zk + ε

qk
,
zk + ε

qk
+

1

qk+1

]
and

I
(2)
k =

[
zk + ε

qk
+

1

qk+1
,
rzk + (r − 1)

rqk

]
.

Since |I(1)k | = 1
qk+1

, there must exist zk+1 ∈ N such that zk+1

qk+1
∈ I

(1)
k . We claim that

Ik+1 =

[
zk+1 + ε

qk+1
,
rzk+1 + (r − 1)

rqk+1

]
⊆ Ik.

Since zk+1

qk+1
∈ I

(1)
k and Ik = I

(1)
k ∪ I

(2)
k , the above inclusion will hold if |I(2)k | ≥ r−1

rqk+1
.

By construction,

|I(2)k | = (r − 1)− rε

rqk
− 1

qk+1
.
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Using the fact that qk+1 ≥ (2 + (r − 1)−1 + δ)qk, we obtain

(r − 1)− rε

rqk
− 1

qk+1
≥

((r − 1)− rε)
(
2 + (r − 1)−1 + δ

)
rqk+1

− 1

qk+1

=
2(r − 1)− 2rε+ 1− rε(r − 1)−1 + δ(r − 1)− rεδ − r

rqk+1

=
r − 1

rqk+1
+

δ(r − 1)− 2rε− rε(r − 1)−1 − rεδ

rqk+1

=
r − 1

rqk+1
+

δ(r − 1)− εr(2 + (r − 1)−1 + δ)

rqk+1

=
r − 1

rqk+1
,

where the last equality follows from the definition of ε. Now, since the In are nested

and |In| → 0 as n → ∞, we have
⋂∞

n=1 In = {α}. By construction, this α ∈ R
satisfies {αqn} ∈

[
ε, r−1

r

]
for all n ∈ N. Moreover, since I1 =

[
ε
q1
, r−1
rq1

]
, we have

ε
dN

= ε
q1

≤ α ≤ r−1
rq1

= r−1
rdN

. Thus, letting ε1 = ε(d1/dN ), we have {αdn} ∈[
ε1,

r−1
r

]
for all n ∈ N.

Now, consider the r-coloring χ : N → [r] defined by

χ(x) =


1 : {αx} ∈

[
0, 1

r

)
2 : {αx} ∈

[
1
r ,

2
r

)
...

r : {αx} ∈
[
r−1
r , 1

)
.

We claim this coloring avoids monochromatic
(
⌈(rε1)−1⌉+ 1

)
-termD-diffsequences.

To see this, let k =
(
⌈(rε1)−1⌉+ 1

)
and assume, for the sake of contradiction, that

X = {x1, x2, . . . , xk} is a monochromatic k-term D-diffsequence, say of color c.

Then, {αxi} ∈
[
c−1
r , c

r

)
for all 1 ≤ i ≤ k. We claim

{αxi+1} = {α(xi+1 − xi)}+ {αxi}

for all 1 ≤ i ≤ k− 1. Indeed, assume, for the sake of contradiction, that {αxi+1} =

{α(xi+1 − xi)} + {αxi} − 1. Since xi+1 − xi ∈ D for all 1 ≤ i ≤ k − 1, we have

ε1 ≤ {α(xi+1 − xi)} ≤ r−1
r for all 1 ≤ i ≤ k − 1. Thus, we have

{αxi+1} = {α(xi+1 − xi)}+ {αxi} − 1 <
r − 1

r
+

c

r
− 1 =

c− 1

r
,

a contradiction with χ(xi+1) = c. Iterating this fact, we obtain

{αxk} = {α(xk − xk−1)}+ · · ·+ {α(x2 − x1)}+ {αx1} ≥ (k − 1)ε1 +
c− 1

r
≥ c

r
.

Thus, χ(xk) ̸= c, a contradiction. It follows that doa(D) ≤ r − 1.
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Remark 5. The coloring in the proof of Theorem 1 can equivalently be defined as

χ(x) = r +

r−1∑
i=1

⌊
{αx} − i

r

⌋
= 1 +

r−1∑
i=1

⌊
αx+

i

r

⌋
− ⌊αx⌋.

In addition, during the course of our proof we obtained a new way to show a set is

not r-accessible; indeed, we have the following.

Theorem 12. If D = {d1, d2, d3, . . . } is a set of positive integers such that there

exist α ∈ R and ε > 0 satisfying {αdn} ∈
[
ε, r−1

r

]
for all n ∈ N, then there exists

an r-coloring of N with no monochromatic (⌈(rε)−1⌉+ 1)-term D-diffsequence.

Using the fact that the even Fibonacci numbers satisfy the recurrence en =

4en−1 + en−2 for all n ≥ 3 (with e1 = 2 and e2 = 8), it follows by Corollary 1 that

doa(FE) = 1. Thus, by the remark following the proof of Theorem 11, we have

doa(F ) ≤ 3.

