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Abstract

In this paper, we study elliptic curves E defined over Q by equations of the form
y2 = x3 + ax + b, where a, b ∈ Z, and compute explicit constants C, depending
only on E, such that there exists at most one pair of points ±(x, y) ∈ E(Q), with
xy ̸= 0, whose naive height is less than C. Moreover, this point (x, y) can be
efficiently computed. We also identify a family of elliptic curves that admit no such
points. Using these bounds, we verify Lang’s height conjecture for a subclass of
these curves.

1. Introduction and Statement of Results

Let E be an elliptic curve defined by the Weierstrass equation

y2 = x3 + ax+ b, (1)

where a, b ∈ Z. The discriminant and the j-invariant of E are the quantities ∆E =

−16(4a3 + 27b2) and jE = −1728(4a)3/∆E , respectively. We denote by E(Q), the

set of rational points of E, that is, the set of points P = (u, v) in the affine plane A2
Q

with v2 = u3 + au+ b and the point at infinity O = (0 : 1 : 0) (written in projective

coordinates). Furthermore, we denote by E(Q)tors the torsion subgroup of E(Q).

1.1. Lang’s Height Conjecture

If the discriminant ∆E has minimal absolute value (subject to the condition that

a, b ∈ Z) among all models of E of the form (1), then Equation (1) is called quasi-

minimal. Since Z is a unique factorization domain, it is easily seen that for every

elliptic curve defined by an equation of the form (1), there is a model of E over Q
defined by an equation of the same form, (1), which is quasi-minimal.
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Let P be a point of the projective space Pn
Q over Q. Then, there are integers

a1, . . . , an+1 with gcd(a1, . . . , an+1) = 1 such that P = (a1 : . . . : an+1). The naive

height of P is defined to be the quantity

H(P ) = max{|a1|, . . . , |an+1|},

and the logarithmic naive height the quantity h(P ) = logH(P ). Furthermore, if

Q = (b1, . . . , bn) is a point of the affine space An
Q over Q, then we put H(Q) =

H(b1 : . . . : bn : 1), and h(Q) = logH(Q).

Let P ∈ E(Q) \ {O}. We denote by x(P ) and y(P ) the x-coordinate and the

y-coordinate of P , respectively; that is, we write P = (x(P ), y(P )). The canonical

height of P , as defined in [11, Chapter VIII, Section 9], is given by

ĥ(P ) =
1

2
lim
n→∞

h(x(2nP ))

4n
.

Note that some authors omit the factor of 1/2 in this definition. A detailed discus-

sion of the various normalizations used for both canonical and local heights can be

found in [1, Section 4].

The difference ĥ(P )− 1
2h(P ) remains bounded as the point P varies over E(Q).

Explicit upper and lower bounds for this difference, expressed in terms of the co-

efficients of the Weierstrass equation, are given in [10]. Further estimates for the

difference between the canonical height and the naive height have been developed

in [1, 12, 16]. These results highlight the close relationship between the canonical

and naive heights of points on an elliptic curve.

The canonical height satisfies ĥ(P ) ≥ 0 for all P ∈ E(Q), and ĥ(P ) = 0 if

and only if P ∈ E(Q)tors. Thus, ĥ defines a positive definite quadratic form on the

lattice E(Q)/E(Q)tors, and in particular, it attains a smallest positive value on non-

torsion points. On page 92 of [7], Serge Lang formulated the following conjecture

concerning this minimal positive value of the canonical height.

Conjecture. Let E be an elliptic curve defined by a quasi-minimal equation y2 =

x3 + ax + b, where a, b ∈ Z. Then, there is an absolute constant C > 0 such that

for any point P ∈ E(Q) of infinite order, we have:

ĥ(P ) ≥ C log |∆E |.

Lang’s conjecture admits a broader formulation than the one stated above.

Specifically, it applies to the global minimal Weierstrass equation of any rational

elliptic curve (for the definition of a global minimal Weierstrass equation, see [11,

Chapter VII, Section 8]). Generalizations of Lang’s height conjecture to elliptic

curves defined over number fields are presented in [9, page 402] and [5, Conjecture

0.1, page 419]. In these versions, the discriminant of the global minimal Weierstrass

equation is replaced by the minimal discriminant [11, page 224].
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Several special cases of this conjecture have been proven; see [2, 5, 8, 9]. Addi-

tionally, the sharpest known lower bounds for the cases a = 0 and b = 0 are given

in [14, 15]. These bounds have notable applications in various problems, such as

counting integral points on elliptic curves [5], studying elliptic divisibility sequences

[3, 4, 13], and more.

