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Abstract

In this paper, we employ tools of classical linear operator theory to derive new

explicit formulas for Euler polynomials. Additionally, we present an explicit formula

for generalized Euler polynomials. These results generalize recent identities by

Wei, Qi, and Guo. We offer a simplified approach to understand these classical

polynomials.

1. Introduction and Preliminaries

Throughout this paper, we let End(C[x]) denote the algebra of endomorphisms of

the C-vector space C[x] and let (C[x])N denote the set of polynomial sequences.

An operator on C[x] is any element of End(C[x]). Operators appeared early in

mathematics to simplify the writing of formulas for polynomial sequences and re-

markable numbers, and they were also studied as mathematical objects to discover

their properties. With operator functions at our disposal, we can solve many partial

differential equations. Operators are also used in quantum mechanics and in a wide

range of mathematical domains. Some of the most well-known operators include the

identity operator I , defined by I(xn) = xn for all n ∈ N0, the translation operator

Tr , defined for any complex number r by Tr(x
n) = (x + r)n for all n ∈ N0, the

differential operator D , defined by D(x0) = 0 and D(xn) = nxn−1 for all n ∈ N,
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the multiplication operator Mx , defined by Mx(x
n) = xn+1 for all n ∈ N0, the finite

difference operator ∆r , defined by ∆r = Tr − I, and the backward difference oper-

ator ∇r , defined by ∇r = I − T−r. Note that T1, ∆1, and ∇1 are simply denoted

by T , ∆, and ∇, respectively. For convenience, we denote the identity operator I

as 1. It is clear that ∆ = T − 1 and ∇ = 1− T−1. Moreover, according to Taylor’s

formula, for any P ∈ C[x], we have

TP (x) = P (x+ 1) =

∞∑
j=0

DjP (x)

j!
= eDP (x).

From this, it follows that T = eD. More generally, we have Tr = erD =
∑∞

j=0
rjDj

j! .

A composition operator is an operator that commutes with the differential op-

erator. It is well-known that the set C of composition operators is a commutative

subalgebra of the algebra End(C[x]).
We now introduce a key mapping between polynomial sequences and operators.

Consider the map defined as

L : (C[x])N0 → End(C[x]), {An(x)}n≥0 7→ ΩA,

where ΩA is the operator defined by ΩA(x
n) = An(x) for all n ∈ N0. Clearly, L is

bijective, and its inverse is given by

L−1 : End(C[x]) → (C[x])N0 , Ω 7→ {Ω(xn)}n∈N0 .

For any A ∈ (C[x])N, the image ΩA under L is called the operator associated with

A. Conversely, for any operator Ω, the polynomial sequence {Ω(xn)}n≥0 is said to

be associated with Ω . Two important properties should be noted:

1. Let A = {An(x)}n≥0 ∈ (C[x])N0 . Then, D(A0(x)) = 0 and D(An(x)) =

nAn−1(x) for n ≥ 1, if and only if D ◦ ΩA = ΩA ◦D.

2. Let A = {An(x)}n≥0 ∈ (C[x])N0 satisfying D(A0(x)) = 0 and D(An(x)) =

nAn−1(x) for all n ∈ N. Then we have

An(x+ y) =

n∑
k=0

(
n

k

)
xn−kAk(y). (1)

Recall that a sequence of polynomials A = {An(x)}n≥0 is said to be an Appell

polynomial sequence if D(An(x)) = nAn−1(x) for all n ∈ N and A0(x) is a nonzero

constant polynomial. This is equivalent to the conditions D(A0(x)) = 0, A0(x) ̸= 0,

and D(An(x)) = nAn−1(x) for all n ∈ N. By considering the following power series

in C[[z]],

SE(z) =
2

ez + 1
=

(
1 +

1

2

∞∑
k=1

zk

k!

)−1

,
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we define the composition operator ΩE by ΩE = SE(D) = 2
eD+1

. The operator ΩE

is called the Euler operator. For α ∈ C, we define the generalized Euler operator of

order α by ΩE(α) = Ωα
E . Euler polynomials {En(x)}n≥0 can be defined via operators

as En(x) = ΩE(x
n). In turn, generalized Euler polynomials {E(α)

n (x)}n≥0 can be

defined as in [7] E
(α)
n (x) = ΩE(α)(xn). The classical Euler polynomials are then

obtained by taking α = 1.