4. Colorings Avoiding Long Monochromatic F -APs and FE-Diffsequences

As observed in [14], Theorem 8 immediately implies that the set of Fibonacci num-

bers F = {1, 2, 3, 5, . . . } is not 2-large. This relies only on the fact that the Fibonacci

sequence is lacunary, and hence does not allow one to demonstrate an explicit 2-

coloring of N that avoids arbitrarily long monochromatic F -APs.

In [39], the author constructs a quite intricate 2-coloring of N that avoids 5-term

monochromatic F -APs. The proof is rather technical, however. We give an elemen-

tary proof that there exists a 2-coloring of N that avoids 6-term monochromatic

F -APs.

Proposition 1. There exists a 2-coloring of N that avoids 6-term monochromatic

F -APs. Consequently, F is not 2-large.

Proof. Let ϕ = (1 +
√
5)/2, ϕ̄ = (1−

√
5)/2, and α = 1/

√
5. Then,

fn = αϕn − αϕ̄n

for all n ≥ 0. We note that

ϕ−1fn = fn−1 − ϕ̄n

and

ϕfn = fn+1 − ϕ̄n.

Thus, √
5fn = (ϕ−1 + ϕ)fn = fn−1 + fn+1 − 2ϕ̄n
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for all n ≥ 1. We will also use the fact that fn−1 + fn+1 ̸≡ 0 (mod 8) for all

n ≥ 1. This can be easily verified by checking the first few cases and then noting

that fn ≡ fn+12 (mod 8) (the Fibonacci sequence is periodic modulo m for every

m; when m = 8, the period is 12). Direct computation gives us∥∥∥∥∥
√
5fn
8

∥∥∥∥∥ > 0.16

for 1 ≤ n ≤ 4. Then, for n ≥ 5, we note that

−0.014 < −1

4

(
1−

√
5

2

)6

≤ − ϕ̄n

4
≤ −1

4

(
1−

√
5

2

)5

< 0.023.

Combining this with the fact that{
fn−1 + fn+1

8

}
∈
{
1

8
,
2

8
, . . . ,

7

8

}
for all n ≥ 1, we have ∥∥∥∥∥

√
5fn
8

∥∥∥∥∥ > 0.1

for all n ≥ 1. Since 6 =
⌈

1
2(0.1)

⌉
+ 1, it follows by Theorem 7 that there exists

a 2-coloring of N with no monochromatic 6-term F -AP. Indeed, the 2-coloring χ :

N → {1, 2} defined by

χ(x) =

1 :
{√

5
8 x
}
∈
[
0, 1

2

)
2 :
{√

5
8 x
}
∈
[
1
2 , 1
)

avoids 6-term monochromatic F -APs.

At the end of Section 3 we concluded that doa(FE) = 1 using only the growth rate

of the even Fibonacci numbers. Consequently, we did not demonstrate an explicit

2-coloring of N that avoids arbitrarily long monochromatic FE-diffsequences.

In [39], the author constructs a 4-coloring of N that avoids 4-term monochromatic

F -diffsequences. We give a shorter and more elementary proof of the existence of

such a coloring. We use Theorem 12 to prove there exists a 2-coloring of N that

avoids 4-term monochromatic FE-diffsequences. This coloring then immediately

extends (using Theorem 11) to a 4-coloring of N that avoids 4-term monochromatic

F -diffsequences.

Proposition 2. There exists a 2-coloring of N that avoids 4-term monochromatic

FE-diffsequences, where FE = {2, 8, 34, . . . } is the set of even Fibonacci numbers.

Consequently, FE is not 2-accessible.
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Proof. As in Proposition 1, we let ϕ = (1 +
√
5)/2, ϕ̄ = (1−

√
5)/2, and α = 1/

√
5

so that

fn = αϕn − αϕ̄n

for all n ≥ 0. Next, note that

ϕfn = fn+1 − ϕ̄n,

from which it follows that

(1 + ϕ)fn = fn + fn+1 − ϕ̄n

for all n ≥ 1. We claim that f3n + f3n+1 ≡ 1 (mod 4) for all n ≥ 0. This is

true for n = 0 and n = 1. Now, assume that k ≥ 2 and f3m + f3m+1 ≡ 1

(mod 4) for all m < k. Then, using the fact that fn+6 ≡ fn (mod 4), we have

f3k+f3k+1 ≡ f3(k−2)+f3(k−2)+1 ≡ 1 (mod 4). Hence, it follows that f3n+f3n+1 ≡ 1

(mod 4) for all n ≥ 1, that is, {
f3n + f3n+1

4

}
=

1

4

for all n ≥ 1. Finally, we have

−0.04 < −1

4

(
1−

√
5

2

)4

≤ − ϕ̄3n

4
≤ −1

4

(
1−

√
5

2

)3

< 0.06

for all n ≥ 1, and thus

0.21 <

{
(1 + ϕ)

f3n
4

}
< 0.31

for all n ≥ 1. Since 4 =
⌈

1
2(0.21)