1.2. Our Contribution

In this paper, we consider elliptic curves E defined over Q by equations of the form

y2 = x3 + ax+ b, which are not necessarily quasi-minimal. We compute an explicit

constant C, depending only on the polynomial y2 − x3 − ax − b, such that there

exists at most one pair of points ±P ∈ E(Q), with x(P )y(P ) ̸= 0, whose naive

height is less than C. Furthermore, we identify a class of elliptic curves that possess

no such points.

By using a lower bound for the difference ĥ(P )− 1
2h(P ), we derive corresponding

lower bounds for the canonical height of rational points on a subclass of these curves,

thereby confirming Lang’s height conjecture in these cases. Moreover, when such

an exceptional pair of points exists, it can be efficiently computed using the LLL

algorithm.

1.3. Our Results

To present our results, we begin by introducing some fundamental concepts from

lattice theory.

Let B = {b1, . . . ,bm} be a basis of Rm. The m-dimensional lattice generated by

B is the set

L = {z1b1 + · · ·+ zmbm | z1, . . . , zm ∈ Z} .

For a vector v = (v1, . . . , vm) ∈ Rm, the Euclidean norm is defined as

∥v∥ =
√

v21 + · · ·+ v2m.

For a polynomial f ∈ R[x1, . . . , xm], its Euclidean norm, denoted ∥f∥, refers to the

Euclidean norm of the vector of its coefficients.

The Gram-Schmidt orthogonalization of the basis B yields an orthogonal basis

B∗ = {b∗
1, . . . ,b

∗
m} of Rm, defined recursively by

b∗
i = bi −

i−1∑
j=1

µi,jb
∗
j , where µi,j =

⟨bi,b
∗
j ⟩

∥b∗
j∥2

, for 1 ≤ j < i ≤ m.

A basis B is called LLL-reduced if it satisfies the following two conditions:

1. |µi,j | ≤ 1
2 for all 1 ≤ j < i ≤ m,
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2. ∥bi∥2 ≤
(
3
4 − µ2

i,i−1

)
∥b∗

i−1∥2 for all 2 ≤ i ≤ m.

We now proceed to state our main results.

Theorem 1. Let E be an elliptic curve defined over Q by the equation

p(x, y) = y2 − x3 − ax− b = 0,

where a, b ∈ Z, with ab ̸= 0 and a ̸= ±b. Define

n =

⌊
∥p∥3/2

23/4 · 1.001

⌋
.

Let L ⊂ R3 be the lattice spanned by the rows of the matrix

A =

1 a b
0 n 0
0 0 n

 .

Let L denote the length of the shortest vector in an LLL-reduced basis of L. Then

the curve E admits at most one pair of rational points ±P ∈ E(Q) \ {O}, with

x(P )y(P ) ̸= 0, satisfying the height bound

H(P ) <

(
n√
6L

)1/3

.

Moreover, such a point P , if it exists, can be computed in O((log ∥p∥)3) bit opera-

tions using the LLL algorithm. Finally, if the inequality

1 + |a| < n1/3

√
2

holds, then no such pair of rational points ±P exists.

Corollary 1. Let E be an elliptic curve defined over Q by the equation

p(x, y) = y2 − x3 − ax− b = 0,

where a, b ∈ Z, with ab ̸= 0, and suppose that

1 + |a| < ∥p∥1/2

1.782
.

Then, for every point P ∈ E(Q) \ {O} such that x(P )y(P ) ̸= 0, the following

inequality holds:

H(P ) >
∥p∥1/6

1.634
.
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In the following corollary, a class of elliptic curves is presented verifying Lang’s

height conjecture.

Corollary 2. Let E be an elliptic curve defined over Q by the equation

p(x, y) = y2 − x3 − ax+ b = 0,

where a, b ∈ Z. Assume that b > 0, a ̸= 0, 1+ |a| < ∥p∥1/4, gcd(a, 3b) = gcd(2, b) =

1, and that 4a3 + 27b2 is square-free. Then, for every point P ∈ E(Q) of infinite

order, the canonical height satisfies

ĥ(P ) >
1

144
log |∆E | − 2.019.

Remark 1. According to [9], Lang’s height conjecture holds for elliptic curves E

with integer modular invariant jE . However, the curves satisfying the assumptions

of Corollary 2 do not have integer j-invariants. Assume, for contradiction, that

jE ∈ Z. Then 4a3+27b2 | 108 ·4a3, so there exists C ∈ Z such that (4a3+27b2)C =

108 · 4a3. This implies 4a3 | 27b2C. Since gcd(a, 3b) = gcd(2, b) = 1, it follows that

4a3 | C, and thus (4a3 + 27b2)C1 = 108 for some C1 ∈ Z. If |4a3 + 27b2| > 1, then

either 2 or 3 divides it. If 2 | 4a3+27b2, then b is even, contradicting gcd(2, b) = 1. If

3 | 4a3+27b2, then 3 | 4a3, contradicting gcd(a, 3b) = 1. Therefore, 4a3+27b2 = ±1.