In 2015, Wei and Qi [12] introduced four new explicit expressions for the Euler

numbers. The first expression provides a representation for the Euler number E2n

in terms of a specific determinant. It states that

E2n = (−1)n
∣∣∣∣( i

j − 1

)
cos
(
(i− j + 1)

π

2

)∣∣∣∣
(2n)×(2n)

,

where |cij |n×n denotes the determinant of the matrix (cij)1≤i,j≤n. The other three

theorems provide explicit expressions for E2n and En as follows:

E2n = (2n+ 1)

2n∑
k=1

(−1)k
1

2k(k + 1)

(
2n

k

) k∑
j=0

(
k

j

)
(2j − k)2n ([12, Theorem 1.2]),

(1)

En = 1 +

n∑
k=1

(k + 1)!

2k
S(n, k)

k∑
ℓ=1

(−1)ℓ
2ℓ

ℓ+ 1

(
ℓ+ 1

k − ℓ

)
([12, Theorem 1.3]), (2)

En = 1 +

n∑
ℓ=1

(−1)ℓ
1

ℓ+ 1

n−ℓ∑
k=0

(k + ℓ+ 1)!

2k

(
ℓ+ 1

k

)
S(n, k + ℓ) ([12, Theorem 1.3]),

(3)

E2n =

2n∑
k=1

(−1)k
1

2k

2k∑
ℓ=0

(−1)ℓ
(
2k

ℓ

)
(k − ℓ)2n ([12, Theorem 1.4]), (4)

where S(n, k) denotes the Stirling number of the second kind. These results are ob-

tained by exploiting remarkable properties of Bell partial polynomialsBn,k(x1, x2, . . . , xn−k+1)

and the Faà di Bruno formula. The Bell partial polynomials are also known as Bell

polynomials of the second kind [2, p. 134, Theorem A] and can be defined as

Bn,k(x1, x2, . . . , xn−k+1) =
∑

1≤q≤n,ℓq∈N∑n
q=1 qℓq=n∑n
q=1 ℓq=k

n!∏n−k+1
q=1 ℓq

n−k+1∏
q=1

(
xq

q!

)ℓq

(n ≥ k ≥ 0),

and the Faà di Bruno formula [2, p. 134, Theorem C] is given by

dn(f ◦ g)(x)
dxn

=

n∑
k=1

f (k)(g(x))Bn,k

(
g′(x), g

′′
(x), . . . , g(n−k+1)(x)

)
(n ≥ 1).
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It is worth noting that Formulas (1) and (4) can be seen as variants of Formulas

(36) and (37) presented in [4].

We aim to generalize the identities (1), (2), (3), and (4) to Euler polynomials.

To this end, the paper is structured as follows: Following the presentation of op-

erators, some of their properties, and the results from [12] in Section 1, Section

2 introduces lemmas establishing connections between operators, polynomial se-

quences, and generating functions. These lemmas will be instrumental in proving

our main theorems, which are presented and proved in Section 4, after establishing

several auxiliary results in Section 3.

2. Lemmas

In this section, we present some lemmas that establish a connection between oper-

ators, polynomial sequences, and generating functions.

Lemma 2.1. Let {An(x)}n≥0 be a polynomial sequence associated with a composi-

tion operator S(D). Then, for any nonzero complex number λ, we have

An+1(x)− xAn(x) = (S′(D))(xn) (n ≥ 0), (5)

An(λx) = λnS

(
D

λ

)
(xn) (n ≥ 0), (6)

(−1)nAn(λ− x) = e−λDS(−D)(xn) (n ≥ 0). (7)

Proof. Differentiating the relation

S(z) = e−xz
∞∑

n=0

An(x)
zn

n!
with respect to z,

we get

S′(z) = −xe−xz
∞∑

n=0

An(x)
zn

n!
+ e−xz

∞∑
n=0

An+1(x)
zn

n!
.

Thus,

S′(z) = e−xz
∞∑

n=0

(An+1(x)− xAn(x))
zn

n!
.

Hence, Formula (5) follows.

We have the generating function

∞∑
n=0

An(x)
zn

n!
= S(z)exz. (8)
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Substituting x by λx and z by z
λ in (8), we obtain

∞∑
n=0

An(λx)

λn

zn

n!
= S

( z
λ

)
exz.

Thus, Formula (6) follows.

Exploiting Formula (5), we get

(−1)nAn(λ− x) = e−λD(−1)nAn(−x)

= e−λDS(−D)(xn).

Thus, Formula (7) follows.