⌉
+ 1, it follows by Theorem 12 that there exists

a 2-coloring of N with no monochromatic 4-term FE-diffsequence. Indeed, the 2-

coloring χ : N → {1, 2} defined by

χ(x) =

1 :
{(

1+ϕ
4

)
x
}
∈
[
0, 1

2

)
2 :
{(

1+ϕ
4

)
x
}
∈
[
1
2 , 1
)

avoids 4-term monochromatic FE-diffsequences.

5. Accessibility and Topological Dynamics

Many results in Ramsey theory can be reformulated in terms of topological dy-

namics. In fact, Bergelson and Liebman’s original proof of the polynomial van der
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Waerden Theorem was topological [3]; only later on did Walters give a fully com-

binatorial proof of the result [38]. In this section, we give a brief overview of some

connections between accessibility and topological dynamics. For an introduction to

topological dynamics, see [16] (specifically Chapters 1, 2, 8, and 9). See also Robert-

son’s paper [34] for a very nice overview of the connections between dynamics and

largeness.

Going forward, we will use the following notation: Given a function T : X → X,

we let Tn denote the n-th iterate of T , that is,

Tn = T ◦ T ◦ · · · ◦ T︸ ︷︷ ︸
n times

.

We also use the notation TnY = {Tn(y) : y ∈ Y } and T−nY = {x ∈ X : Tn(x) ∈
Y } in place of Tn(Y ) and T−n(Y ), respectively.

Definition 4. A topological dynamical system is a pair (X,T ) consisting of a com-

pact metric space X and a homeomorphism T : X → X. We say that (X,T ) is a

minimal (topological) system if no nontrivial closed subset of X is T -invariant, that

is, there is no closed ∅ ≠ K ⊊ X such that TK = K.

Definition 5. We say D ⊆ N is a set of ℓ-topological recurrence if for every minimal

system (X,T ) and every (nonempty) open set U ⊆ X, there exists d ∈ D such that

U ∩ T−dU ∩ · · · ∩ T−ℓdU ̸= ∅.

We say D ⊆ N is a set of topological recurrence if D is a set of 1-topological

recurrence, and we say D is a set of multiple topological recurrence if D is a set of

ℓ-topological recurrence for every ℓ ≥ 1.

It is well known thatD ⊆ N is large if and only ifD is a set of multiple topological

recurrence [21]. It is also true that a set D ⊆ N is accessible if and only if D is a set

of topological recurrence. However, this latter fact has never been explicitly stated

in the literature. For the sake of completeness, we provide a self-contained proof of

this fact.

Before proceeding further, we make some general observations and introduce

some notation. Firstly, we note that no generality is lost by working with colorings of

Z instead of N. This follows by a standard compactness argument and by identifying

the interval [−N,N ] of Z with the interval [1, 2N+1] of N. Alternatively: If every r-

coloring of N admits arbitrarily long monochromatic D-diffsequences, then trivially

every r-coloring of Z does as well. Conversely, assume every r-coloring of Z admits

arbitrarily long monochromatic D-diffsequences. Given any r-coloring χ : N → [r]

of N, consider the r-coloring χ′ : Z → [r] of Z defined by χ′(x) = χ(|x|+1). Strictly

negative or positive k-term monochromatic D-diffsequences under χ′ correspond to

k-term monochromaticD-diffsequences under χ. Thus, any 2k-term monochromatic
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D-diffsequence under χ′ gives us a k-term monochromatic D-diffsequence under

χ. Since k can be chosen arbitrarily, it follows that any r-coloring of N admits

arbitrarily long monochromatic D-diffsequences.

Additionally, many of the results in this section are more concisely stated by

considering an r-coloring χ : Z → [r] of Z as a partition Z = C1 ∪ C2 ∪ · · · ∪ Cr of

Z under the correspondence n ∈ Ci if and only if χ(n) = i. Given a subset D ⊆ N,
we let

DSk(D) = {{s1, s2, . . . , sk} ⊆ Z : si+1 − si ∈ D for all 1 ≤ i ≤ k − 1} ,

that is, DSk(D) is the set of all k-term D-diffsequences in Z. Summarizing, saying

D ⊆ N is r-accessible is equivalent to saying that for every partition Z = C1 ∪
C2 ∪ · · · ∪ Cr of Z into r subsets and every k ≥ 1, there exists i ∈ {1, 2, . . . , r} and

S ∈ DSk(D) such that S ⊆ Ci.