If a > 0, this is impossible. If a < 0, then 27b2 = 4|a|3 ± 1. However, the inequality

1 + |a| < ∥p∥1/4 implies 4|a|3 < b2, hence 27b2 < b2 ± 1, a contradiction.

Thus, jE ̸∈ Z, and Corollary 2 identifies a new class of elliptic curves for which

Lang’s conjecture holds.

In the following theorem, we present a class of elliptic curves satisfying the as-

sumptions of Theorem 1, and establish a sharper lower bound for the naive height

of their rational points.

Theorem 2. Let E be an elliptic curve defined over Q by the equation

y2 = x3 + ax+ b,

where a, b ∈ Z. Then the following statements hold:

(a) If a = ±1 and b /∈ {0,±1}, then there exists no point P ∈ E(Q) \ {O} such

that

H(P ) <

(
|b|
5

)1/3

.

(b) If a /∈ {0,±1} and b = −1, then there exists no point P ∈ E(Q) \ {O} such

that

H(P ) <

(
|a|
5

)1/3

.
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(c) If a /∈ {0,±1} and b = 1, then the only points P ∈ E(Q) \ {O} satisfying

H(P ) <

(
|a|
5

)1/3

are P = (0,±1).

In the following corollary, we present a class of elliptic curves satisfying the

assumptions of Corollary 2, and we obtain a better lower bound for the canonical

height of their rational points.

Corollary 3. Let E± be an elliptic curve defined over Q by the equation

y2 = x3 ± x− b,

where b is an odd integer ≥ 3, and suppose that the quantity

−
∆E±

16
= 27b2 ± 4

is square-free. Then, for every point P ∈ E±(Q) of infinite order, the canonical

height satisfies

ĥ(P ) >
1

9
log b− 1.923.

Theorem 1 does not include the cases where either a = 0, b = 0, or b = ±a. The

following theorem addresses these cases.

Theorem 3. Let E be an elliptic curve defined over Q by the equation

y2 = x3 + ax+ b,

where a, b ∈ Z. We have the following cases:

(a) b = a. There is no point P ∈ E(Q) \ {O} such that

H(P ) <

(
|a|
4

)1/3

.

(b) b = −a. The only points P ∈ E(Q) with

H(P ) <

(
|a|
4

)1/3

are O and (1,±1), which form a subgroup of order three.

(c) b = 0. The only point P ∈ E(Q) \ {O} with

H(P ) <

(
|a|
4

)1/3

is P = (0, 0).
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(d) a = 0. There is no point P ∈ E(Q) \ {O} such that

H(P ) <

(
|b|
3

)1/3

.

By Theorem 3(b), every curve defined by an equation of the form y2 = x3+ax−a

passes through the point P = (1, 1), which has naive height H(P ) = 1. However,

the discriminant of these curves increases with |a|. This example illustrates that

there is no analogue of Lang’s conjecture when the naive height is used.

The proofs of Theorems 1, 2 and, 3 are based on the construction of a cubic curve

distinct from E that intersects E in at most one rational point Q ̸= O. In Theorem

1, the LLL algorithm was used to construct this cubic curve and identify the point

of intersection with E, if it exists. For Theorems 2 and 3, arguments based on

integer divisibility were applied. Using an upper bound for the shortest vector of an

LLL-reduced basis for the lattice L in the proof of Theorem 1, Corollary 1 is derived.

Combining Theorems 2 and 3 with a lower bound for the quantity ĥ(P )− h(P )/2,

we obtain Corollaries 2 and 3.

1.4. The Structure of the Paper

The paper is organized as follows. In Section 2, we present some auxiliary lemmas

that will be used in the proofs of our main results. Section 3 provides the proofs

of Theorem 1 and Corollaries 1 and 2. Section 4 is dedicated to proving Theorem

2 and Corollary 3. The proof of Theorem 3 is given in Section 5. The final section

outlines a polynomial-time algorithm for computing the pair of exceptional points

±P , if they exist, which are smaller than the lower bound established by Theorem

1. Additionally, we present three examples: two where the pair of points exists and

one where it does not.

2. Auxiliary Lemmas

In this section, we give some auxiliary lemmas that we will need to prove our results.

Let B = {b1, . . . ,bm} be a basis of Rm, and L the lattice generated by B. Let

bi = (bi,1, . . . , bi,m) (i = 1, . . . ,m), and consider the matrix M(B) = (bi,j). The

quantity detL = |detM(B)| is independent of the particular basis used to compute

it, and is called the determinant of L.