First, recall that according to Lemma 2.1, for any nonzero complex number q and

any Appell polynomial sequence {An(x)}n≥0, the polynomial sequence
{

1
qnAn(qx)

}
n≥0

is also an Appell polynomial sequence. Moreover, if ΩA = S(D) is the Appell op-

erator associated to the sequence {An(x)}n≥0, then S
(

D
q

)
is the Appell operator

associated to the Appell polynomial sequence
{

1
qnAn(qx)

}
n≥0

. Applying Lemma

2.1 to the sequence of classical Euler polynomials {En(x)}n≥0, whose Appell as-

sociated operator is SE(D) = 2
eD+1

, we can show that for any nonzero complex

number q, the polynomial sequence
{

1
qnEn(qx)

}
n≥0

is an Appell polynomial se-

quence whose associated Appell operator is SE

(
D
q

)
= 2

eD/q+1
. In other words, we

have
1

qn
En(qx) =

(
2

eD/q + 1

)
(xn).

In particular, for q = 1
2 , we get

2nEn

(x
2

)
=

(
2

e2D + 1

)
(xn).

The next two lemmas will facilitate the proof of new generalizations of the theorems

of Qi and Guo [8] and Wei and Qi [12].

Lemma 2.2. We have
2 + 2z

2 + 2z + z2
=

∞∑
k=0

αkz
k,

where

αk =
k + 1

2k

k∑
ℓ=0

(−1)ℓ
2ℓ

ℓ+ 1

(
ℓ+ 1

k − ℓ

)
. (9)
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Proof. Easily, we have

2 + 2z

2 + 2z + z2
=

1

z + 1 + i
+

1

z + 1− i
=

∞∑
k=0

αkz
k,

where

αk =

(
1 + i

2

)k+1

+

(
1− i

2

)k+1

. (10)

Now, recall the well-known identity for any positive integer n:

xn + yn =

⌊n
2 ⌋∑

ℓ=0

n

n− ℓ

(
n− ℓ

ℓ

)
(−xy)ℓ(x+ y)n−2ℓ. (11)

Applying Identity (11) to Equation (10), with x = 1+i
2 and y = 1−i

2 , we deduce

αk =

⌊ k+1
2 ⌋∑

ℓ=0

k + 1

k + 1− ℓ

(
k + 1− ℓ

ℓ

)(
−1

2

)ℓ

.

Changing ℓ to k − ℓ, we obtain

αk =

k∑
ℓ=m

k + 1

ℓ+ 1

(
ℓ+ 1

k − ℓ

)(
−1

2

)k−ℓ

,

where m = k−
⌊
k+1
2

⌋
. As

(
ℓ+1
k−ℓ

)
= 0 for 0 ≤ k < m, we deduce Formula (9).

Lemma 2.3. The sequence of polynomials {2nEn

(
x+1
2

)
}n≥0 is an Appell sequence

with associated operator eDSE(2D). Equivalently, we have

2nEn

(
x+ 1

2

)
= (eDSE(2D))(xn) =

(
2eD

2 + e2D

)
(xn).

Furthermore, we also have

2eD

2 + e2D
=

2 + 2∆

2 + 2∆+∆2
=

∞∑
k=0

αk∆
k,

where

αk =
k + 1

2k

k∑
ℓ=0

(−1)ℓ
2ℓ

ℓ+ 1

(
ℓ+ 1

k − ℓ

)
.

Proof. From the definitions of T and SE(D), we have

2nEn

(
x+ 1

2

)
= T

(
2nEn

(x
2

))
= (eDSE(2D))(xn) =

(
2eD

2 + e2D

)
(xn).
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Next, using the identity eD = 1 +∆, we obtain

2eD

2 + e2D
=

2(1 + ∆)

2 + (1 + ∆)2
=

2 + 2∆

2 + 2∆+∆2
=

∞∑
k=0

αk∆
k,

where

αk =
k + 1

2k

k∑
ℓ=0

(−1)ℓ
2ℓ

ℓ+ 1

(
ℓ+ 1

k − ℓ

)
.

This completes the proof of the lemma.

The following lemma is well-known and can be found in [9, p. 205].

Lemma 2.4. For any formal series S(z) ∈ C[[x]], we have

S(D)Mx −MxS(D) = S′(D). (12)

3. Auxiliary Results

In contemporary mathematical literature, numerous explicit formulas have been

established for classical Bernoulli and Euler numbers and polynomials. Notably,

the articles [3, 5, 6, 11] and the references therein offer intriguing explicit formulas

for Bernoulli and Euler polynomials, employing composition operators.