We say that A ⊆ P(Z) is translation invariant if for every A ∈ A and every

n ∈ Z, we have A+ n ∈ A, where A+ n = {a+ n : a ∈ A}. It is clear that DSk(D)

is translation invariant since if S = {s1, s2, . . . , sk} is a k-term D-diffsequence,

then S + n = {s1 + n, s2 + n, . . . , sk + n} is as well. The following lemma is

a topological correspondence principle of Furstenberg and Weiss [17]. Essentially,

given a partition Z = C1∪C2∪· · ·∪Cr of Z (i.e., an r-coloring of Z), we can construct

a minimal system (X,T ) and a clopen partition {Ui}ri=1 of X that models the given

partition of Z.

Lemma 1. Let A be a translation invariant collection of finite subsets of Z and let

r ∈ N. The following are equivalent.

(i) For any finite partition Z = C1∪C2∪ · · ·∪Cr of Z into r subsets, there exists

i ∈ {1, 2, . . . , r} and A ∈ A such that A ⊆ Ci.

(ii) Let (X,T ) be a topological dynamical system and let {Ui}ri=1 be an open cover

of X. Then, there exists i ∈ {1, 2, . . . , r} and A ∈ A such that⋂
a∈A

T−aUi ̸= ∅.

(iii) Let (X,T ) be a minimal system and let {Ui}ri=1 be a clopen cover of X. Then,

there exists i ∈ {1, 2, . . . , r} and A ∈ A such that⋂
a∈A

T−aUi ̸= ∅.

Proof. We begin by proving that (i) implies (ii). Let (X,T ) be a topological dy-

namical system and let {U}ri=1 be an open cover of X. Let x ∈ X be arbitrary. Let

C1 = {n ∈ Z : Tnx ∈ U1} and Ci = {n ∈ Z : Tnx ∈ Ui \
⋃i−1

k=1 Uk} for 2 ≤ i ≤ r.
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Then, Z = C1 ∪C2 ∪ · · · ∪Cr is a partition of Z, so there exists i ∈ {1, 2, . . . , r} and

A ∈ A such that A ⊆ Ci. Thus, T
ax ∈ Ui for all a ∈ A, and hence⋂
a∈A

T−aUi ̸= ∅.

Next, we note that (ii) trivially implies (iii) since by definition a minimal system

is a topological dynamical system and a clopen cover of X is an open cover of X.

Finally, we prove that (iii) implies (i). Let Z = C1 ∪ C2 ∪ · · · ∪ Cr be a par-

tition of Z. Let Λ = {1, 2, . . . , r} and let Ω = ΛZ be the set of two-sided infi-

nite words over the alphabet Λ. Define a metric on Ω by d(x, y) = 2−k, where

k = min{|n| : xn ̸= yn}. This makes Ω a compact metric space. Let T : Ω → Ω de-

note the shift operator, which is defined by Tx = y, where yn = xn−1 for all n ∈ Z.
Then, T is a homeomorphism (this is why we want to work with Z instead of N).
Let ω ∈ Ω be defined by ωn = i if and only if n ∈ Ci and let OT (ω) = {Tnω : n ∈ Z}
denote the orbit closure of ω. It follows that OT (ω) is compact (since Ω is compact)

and T -invariant. Thus, (OT (ω), T ) is a topological dynamical system. By consid-

ering the family F of nonempty closed T -invariant subsets of OT (ω) ordered by

inclusion, it follows by Zorn’s Lemma that there exists a minimal subsystem (X,T )

of (OT (ω), T ) (see Chapter 1 of [16] for details and Chapter 3 for a proof not relying

on Zorn’s Lemma). Consider the sets Ui = {x ∈ X : x0 = i} for 1 ≤ i ≤ r. The Ui’s

are clopen and clearly {Ui}ri=1 covers X. Thus, there exists i ∈ {1, 2, . . . , r} and

A ∈ A such that
⋂

a∈A T−aUi ̸= ∅. Thus, there exists υ ∈ X such that υa = i for

all a ∈ A. Since υ ∈ OT (ω), there exists m ∈ Z such that d(υ, Tmω) < 2−|max (A)|.

Thus, ωa+m = υa for all a ∈ A, so A + m ⊆ Ci. Since A is translation invariant,

A+m ∈ A, and our proof is complete.

We are now in a position to prove that accessible sets are sets of topological

recurrence and vice versa (the equivalence of (i) and (iv) is well known; see [21] for

this and more equivalencies).

Theorem 13. Let D ⊆ N. The following are equivalent.

(i) D is a set of topological recurrence.

(ii) Let (X,T ) be a minimal system and let U ⊆ X be an open set. Then, for

every k ≥ 1, there exists a k-term D-diffsequence {s1, s2, . . . , sk} ∈ DSk(D)

such that

U ∩ T−s1U ∩ · · · ∩ T−skU ̸= ∅.