Lemma 1 ([6]). Let B = max{∥b1∥, . . . , ∥bm∥}. Then, the LLL-algorithm com-

putes in time O(m6(logB)3) bit operations a reduced LLL-basis for L.

Lemma 2 ([6]). Let V = {v1, . . . ,vm} be an LLL-reduced basis of L. Then, the

vector v1 satisfies

∥v1∥ ≤ 2(m−1)/4 det(L)1/m.
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An explicit estimate for the difference of the naive height and the canonical height

of points on elliptic curves is given below.

Lemma 3 ([10]). Let E be an elliptic curve over Q given by the equation

y2 = x3 + ax+ b,

where a, b ∈ Z. Suppose that 4a3 + 27b2 is square-free, gcd(a, 3b) = 1 and b is odd.

Then, for every P ∈ E(Q) we have

1

2
h(x(P )) ≤ ĥ(P ) +

1

8
max(log |jE |, 0) + 1.205.

Lemma 4. Let E be an elliptic curve over Q given by the equation

y2 = x3 + ax− b,

where a, b ∈ Z with a ̸= 0 and b > 0. Then, for every P ∈ E(Q) \ {O} we have:

H(P ) <
√
1 + |a| H(x(P ))3/2.

Proof. Let P ∈ E(Q) \ {O}. Then, there are s, t, u ∈ Z with gcd(s, t) = gcd(t, u) =

gcd(s, u) = 1 and t ≥ 1 such that x(P ) = s/t2 and y(P ) = u/t3. It follows that

u2 = s3 + ast4 − bt6 and (x(P ) : y(P ) : 1) = (st : u : t3). We distinguish the

following two cases:

Case 1: a > 0. If s > 0, then u2 + bt6 = s3 + ast4, and since b > 0, we have

u2 < (1 + a) max{|s|, t2}3. If s ≤ 0, then we obtain

0 ≤ u2 + |s|3 + a|s|t4 + bt6 = 0,

whence s = t = u = 0 which is a contradiction. Thus, we get:

|u| <
√
1 + aH(s/t2)3/2.

Case 2: a < 0. If s > 0, then we have u2 + |a|st4 + bt6 = s3, whence we get

|u|2 < |s|3. If s ≤ 0, then we deduce u2 + bt6 + |s|3 = |a||s|t4, whence we have

u2 < |a|max{|s|, t2}3. It follows that

|u| <
√

|a|H(s/t2)3/2.

3. Proofs of Theorem 1 and Corollaries 1 and 2

Proof of Theorem 1. Set ph(x, y, z) = y2z − x3 − axz2 − bz3. We denote by L the

lattice spanned by the rows of the matrix

A =

1 a b
0 n 0
0 0 n

 .
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The determinant of A is detA = n2/3. By Lemma 2, the LLL algorithm computes

an LLL-reduced basis B for L. The initial vector v = (v1, v2, v3) of B satisfies

∥v∥ ≤
√
2n2/3 ≤ ∥p∥

1.001
< ∥p∥. (2)

Furthermore, there are integers l1, l2, l3 such that

v1 = l1, v2 = l1a+ l2n, v3 = l1b+ l3n. (3)

We consider the polynomial:

f(x, y, z) = v1(y
2z − x3)− v2xz

2 − v3z
3. (4)

Replacing v1, v2, v3 from the formulas above, we have:

f(x, y, z) = l1ph(x, y, z)− nz2(l2x+ l3z).

Let P = (x0/z0, y0/z0) ∈ E(Q) \ {O}, where (x0, y0, z0) ∈ Z3 with x0y0z0 ̸= 0

and gcd(x0, y0, z0) = 1, be a rational point of E satisfying

H(P ) <

(
n√
6 ∥v∥

)1/3

. (5)

We have ph(x0, y0, z0) = 0, and so, we deduce:

f(x0, y0, z0) = l1ph(x0, y0, z0)− nz20(l2x0 + l3z0) ≡ 0 (mod n).

On the other hand, using (4) and (5), we get

|f(x0, y0, z0)| <
n√
6 ∥v∥

(2|v1|+ |v2|+ |v3|). (6)

Applying the Cauchy-Schwarz Inequality, we have:

2|v1|+ |v2|+ |v3| ≤
√
6 ∥v∥. (7)

Finally, using (6) and (7), we obtain

|f(x0, y0, z0)| <
n√
6 ∥v∥

√
6 ∥v∥ ≤ n.

Then, the relations f(x0, y0, z0) ≡ 0 (mod n) and |f(x0, y0, z0)| < n imply that

f(x0, y0, z0) = 0.