Recall that

∆ = T − 1

and

∆k = (eD − 1)k =

k∑
j=0

(−1)k−j

(
k

j

)
ejD.

As seen before, ΩB and ΩE denote the composition operators associated with the

Bernoulli and Euler polynomial sequences. Then we can write

ΩB =
ln(1 + ∆)

1 +∆
=

∞∑
j=0

(−1)k
∆k

k + 1

and

ΩE =
2

2 +∆
=

1
1
2∆+ 1

=

∞∑
j=0

(−1)k
∆k

2k
.

Hence the following formulas hold:

Bn(x) =

m∑
k=0

k∑
j=0

(−1)j

k + 1

(
k

j

)
(x+ j)n (13)
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and

En(x) =

m∑
k=0

k∑
j=0

(−1)j

2k

(
k

j

)
(x+ j)n. (14)

The following proposition introduces a new explicit formula obtained by applying

composition operators.

Proposition 3.1. For any positive integers n and m with m ≥ n, we have

2nEn

(
x+ 1

2

)
=

m∑
k=0

k!

2(k−1)/2
cos

(
(3k − 1)π

4

)
S(n, k, x), (15)

where S(n, k, x) denotes the generalized Stirling polynomials defined by

S(n, k, x) =
1

k!

k∑
j=0

(−1)k−j

(
k

j

)
(x+ j)n.

Note that S(n, k, 0) = S(n, k).

Proof. Consider the composition operator ΩE∗ = 2eD

e2D+1
. We can express this oper-

ator as a series in ∆ as follows:

ΩE∗ =
2eD

e2D + 1
=

2 + 2∆

1 + (1 +∆)2
= −

∞∑
k=1

1

2k
Re
(
(i− 1)k+1

)
∆k

=

∞∑
k=0

1

2(k−1)/2
cos

(
(3k − 1)π

4

)
∆k. (16)

Applying this last operator to xn, and noting that ∆m(xn) = 0 for m > n, yields

Formula (15).

In 2018, Bounebirat et al. [1] established the following explicit formula for the

Euler numbers:

En = −
n∑

k=1

k!

2k
Re
(
(i− 1)k+1

)
S(n, k) (n ≥ 0). (17)

Note that Formula (15) extends the explicit formula (17) to Euler polynomials. The

following two classical recurrence formulas are well-known [10, pp. 96 and 103]:

B(α+1)
n (x) =

(
1− n

α

)
B(α)

n (x)− n
(x
α
− 1
)
B

(α)
n−1(x) (18)

and

E
(α)
n+1(x) = xE(α)

n (x)− α

2
E(α+1)

n (x+ 1). (19)
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In the following proposition, we establish an analogous recurrence formula [10] to

B(α)
n (x) =

(
x− α

2

)
B

(α)
n−1(x)−

α

n

n−2∑
k=0

(−1)n−k

(
n

k

)
Bn−k(0)B

(α)
k (x). (20)

Our formula is verified by the generalized Euler polynomials.

Proposition 3.2. For any α ∈ C and any integer n ≥ 1, we have

E(α)
n (x) =

(
x− α

2

)
E

(α)
n−1(x) +

α

2

n−2∑
k=0

(−1)n−k

(
n− 1

k

)
En−k(0)E

(α)
k (x). (21)

Proof. Consider the formal series SE(α)(z) =
(

2
ez+1

)α
. Differentiating, we obtain

S′
E(α)(z) = −α

2
zez

(
2

ez + 1

)α+1

.

According to Relation (12), for any integer n ≥ 1, we have

S′
E(α)(D)(xn) = (SE(α)(D)Mx −MxSE(α)(D))(xn).

This identity leads to the relation

1

2
αE(α+1)

n (x+ 1) = E
(α)
n+1(x)− xE(α)

n (x). (22)

Now, note that

E(α+1)
n (x+ 1) = Ωα

EΩ
α
E(x+ 1)n = Ωα

EEn(x+ 1) = (−1)nΩα
E(En(−x)).

Expanding En(−x), we get

Ωα
E

{
(−1)n

n∑
k=0

(
n

k

)
En−k(0)(−x)k

}
=

n∑
k=0

(−1)n−k

(
n

k

)
En−k(0)E

(α)
k (x). (23)

Finally, by substituting this into (22) we immediately derive Formula (21).

4. Main Results

The following result is a generalization of Theorem 1.2 in [12].