(iii) D is accessible.

(iv) D is chromatically intersective; that is, for any finite partition N = C1 ∪C2 ∪
· · · ∪ Cr of N, there exists i ∈ {1, 2, . . . , r} and a, b ∈ Ci such that a− b ∈ D.
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Proof. We begin by proving that (i) implies (ii). Let (X,T ) be a minimal system

and let U ⊆ X be an open set. Then, there exists d1 ∈ D such that U ∩T−d1U ̸= ∅.
Since U ⊆ X is open and T : X → X is a homeomorphism, U ∩ T−d1U is an open

set of X. Thus, there exists d2 ∈ D such that (U ∩T−d1U)∩T−d2(U ∩T−d1U) ̸= ∅.
In particular, U ∩ T−d1U ∩ T−d1−d2U is an open set of X. Iterating this process

gives, for any k ≥ 1, a k-term D-diffsequence {s1, s2, . . . , sk} ∈ DSk(D) such that

U ∩ T−s1U ∩ · · · ∩ T−skU ̸= ∅,

where sj =
∑j

i=1 di.

Now, we prove that (ii) implies (iii). Recall that DSk(D) is a translation invari-

ant collection of finite subsets of Z, that is, the set of all k-term D-diffsequences

in Z is translation invariant. Assume, for the sake of contradiction, that D is not

r-accessible for some r ∈ N. Then, there exists a partition Z = C1 ∪ C2 ∪ · · · ∪ Cr

of Z and a positive integer k such that for every 1 ≤ i ≤ r and every S ∈ DSk(D),

we have S ̸⊆ Ci. Thus, by Lemma 1, there exists a minimal system (X,T ) and a

clopen cover {Ui}ri=1 of X such that for every 1 ≤ i ≤ r and every S ∈ DSk(D), we

have
⋂

s∈S T−sUi = ∅. In other words, there exists an open set Ui of X such that

for every k-term D-diffsequence {s1, s2, . . . , sk} ∈ DSk(D),

Ui ∩ T−s1Ui ∩ · · · ∩ T−skUi = ∅,

contradicting (ii).

The fact that (iii) implies (iv) follows immediately from the definition of acces-

sibility.

Finally, we prove that (iv) implies (i). Let D be chromatically intersective.

Assume, for the sake of contradiction, that D ⊆ N is not a set of topological

recurrence. Then, there exists a minimal system (X,T ) and an open set U ⊆ X

such that for every d ∈ D, U ∩ T−dU = ∅. Since (X,T ) is a minimal system,⋃∞
n=0 T

−nU = X. Since T is a homeomorphism and X is compact, there exists

r ∈ N such that
⋃r−1

n=0 T
−nU = X. Let x ∈ X be arbitrary. Let C1 = {n ∈ N :

Tnx ∈ U} and let Ci = {n ∈ N : Tnx ∈ T−i+1U} \
⋃i−1

k=1 Ck for 2 ≤ i ≤ r. It

follows that N = C1 ∪ C2 ∪ · · · ∪ Cr is a partition of N. Since we assumed D is not

a set of topological recurrence, there exists no i ∈ {1, 2, . . . , r} and a, b ∈ Ci such

that a− b ∈ D, and thus D is not chromatically intersective, a contradiction. This

completes our proof.

With the equivalence between accessibility and topological recurrence explicitly

stated there are now many interesting examples of sets that are accessible (sets of

topological recurrence), as well as sets that are accessible but not large (sets of

topological recurrence but not multiple topological recurrence). Indeed, Fursten-

berg constructed a set of topological recurrence that is not a set of 2-topological

recurrence in [16] (Chapter 9, Pages 177-178). This result was later reformu-

lated by Jungić to answer a conjecture of Brown asking if every accessible set is
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large [22]. In [15], the authors prove that for any k ≥ 2 and α ∈ R, the set

D = {n ∈ N : {αnk} ∈ [1/4, 3/4]} is a set of (k−1)-topological recurrence but not a

set of k-topological recurrence. Many more interesting examples of sets of topolog-

ical recurrence (and thus accessible sets) can be found in [6, 15, 16, 18, 19, 20, 31].

Remark 6. We say that D ⊆ N is a set of ℓ-measurable recurrence if for every

measure preserving system (X,B, µ, T ) and any measurable set A ∈ B with µ(A) >

0, there exists d ∈ D such that

µ(A ∩ T−dA ∩ · · · ∩ T−ℓdA) > 0.