Suppose now that there are integers α and β with gcd(α, β) = 1, β > 0 such

that αph(x, y, z) = βf(x, y, z) (in Z[x, y, z]). Then, comparing the coefficients of

αph(x, y, z) and βf(x, y, z), we have:

α = βv1, αa = βv2, αb = βv3.
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It follows that β divides α, and since gcd(α, β) = 1, we get β = 1. Thus, we have

αph(x, y, z) = f(x, y, z), and so, (2) implies that

∥α|∥ph∥ = ∥f∥ < ∥ph∥,

which is a contradiction. Hence, ph(x, y, z) and f(x, y, z) are linearly independent,

and therefore define two distinct algebraic curves.

From the equality ph(x0, y0, z0) = 0, we obtain

y20z0 − x3
0 = ax0z

2
0 + bz30 .

Substituting this into the equation f(x0, y0, z0) = 0 and cancelling out z20 (since

z0 ̸= 0), we deduce:

v1(ax0 + bz0) = v2x0 + v3z0.

Replacing v1, v2, v3 using their expressions from (3), we obtain:

l1(ax0 + bz0) = (l1a+ l2n)x0 + (l1b+ l3n)z0.

Rearranging, it follows that

l2x0 + l3z0 = 0. (8)

Thus, we conclude that
x0

z0
= − l3

l2
.

Equalities (3) yield

l2 =
v2 − v1a

n
and l3 =

v3 − v1b

n
.

Furthermore, we remark that

|l2| ≤
|v2|+ |v1||a|

n
≤

√
2 (1 + |a|)
n1/3

.

Thus, if 1 + |a| < n1/3/
√
2, then we deduce that l2 = 0. If l3 = 0, then the

polynomials f(x, y, z) and ph(x, y, z) are linearly dependent which is a contradiction.

Then l3 ̸= 0, and therefore (8) implies that z = 0 which is a contradiction. Hence,

such a point P does not exist.

The maximum Euclidean norm of the row vectors of matrix A that form a basis

of L is n. Consequently, Lemma 1 yields that the overall computation of l2 and l3
requires O((log ∥p∥)3) bit operations. Furthermore, if a point P = (x0/z0, y0/z0)

satisfies (5), then the point −P = (x0/z0,−y0/z0) also satisfies (5). The proof of

Theorem 1 follows. 2
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Proof of Corollary 1. It is easily seen that

n =

⌊
∥p∥3/2

23/4 1.001

⌋
>

∥p∥3/2

2
. (9)

Thus, we have

1 + |a| < ∥p∥1/2

1.782
<

n1/3

√
2
.

By Inequality (2), we have ∥v∥ ≤
√
2n2/3. Then, combining Theorem 1 with this

inequality and (9), we obtain the result. 2

Proof of Corollary 2. Let P ∈ E(Q) \ {O}. By Lemma 4, we have

H(P ) <
√

1 + |a|H(x(P ))3/2.

It follows that

h(P ) <
1

2
log(1 + |a|) + 3

2
h(x(P )) <

1

8
log ∥p∥+ 3

2
h(x(P )).

By Corollary 1, we have

1

6
log ∥p∥ − 0.492 ≤ h(P ).

Combining the two previous inequalities, we obtain

1

24
log ∥p∥ − 0.492 ≤ 3

2
h(x(P )).

Since 1 + |a| < ∥p∥1/4, we deduce that |jE | < 1728/26. Then, Lemma 3 yields

1

72
log ∥p∥ − 1.976 < ĥ(P ). (10)

On the other hand, the inequality 1 + |a| < ∥p∥1/4 implies 4|a|3 < b2, and

therefore we get |∆E | < 448b2 < 448∥p∥2. Then, using this inequality and (10), we

get
1

144
log |∆E | − 2.019 < ĥ(P ).

2

4. Proof of Theorem 2 and Corollary 3

Proof of Theorem 2. First, suppose that a = ±1 and b ̸= 0,±1. Set ph(x, y, z) =

y2z − x3 ∓ xz2 − bz3. Let P = (x0/z0, y0/z0) ∈ E(Q) \ {O}, where x0, y0, z0 ∈ Z3

with x0y0 ̸= 0, z0 > 0, and gcd(x0, y0, z0) = 1, satisfying

H(P ) = max{|x0|, |y0|, |z0|} < (|b|/5)1/3. (11)
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Let n be a positive integer such that 4b2/3 ≥ n > b2 and gcd(n, b) = 1. Then, there

are integers q and r such that n = bq + r and 0 ≤ r < |b|. Since gcd(n, b) = 1, we

have r > 0. Furthermore, we have

|q| = ⌊n/|b|⌋ ≤ 4|b|/3. (12)

Consider the polynomial

f(x, y, z) = nz3 + qph(x, y, z)

= q(y2z − x3 ∓ xz2) + (n− qb)z3

= qy2z − qx3 ∓ qxz2 + rz3.