Theorem 4.1. For any positive integers m and n such that m ≥
⌊
n
2

⌋
, we have

En(x) = (m+ 1)

m∑
k=0

(−1)k

2k(k + 1)

(
m

k

) k∑
j=0

(
k

j

)(
x− 1

2
+

2j − k

2

)n

. (24)
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Proof. We prove Formula (24) using appropriate composition operators. To begin

we observe that Formula (24) is equivalent to

2nEn

(
x+ 1

2

)
=

m∑
k=0

(−1)k

2k

(
m+ 1

k + 1

) k∑
j=0

(
k

j

)
(x+ 2j − k)n (2m+ 1 ≥ n).

We then have

2nEn

(
x+ 1

2

)
= T

(
2nEn

(x
2

))
=

(
2eD

e2D + 1

)
(xn) = Φ−1(xn),

where Φ is the Appell operator defined as

Φ =
eD + e−D

2
= 1 +

∞∑
k=1

D2k

(2k)!
.

Consider now the operator

Ψ = Φ− 1 =

∞∑
k=1

D2k

(2k)!
. (25)

Since Ψ has order 2 (see [9, p. 201]), it follows that Ψm+1 has order 2m+2. Thus,

for 2m+ 2 > n,

Ψm+1(xn) = 0

and

(1−Ψm+1)(xn) = xn.

That is, for m ≥
⌊
n
2

⌋
, we have

2nEn

(
x+ 1

2

)
= Φ−1(xn) = Φ−1(1−Ψm+1)(xn).

Moreover, the composition operator Φ−1(1−Ψm+1) can be expressed as a polyno-

mial in Φ. Indeed, according to (25), we have

Φ−1(1−Ψm+1) = Φ−1(1− (1− Φ)m+1) =

m∑
k=0

(
m+ 1

k + 1

)
(−1)kΦk.

Consequently, for m ≥
⌊
n
2

⌋
,

2nEn

(
x+ 1

2

)
=

m∑
k=0

(
m+ 1

k + 1

)
(−1)kΦk(xn). (26)

On the other hand, we have

Φk =

(
eD + e−D

2

)k

=
e−kD

2k
(e2D + 1)k =

1

2k

k∑
j=0

(
k

j

)
e(2j−k)D,
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thus,

Φk(xn) =
1

2k

k∑
j=0

(
k

j

)
(x+ 2j − k)n. (27)

Finally, from (26) and (27), we deduce that for m ≥
⌊
n
2

⌋
2nEn

(
x+ 1

2

)
=

m∑
k=0

(
m+ 1

k + 1

)
(−1)k

2k

k∑
j=0

(
k

j

)
(x+ 2j − k)n.

Therefore, the proof is complete.

The following result is a generalization of Formula (1.5) in [12, Theorem 1.3].

Theorem 4.2. For any positive integer n, we have

En(x) =
1

2n

n∑
k=0

(k + 1)!

2k
S(n, k, 2x− 1)

k∑
ℓ=0

(−1)ℓ
2ℓ

ℓ+ 1

(
ℓ+ 1

k − ℓ

)
. (28)

Proof. Let us prove the following equivalent formula:

2nEn

(
x+ 1

2

)
=

n∑
k=0

(k + 1)!

2k
S(n, k, x)

k∑
ℓ=0

(−1)ℓ
2ℓ

ℓ+ 1

(
ℓ+ 1

k − ℓ

)
. (29)

We know from Lemma 2.3 that

2nEn

(
x+ 1

2

)
=

(
2 + 2∆

1 + (1 +∆)2

)
(xn) =

( ∞∑
k=0

αk∆
k

)
(xn),

where

αk =
k + 1

2k

k∑
ℓ=0

(−1)ℓ
2ℓ

ℓ+ 1

(
ℓ+ 1

k − ℓ

)
.

Hence, we deduce that

2nEn

(
x+ 1

2

)
=

n∑
k=0

αk∆
k(xn)

=

n∑
k=0

αkk!S(n, k, x)

=

n∑
k=0

(k + 1)!

2k

k∑
ℓ=0

(−1)ℓ
2ℓ

ℓ+ 1

(
ℓ+ 1

k − ℓ

)
S(n, k, x),

as required, completing this proof.
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The following result is a generalization of Formula (1.6) in [12, Theorem 1.3].

Theorem 4.3. For any integer n ≥ 0, we have

En(x) =
1

2n

n∑
ℓ=0

(−1)ℓ

ℓ+ 1

n−ℓ∑
k=0

(k + ℓ+ 1)!