Similarly to the case of topological recurrence, we say that D is a set of measurable

recurrence if D is a set of 1-measurable recurrence and a set of multiple measurable

recurrence if D is a set of ℓ-measurable recurrence for every ℓ ≥ 1. It is well known

that any set of ℓ-measurable recurrence is a set of ℓ-topological recurrence. However,

the converse need not be true, as Kř́ıž constructed a set of topological recurrence

that is not a set of measurable recurrence in [25] (an exposition of this construction

is given in [31]). We mention this since it follows that sets of multiple measurable

recurrence are large, and hence interesting examples of large sets can be found in

[5] (Theorems 0.9 and 0.10), [4] (Theorems 1.3 and 1.4), and [36] (Corollaries 1.5

and 1.6).

Of course, any property possessed by sets of topological recurrence must also

be a property of accessible sets. Consider, for example, the following simple prop-

erty possessed by sets of k-topological recurrence (a simple proof is given in [21],

Proposition 6.2).

Theorem 14. If D = D1 ∪D2 is a set of k-topological recurrence, then either D1

or D2 is a set of k-topological recurrence.

This simple fact about sets of k-topological recurrence implies both Theorem 4

and the following corollary.

Corollary 3. If D = D1 ∪D2 is accessible, then either D1 or D2 is accessible.

Remark 7. Corollary 3 is easy to prove if “accessible” is replaced by “large”: If D1

is not r-large and D2 is not s-large, then given colorings χ1 : N → [r] and χ2 : N →
[s] that avoid arbitrarily long monochromatic D1-APs and D2-APs, respectively,

their standard product coloring χ : N → [r] × [s] defined by χ(n) = (χ1(n), χ2(n))

avoids arbitrarily long monochromatic D1∪D2-APs. However, this product coloring

does not necessarily work when considering D1 ∪ D2-diffsequences unless we have

the added assumption that D1 +D2 ⊆ D1 or D1 +D2 ⊆ D2 ([27], Lemma 10.24).

In [21], the authors give a dynamical formulation for r-largeness. Namely, D ⊆ N
is r-large if for every topological dynamical system (X,T ), every open cover {Ui}ri=1
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of X with r open sets, and every k ≥ 1, there exists i ∈ {1, 2, . . . , r} and d ∈ D

such that

Ui ∩ T−dUi ∩ · · · ∩ T−kdUi ̸= ∅.

In a similar fashion, we can give a dynamical formulation for r-accessibility.

Definition 6 (r-accessibility, topological version). A set D ⊆ N is r-accessible if

for every minimal system (X,T ), every clopen cover {Ui}ri=1 of X with r clopen

sets, and every k ≥ 1, there exists i ∈ {1, 2, . . . , r} and a k-term D-diffsequence

{s1, s2, . . . , sk} ∈ DSk(D) such that

Ui ∩ T−s1Ui ∩ · · · ∩ T−skUi ̸= ∅.

Remark 8. That this coincides with our original definition of r-accessibility follows

from Lemma 1 (let A = DSk(D) for k ≥ 1). In addition, as seen in the proof

of Lemma 1, one may assume the sets {Ui}ri=1 in the cover of X are pairwise

disjoint. Similarly, in the topological formulation of r-largeness, one need only

consider minimal systems (X,T ) that possess a clopen cover {Ui}ri=1 of X into r

pairwise disjoint clopen sets.

Recall the 2-Large Conjecture, which asserts that if D ⊆ N is 2-large, then D is

large [7]. This conjecture can be restated in the language of topological dynamics.

Conjecture 1 (2-Large Conjecture, topological version). Let D ⊆ N. Assume that

for every minimal system (X,T ), every partition X = U1 ∪ U2 of X into 2 clopen

sets, and every k ≥ 1, there exists i ∈ {1, 2} and d ∈ D such that

Ui ∩ T−dUi ∩ · · · ∩ T−kdUi ̸= ∅.

Then, for every minimal system (X,T ), every open set U ⊆ X, and every k ≥ 1,

there exists d ∈ D such that

U ∩ T−dU ∩ · · · ∩ T−kdU ̸= ∅.

We now expand some on the family of colorings used in Theorem 1, Proposition

1, and Proposition 2. Let T = R/Z be the torus (real numbers modulo 1). T can

be equipped with the metric d(x, y) = min(|x − y|, 1 − |x − y|) for all x, y ∈ T, or
equivalently d(x, y) = min({x− y}, 1−{x− y}) for all x, y ∈ R. This turns T into a

compact metric space. Let C1 ∪ C2 = T be a partition of the torus such that there

exists an open set U ⊆ T with either U ⊆ C1 or U ⊆ C2. Let α ∈ T. Let Tα : T → T
be defined by Tα(x) = x+ α. Let x0 ∈ X. Define a 2-coloring χ : N → {1, 2} of N
by

χ(n) =

{
1 : Tn

α (x0) ∈ C1

2 : Tn
α (x0) ∈ C2.