Then, we have f(x0, y0, z0) ≡ 0 (mod n). Furthermore, Inequalities (11) and (12)

yield

|f(x0, y0, z0)| < (3|q|+ |b|)H(P )3 ≤ 5|b|H(P )3 < |b|2 < n.

Combining the congruence f(x0, y0, z0) ≡ 0 (mod n) with the above inequality, we

obtain that f(x0, y0, z0) = 0. Since f(x, y, z) = nz3 + qph(x, y, z), we obtain that

z0 = 0, and hence P = O which is a contradiction.

Suppose that x0 = 0. Then, P = (0,
√
b) and b is a perfect square. Since

H(P ) =
√
b > (|b|/5)1/3, we have a contradiction. So, x0 ̸= 0. If y0 = 0, then

z20 divides x3
0, and so, z0 = 1, because gcd(x0, y0, z0) = 1. Then x3

0 ± x0 + b = 0,

whence we get |b| ≤ |x0|3 + |x0| < 2|b|/5 which is a contradiction. Therefore, there

is no point P ∈ E(Q) \ {O} such that H(P ) < (|b|/5)1/3.
Suppose next that a ̸= 0 and b = ±1. Let P = (x0/z0, y0/z0) ∈ E(Q) \ {O},

where x0, y0, z0 ∈ Z3 with x0y0z0 ̸= 0, gcd(x0, y0, z0) = 1 and

H(P ) = max{|x0|, |y0|, |z0|} < (|a|/5)1/3.

We put ph(x, y, z) = y2z−x3−axz2∓z3, and proceeding as previously we construct

a polynomial of the form

f(x, y, z) = nxz2 + qph(x, y, z)

satisfying f(x0, y0, z0) = 0. The equalities f(x0, y0, z0) = 0 and ph(x0, y0, z0) = 0

yield x0z0 = 0. If z0 = 0, then P = O which is a contradiction. If z0 ̸= 0, then

x0 = 0. It follows that (y0/z0)
2 = ±1. Thus, for b = −1 we have (y0/z0)

2 = −1

which is a contradiction. For b = 1, we have (y0/z0)
2 = 1, whence y0/z0 = ±1 and

hence P = (0,±1). 2

Proof of Corollary 3. Let P = (x(P ), (y(P )) ∈ E±(Q)\{O}. By Lemma 4, we have

H(P ) <
√
2H(x(P ))3/2.
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It follows that

h(P ) < 0.347 +
3

2
h(x(P )). (13)

Combining Theorem 2(a) and Inequality (13), we have

1

3
log |b| − 0.89 <

3

2
h(x(P )). (14)

The modular invariant of E± is equal to

|jE± | =
6912

27b2 ± 4
.

Then, |jE± | takes the larger value for b = 3. Thus, we have log |jE± | < 3.365. It

follows that Lemma 3 and Inequality (14) imply

1

9
log b− 1.923 < ĥ(P ).

2

5. Proof of Theorem 3

Proof of Theorem 3. (a) Set ph(x, y, z) = y2z − x3 − axz2 − az3. Let P =

(x0/z0, y0/z0) ∈ E(Q)\{O}, where x0, y0, z0 ∈ Z3 with x0y0z0 ̸= 0 and gcd(x0, y0, z0) =

1, such that

H(P ) = max{|x0|, |y0|, |z0|} < (|a|/4)1/3. (15)

Consider a positive integer n such that n > a2 and gcd(n, a) = 1. Then, there are

integers q and r such that n = aq+ r and 0 ≤ r < |a|. Since gcd(n, a) = 1, we have

r > 0. Furthermore, we have |q| = ⌊n/|a|⌋.
We set

f(x, y, z) = nz2(x+ z) + qph(x, y, z)

= q(y2z − x3) + (n− qa)(xz2 + z3)

= qy2z − qx3 + rxz2 + rz.

Then, we have

f(x0, y0, z0) = nz2(x0 + y0) ≡ 0 (mod n).

Furthermore, using (15), we obtain:

|f(x0, y0, z0)| ≤ 2q
|a|
4

+ 2r
|a|
4

< 2
n

|a|
|a|
4

+ 2|a| |a|
4

< n.
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Since f(x0, y0, z0) ≡ 0 (modn) and |f(x0, y0, z0)| < n, we get f(x0, y0, z0) = 0.

Then, we have

0 = f(x0, y0, z0) = nz2(x0 + z0) + qph(x0, y0, z0) = nz2(x0 + z0).