2k

(
ℓ+ 1

k

)
S(n, k + ℓ, 2x− 1). (30)

Proof. Let us prove the following equivalent formula:

2nEn

(
x+ 1

2

)
=

n∑
ℓ=0

(−1)ℓ

ℓ+ 1

n−ℓ∑
k=0

(k + ℓ+ 1)!

2k

(
ℓ+ 1

k

)
S(n, k + ℓ, x). (31)

We know from Lemma 2.3 that

2nEn

(
x+ 1

2

)
=

(
2 + 2∆

2 + 2∆+∆2

)
(xn) =

∞∑
k=0

αk∆
k(xn),

where

αk =
k + 1

2k

k∑
ℓ=0

(−1)ℓ
2ℓ

ℓ+ 1

(
ℓ+ 1

k − ℓ

)
.

Similarly, by taking into account the fact that S(n, k + ℓ, x) = 1
(k+ℓ)!∆

k+ℓ(xn), the

right-hand side of (31) becomes

n∑
ℓ=0

(−1)ℓ

ℓ+ 1

n−ℓ∑
k=0

(k + ℓ+ 1)!

2k

(
ℓ+ 1

k

)
S(n, k + ℓ, x) =

n∑
ℓ=0

(−1)ℓ

ℓ+ 1

n−ℓ∑
j=0

j + ℓ+ 1

2j

(
ℓ+ 1

j

)
∆j+ℓ(xn)

=

n∑
ℓ=0

βk∆
k(xn),

with

βk =
∑

j+ℓ=k

(−1)ℓ

ℓ+ 1

j + ℓ+ 1

2j

(
ℓ+ 1

j

)

=

k∑
ℓ=0

(−1)ℓ

ℓ+ 1

k + 1

2k−ℓ

(
ℓ+ 1

k − ℓ

)

=
k + 1

2k

k∑
ℓ=0

(−1)ℓ
2ℓ

ℓ+ 1

(
ℓ+ 1

k − ℓ

)
= αk.

Thus, Formula (31) follows.

Formula (4) was reaffirmed in 2017 by Qi and Guo [8] . In the next theorem, we

extend it to generalized Euler polynomials.
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Theorem 4.4. For any m ≥
[
n
2

]
, we have

E(α)
n (x) =

m∑
k=0

(−1)k

2n+k

(
α+ k − 1

k

) 2k∑
j=0

(−1)j
(
2k

j

)
(2x− α− k + j)n. (32)

Proof. Let us prove the following equivalent formula:

2nE(α)
n

(
x+ α

2

)
=

m∑
k=0

(−1)k

2k

(
α+ k − 1

k

) 2k∑
j=0

(−1)j
(
2k

j

)
(x− k + j)n. (33)

We have

2nE(α)
n

(
x+ α

2

)
= Tα

(
2nE(α)

n

(x
2

))
=
(
TαSE

(α)
n

(2D)
)
(xn)

= eαD
(

2

e2D + 1

)α

(xn)

=

(
2eD

e2D + 1

)α

(xn). (34)

Let us set

Ψα = (1 + δ)−α

and

δ =
1

2
e−D∆2.

Then from
2z

z2 + 1
=

1

1 + (z2−1)
2z

,

we derive that

Ψα =

∞∑
k=0

(
−α

k

)
δk =

∞∑
k=0

(−1)k
(
α+ k − 1

k

)
δk.

Moreover, since the order of δ is equal to 2, we have for any integer m ≥
⌊
n
2

⌋
,

Ψα(x
n) =

m∑
k=0

(−1)k
(
α+ k − 1

k

)
δk(xn). (35)

The calculation of δk(xn) gives

δk =
1

2k
e−kD∆2k =

1

2k
T−k(T1 − 1)2k =

2k∑
j=0

(−1)j
(
2k

j

)
Tj−k.
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This yields

δk(xn) =

2k∑
j=0

(−1)j
(
2k

j

)
(x− k + j)n. (36)

Finally, by inserting (36) in (35), we get

Ψα(x
n) =

m∑
k=0

(−1)k
(
α+ k − 1

k

) 2k∑
j=0

(−1)j
(
2k

j

)
(x− k + j)n.

Formula (33) follows immediately by inserting this last formula in (34). Thus, the

proof is complete.

5. Conclusion

It is well-known that the use of formal power series is a powerful tool for studying

certain sequences of numbers and polynomials. Throughout this study, we have ob-

served that the use of composition operators represents both a natural approach and

an effective, well-suited tool for the investigation of Appell polynomial sequences.

The results we have obtained suggest broad and promising avenues for further re-

search in this area.
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