This is just a generalization of the colorings given in the remark following Proposi-

tion 2, where we had C1 =
[
0, 1

2

)
, C2 =

[
1
2 , 1
)
, and x0 = 0.
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Definition 7. A set D ⊆ N is called Bohr(n) if for every α1, α2, . . . , αn ∈ T and

every ε > 0, there exists d ∈ D such that ∥α1d∥ < ε, ∥α2d∥ < ε, . . . , ∥αnd∥ < ε.

An identical argument to that of Theorem 8.10 in [13] shows D ⊆ N is Bohr(1) if

and only if every 2-coloring defined as above admits arbitrarily long monochromatic

D-APs. It is known that Bohr(1) sets are not necessarily 2-large [13]; however, we

wonder if they are 2-accessible, that is, is it true that

{D ⊆ N : D is 2-large} ⊆ {D ⊆ N : D is Bohr(1)} ⊆ {D ⊆ N : D is 2-accessible}?

A very interesting open problem is that of determining if the primes are 2-

accessible (a simple 3-coloring shows that they are not 3-accessible [26]). Consider

the topological dynamical system (T, Tα). Let P be the set of prime numbers. We

claim that for every open cover {U1, U2} of T and every k ≥ 1, there exists i ∈ {1, 2}
and a k-term P -diffsequence {s1, s2, . . . , sk} ∈ DSk(P ) such that

Ui ∩ T−s1
α Ui ∩ · · · ∩ T−sk

α Ui ̸= ∅.

Indeed, if α is irrational, then our claim follows immediately from the fact that for

any x ∈ T, the set T p
α(x) = {pα+x} is dense in T as p ranges through the primes [37].

Now, if α = a/b is a rational in lowest terms, thenOTα(0) = {0, Tα(0), . . . , T
b−1
α (0)}.

Suppose that T k
α(0), T

k+1
α (0) ∈ Ui for some i ∈ {1, 2}. By Dirichlet’s Theorem

[1], for any b > 1 there exist infinitely many primes p ≡ −1 (mod b) and p ≡ 1

(mod b). Thus, since T k+p
α (0) = T k+1

α (0) if p ≡ 1 (mod b) and T k+1+p
α (0) = T k

α(0)

if p ≡ −1 (mod b), the result follows. Otherwise, without loss of generality, 0 ∈ U1,

Tα(0) ∈ U2, T
2
α(0) ∈ U1, T

3
α(0) ∈ U2, and so on. Thus, the result follows since 2 is a

prime (this is just a slightly different formulation of the remark at the end of [29]).

We wonder if this is enough to deduce the primes are 2-accessible.

Question 1. Let D ⊆ N. Assume that for every topological dynamical system

(T, Tα), every open cover {U1, U2} of T, and every k ≥ 1, there exists i ∈ {1, 2} and

a k-term D-diffsequence {s1, s2, . . . , sk} ∈ DSk(D) such that

Ui ∩ T−s1
α Ui ∩ · · · ∩ T−sk

α Ui ̸= ∅.

Is D 2-accessible?

To expand a little more on Question 1, we are essentially asking if it is enough

to check only periodic 2-colorings and 2-colorings generated by irrational rotations

of T to deduce 2-accessibility. Informally, given a 2-coloring χ : N → {1, 2} of N,
we can think of it as an infinite word χ ∈ {1, 2}N, where χn = χ(n), and define its

complexity function p(χ, n) to be the number of unique length n strings appearing

in χ. Clearly p(χ, n) ≤ 2n, and it is well known that if p(χ, n) ≤ n for any n ∈ N,
then χ is eventually periodic ([30], Theorem 1.3.13). Colorings defined by irrational
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circle rotations (as in Theorem 1) have low complexity while still being aperiodic.

In fact, Sturmian words are words ω ∈ {1, 2}N with complexity p(ω, n) = n+ 1 for

all n ∈ N, and every Sturmian word can be generated by an irrational rotation ([30],

Theorem 2.1.13). It follows from Borel’s Normal Number Theorem that almost all

(with respect to Lebesgue measure) r-colorings χ ∈ {1, 2, . . . , r}N have complexity

p(χ, n) = rn for all n ∈ N. It seems natural to want to look at r-colorings with

low complexity when attempting to prove a set is not r-accessible. We think the

following question is interesting and further motivates Question 1.

Question 2. Let D ⊆ N satisfy doa(D) < r. Does there exist an r-coloring

χ ∈ {1, 2, . . . , r}N of N that does not admit arbitrarily long monochromatic D-

diffsequences and which satisfies p(χ, n) = O(n)?

As seen in the remark following Theorem 1, there is a connection between the

chromatic number, χ(ND), of the distance graph ND and the degree of accessibility,

doa(D), of D. Indeed, for any D ⊆ N, there exists C > 0 such that

doa(D) < χ(ND) ≤ C doa(D).