Therefore, we get x0/z0 = −1, whence we deduce (y0/z0)
2 = −1 which is a contra-

diction.

Suppose now that x0 = 0. Then, (y0/z0)
2 = a. If a < 0, then we have a

contradiction. Suppose that a > 0. It follows that y0/z0 = ±
√
a and a is a

perfect square. But in this case, we have H(P ) =
√
a > (|a|/4)1/3 which is a

contradiction. Finally, suppose that y0 = 0. Then ρ = x0/z0 is a root of equation

g(x) = x3 + ax + a = 0. It follows that ρ ∈ Z with ρ | a. Then, we have a = a1ρ,

where a1 ∈ Z, and so, we get ρ2 + a1ρ + a1 = 0. Let σ be the second root of the

previous equation. Then, we have ρ+ σ = −a1 and ρσ = a1, whence we get σ ∈ Z
and ρ + σ + ρσ = 0. It follows that (ρ + 1)(σ + 1) = 1, and therefore we have

ρ+ 1 = σ+ 1 = ±1. If ρ+ 1 = 1, then ρ = 0, and therefore g(0) = 0, whence a = 0

which is a contradiction. Then, ρ + 1 = −1, and so, ρ = −2. Therefore, we have

g(−2) = 0, and we obtain a = −8. The solutions of the equation x3 − 8x − 8 = 0

are −2 and 1±
√
5. Furthermore, we have H(−2, 0) = 2 < (|a|/4)1/3 = 21/3 which

is a contradiction. The result follows.

(b) Set ph(x, y, z) = y2z−x3−axz2+az3. Let P = (x0/z0, y0/z0) ∈ E(Q)\{O},
where x0, y0, z0 ∈ Z3 with x0y0z0 ̸= 0, gcd(x0, y0, z0) = 1 and H(P ) < (|a|/4)1/3.
Proceeding as in case (a), we construct a a polynomial of the form

f(x, y, z) = nz2(x− z) + qph(x, y, z) = qy2z − qx3 + rxz2 − rz3

(where q, r as in case (a)) such that f(x0, y0, z0) = 0. Thus, the equalities

ph(x0, y0, z0) = f(x0, y0, z0) = 0 imply n(x0 − z0) = 0, whence x0/z0 = 1. It

follows that (y0/z0)
2 = 1, and so, we get y/z0 = ±1. Hence P = (1,±1). Further-

more, it is easily seen that the order of the point P is 3, and so, the set {O,P,−P}
is a subgroup of order 3 of E(Q).

Suppose next that x0 = 0. Then, we deduce, as in the previous case, a contra-

diction. If y0 = 0, then ρ = x0/z0 is a root of equation h(x) = x3 + ax − a = 0.

Then, we have a = a1ρ, and so, we get ρ2 + a1ρ− a1 = 0. If σ is the second root of

this equation, then, we have ρ+ σ = −a1 and ρσ = −a1, whence we obtain σ ∈ Z
and ρ + σ − ρσ = 0. It follows that (ρ − 1)(σ − 1) = 1, and therefore we deduce

ρ−1 = σ−1 = ±1. If ρ−1 = −1, then ρ = 0, and we have, as in the previous case,

a = 0, which is a contradiction. If ρ − 1 = 1, then ρ = 2. It follows that a = −8.

The solutions of the equation x3 − 8x+8 = 0 are 2 and −1±
√
5. Furthermore, we

have H(2, 0) = 2 < (|a|/4)1/3 = 21/3 which is a contradiction. The result follows.

Finally, the proofs of (c) and (d) are similar to the previous ones and are thus

omitted. 2
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6. An Algorithm

The proof of Theorem 1 leads to the following algorithm, which computes the unique

pair of points ±P ∈ E(Q) \ {O} with x(P )y(P ) ̸= 0 (if it exists), with naive height

below the bound established in Theorem 1.

Algorithm 1.

Input: An elliptic curve E defined by an equation p(x, y) = y2 − x3 − ax − b = 0,

where a, b ∈ Z, with ab ̸= 0 and a ̸= ±b.

Output: The points ±P ∈ E(Q) \ {O} with x(P )y(P ) ̸= 0 such that

H(P ) <

(
n√
6L

)1/3

,

where n = ⌊∥p∥3/2/(23/4 · 1.001)⌋ and L is the length of the shortest vector of an

LLL-reduced basis of the lattice L generated by the vectors (1, a, b), (0, n, 0) and

(0, 0, n). If such a point does not exist the algorithm returns “Ø”.

1. Compute

n =

⌊
∥p∥3/2

23/4 · 1.001

⌋
.