We wonder what more can be said about this relationship and what changes if N
is replaced with Z or R. Letting Vm = {n ∈ N : m ∤ n}, we have, as shown in [27],

that doa(Vm) = m− 1. In addition, the coloring used to show doa(Vm) < m avoids

2-term monochromatic Vm-diffsequences, so χ(NVm
) = m. Thus,

χ(NVm)

doa(Vm)
=

m

m− 1
→ 1 as m → ∞.

On the other hand, let D = {1, 2, . . . ,m − 1} ∪ {pn : n ∈ N}, where m ≥ 3 and

p > m is any prime not dividing m. Since ND contains a complete subgraph Km,

we have χ(ND) ≥ m. In addition, the m-coloring χ : N → {0, 1, . . . ,m− 1} defined

by χ(n) = i if and only if n ≡ i (mod m) gives us χ(ND) ≤ m, so χ(ND) = m.

Finally, by Theorem 1, doa(D) = 1, so

χ(ND)

doa(D)
= m.

Question 3. What properties does the set

X =

{
χ(ND)

doa(D)
: D ⊆ N

}
have? The above two examples show that N ∩ (1,∞) ⊆ X. Is X = Q ∩ (1,∞)?

Remark 9. As shown in [23], χ(ZD) = ∞ if and only if D is a set of topological

recurrence. Accepting this, it is easy to see that D is accessible if and only if D is a

set of topological recurrence. Indeed, if D is accessible, it is clear that χ(ZD) = ∞.
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Conversely, if doa(D) is finite, then there exists a finite coloring χ : Z → [r] having

all monochromatic D-diffsequences of bounded length. Thus, χ′ : Z → [r] × [ℓ]

defined by χ′(n) = (χ(n), ℓ(n)), where ℓ(n) = length of longest monochromatic

D-diffsequence starting at n and ℓ = max{ℓ(n) : n ∈ Z}, is a proper coloring of

χ(ZD).

6. Some Concluding Remarks

We are not sure whether the condition dn+1 ≥ (3 + δ)dn in Corollary 1 is the

best possible. We hoped to weaken the condition to dn+1 ≥ (2 + δ)dn, but were

unsuccessful. There is of course an added difficulty when we wish to have {αdn} ∈
[ε, 1/2] as opposed to ∥αdn∥ ≥ ε. In the latter case, if we have an interval with

a small number of ‘bad’ fractions of the form a/dn, then we can remove small ε-

neighborhoods centered at these fractions and be left with a union of closed intervals

avoiding these bad fractions. If the sequence is lacunary, this idea can be used in a

clever way to construct a sequence of nested intervals that converge to some α ∈ R
with the property that ∥αdn∥ ≥ ε for all n ∈ N. However, if we want {αdn} ∈
[ε, 1/2], then given any interval, it is not enough to simply remove ε-neighborhoods;

given a bad fraction a/dn in the interval, we need to remove
(

a−1/2
dn

, a+ε
dn

)
, that is,

we need to remove intervals of size 1/2+ε
dn

as opposed to intervals of size 2ε
dn

. We

think this is where most of the added difficulty lies. A somewhat related problem to

this ([10], Problem 5) asks whether or not there exists β > 2 such that {αβn} ≥ 1/2

infinitely often for all α ̸= 0.

Perhaps there exists some 2-accessible set D = {d1, d2, d3, . . . } such that dn+1 ≥
(2 + δ)dn for all n ≥ 1? For example, it is not known whether the set of Pell

numbers, which satisfy the recurrence pn = 2pn−1 + pn−2, is 2-accessible or not.

We would also like to determine if the set of Fibonacci numbers is 3-accessible.

We cannot apply Theorem 1 to conclude the set is not 3-accessible since for any

ε > 0 and α ∈ R, it is impossible to have {αfn} ∈
[
ε, 2

3

]
for all n ∈ N. See [12],

which proves that for every α ̸∈ Q(
√
5), there exists infinitely many n ∈ N such that

{αfn} > 2/3. If α ∈ Q(
√
5), then (using the fact that

√
5fn = fn−1 + fn+1 − 2ϕ̄n)

a fairly straightforward argument can show that for any ε > 0, it is impossible to

have {αfn} ∈
[
ε, 2

3

]
for all n ∈ N.

Finally, it would be interesting to find a set D that is 2-accessible (and not 2-

large) that does not contain arbitrarily long monochromatic D-diffsequences. We

have yet to see a proof of a set being 2-accessible that does not use Corollary 2 or

the fact that D − D = {d2 − d1 : d1, d2 ∈ D, d2 − d1 > 0} is accessible for any

infinite set D. Perhaps the dynamical formulation of 2-accessibility could help shed

light on some new 2-accessible sets?
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