2. Consider the lattice L spanned by the rows of the matrix

A =

1 a b
0 n 0
0 0 n

 ,

and using the LLL algorithm compute a reduced basis of L with smaller vector

u = (u1, u2, u3).

3. Compute

z0 =
u2 − u1a

n
and x0 =

u1b− u3

n
.

4. Output the points ±P ∈ E(Q) \ {O} with x(P ) = x0/z0. If such a point P

does not exist, then output “Ø”.

Below we give three examples in two of which the pair of points exists, while in

the third it does not. Note that in all cases the inequality of Corollary 1, 1 + |a| <
∥p∥1/2/1.782, does not hold.

Example 1. Consider the elliptic curve E defined by the equation

y2 = x3 + 1125899906842625x+ 100205091709713235.

We have

n = 18881538744596692953354098.
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We consider the lattice L spanned by the rows of the matrix

A =

1 1125899906842625 100205091709713235
0 18881538744596692953354098 0
0 0 18881538744596692953354098

 .

The LLL algorithm provides the following reduced basis for L:

u = (268322803897,−2162850937955943, 594039434241243),

v = (−150931577192, 1286972396777882, 5928671050096378),

w = (−26238571527289063122,−3245326396338224,−989839033970258).

The smallest vector of the above basis is u with length

L = 2242946076312956.20365866254680.

We shall compute the only rational point P (if it exists) with

H(P ) ≤ ⌊(n/
√
6L)1/3⌋ = 1509.

We compute:

z0 =
−2162850937955943− 268322803897× 1125899906842625

18881538744596692953354098
= −16,

x0 =
268322803897× 100205091709713235− 594039434241243

18881538744596692953354098
= 1424.

Thus, we have x0/z0 = −89, and therefore P = (−89, 121) is a point on E. Hence,

we have found the points (−89,±121). Furthermore, we easily see (using for example

SAGE) that the torsion group of E over Q is trivial. Hence, the points (−89,±121)

are the only points, P , on the elliptic curve E with height H(P ) ≤ 1509, and their

order is infinite.

Example 2. Let E be the elliptic curve defined by the equation

y2 = x3 + 9007199254740997x+ 1648317463623779779.

We have

n = 1257084413730500663948905724.

We consider the lattice L spanned by the rows of the matrix

A =

1 9007199254740997 1648317463623779779
0 1257084413730500663948905724 0
0 0 1257084413730500663948905724

 .
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By applying the LLL algorithm (using for example the computational package

SAGE), we compute the following reduced basis for L:

u = (−976950842011, 33435944770715101, 83832102062736875),

v = (2651723714030,−89467964484120846, 7929646347397022),

w = (−203499702802419166527,−8873334237657355,−6381886666290097).

The smaller vector of this basis is u with length

L = 90253995700588656.3643105596067.

We shall examine if there is a rational point P with x(P )y(P ) ̸= 0 with

H(P ) ≤ ⌊(n/
√
6L)1/3⌋ = 1784.

We compute:

z0 =
33435944770715101− (−976950842011)× 9007199254740997

1257084413730500663948905724
= 7,

x0 =
−976950842011× 1648317463623779779− 83832102062736875

1257084413730500663948905724
= −1281.

Thus, we have the point P = (−183, 221) of E. Furthermore, the torsion group of

E is trivial. Hence, the points ±P = (−183,±221) are the only rational points of

the elliptic curve with height at most 1784, and have infinite order.

Example 3. Consider the elliptic curve E defined by the equation

y2 = x3 − 1125900980584453x+ 2033993457891049.

We have

n = 66585104598419215253253.

We consider the lattice L spanned by the rows of the matrix

A =

1 −1125900980584453 2033993457891049
0 66585104598419215253253 0
0 0 66585104598419215253253

 .

The LLL algorithm provides the following reduced basis for L:

u = (315226585822314,−508511982146052, 45781937662197),

v = (−630453171644627,−108877016292349, 19424295825666558),

w = (−3046001647457609− 1876781804548744− 667038003994697).

The smallest vector of the above basis is u with length

L = 600040183830553.713219321927951.
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We shall compute the only rational point P (if it exists) with

H(P ) ≤ ⌊(n/
√
6L)1/3⌋ = 356.

We compute:

z0 =
−508511982146052− 315226585822314× (−1125900980584453)

66585104598419215253253
= 5330230,

x0 =
315226585822314× 2033993457891049− 45781937662197

66585104598419215253253
= 9629313.

We easily verify that the quantity x0/z0 = 5330230/9629313 is not the x-coordinate

of a rational point of E. Furthermore, the torsion group of E over Q. Therefore,

the elliptic curve E has not a rational point of height ≤ 356.
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