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Abstract

For k ≥ 2, let
(
Q

(k)
n

)
n≥2−k

be the k-generalized Pell-Lucas sequence which starts

with 0, · · · , 0, 2, 2 (k terms) and each term afterwards is given by the linear recur-
rence

Q(k)
n = 2Q

(k)
n−1 +Q

(k)
n−2 + · · ·+Q

(k)
n−k, for n ≥ 2.

An integer n is said to be close to a positive integer m if n satisfies |n−m| <
√
m.

In this paper, we solve the Diophantine inequality
∣∣∣Q(k)

n − 2m
∣∣∣ < 2m/2, in positive

unknowns k, m, and n.

1. Introduction

Let k, r be integers with k ≥ 2 and r ̸= 0. Let the linear recurrence sequence(
G

(k)
n

)
n≥2−k

of order k be defined by

G(k)
n = rG

(k)
n−1 +G

(k)
n−2 + . . .+G

(k)
n−k,

for n ≥ 2 with the initial conditions

G
(k)
−(k−2) = G

(k)
−(k−3) = · · · = G

(k)
−1 = 0, G

(k)
0 = a, and G

(k)
1 = b.
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For (a, b, r) = (0, 1, 1), the sequence
(
G

(k)
n

)
n≥2−k

is called the k-generalized Fi-

bonacci sequence
(
F

(k)
n

)
n≥2−k

[8]. For (a, b, r) = (0, 1, 2) and (a, b, r) = (2, 2, 2),

the sequence
(
G

(k)
n

)
n≥2−k

is called the k-generalized Pell sequence
(
P

(k)
n

)
n≥2−k

and the k-generalized Pell-Lucas sequence
(
Q

(k)
n

)
n≥2−k

, respectively [14]. The

terms of these sequences are called k-generalized Fibonacci numbers, k-generalized

Pell numbers, and k-generalized Pell-Lucas numbers, respectively. When k = 2, we

have the usual Fibonacci, Pell, and Pell-Lucas sequences, (Fn)n≥0 , (Pn)n≥0 , and

(Qn)n≥0, respectively.

We need the following definition of closeness.

Definition 1. An integer n is said to be close to a positive integer m if n satisfies

|n−m| <
√
m.

After the introduction of the previous definition by Chern and Cui in 2014 [10],

they determined the Fibonacci numbers that are close to a power of 2. Their work

was extended by Bravo, Gomez, and Herrera [4], who characterized all terms F
(k)
n

that are close to a power of 2. In parallel, Açikel, Irmak, and Szalay [1] studied

k-generalized Lucas numbers that are close to powers of 2. More recently, Bachabi

and Togbé [2] determined the k-generalized Pell numbers in the same context.

As a continuation of the work done in [2], in this paper we study the k-Pell-Lucas

numbers that are close to a power of 2. More precisely, we will prove the following

theorem.

Theorem 1. All the solutions (Q
(k)
n , k, n,m) of the inequality∣∣∣Q(k)
n − 2m

∣∣∣ < 2m/2, (1)

in positive integers k, n, m with k ≥ 2, are given by

(2, k, 1, 1), k ≥ 2, (6, k, 2, 3), k ≥ 2, (16, k, 3, 4), k ≥ 3,

(34, 2, 4, 5), (260, 3, 6, 8), and (32774, 4, 11, 15).

We deduce the following consequence.

Corollary 1. Let n, m, k be defined as in Theorem 1, the only solutions to the

Diophantine equation Q
(k)
n = 2m are

Q
(k)
1 = 21 = 2, k ≥ 2 and Q

(k)
3 = 24 = 16, k ≥ 3.

Note that this theorem gives the solutions to the Diophantine equation

Q(k)
n = 2m + e with |e| < 2m/2. (2)
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For the proof of Theorem 1 we use the properties of the k-Pell-Lucas sequence,

Baker’s method based on linear forms in logarithms of algebraic numbers, and the

Baker-Davenport reduction method [3]. Here, for the reduction method, we will use

a modified version of the result due to Bravo, Gómez, and Luca (Lemma 1 of [5]).

2. Preliminary Results

This section is devoted to collecting a few definitions, notations, properties, and

results, which will be used in the remainder of this paper.

2.1. Properties of the k-Generalized Pell-Lucas Sequence

The characteristic polynomial of the k-generalized Pell-Lucas sequence is

Φk(x) = xk − 2xk−1 − xk−2 − · · · − x− 1.

The above polynomial is irreducible over Q[x] and it has one positive real root

α := α(k) which is located between ϕ2(1− ϕ−k) and ϕ2 with ϕ = 1+
√
5

2 , and which

lies outside the unit circle (see [17]). The other roots are strictly contained in

the unit circle. To simplify the notation, we will omit the dependence of α on k

whenever no confusion may arise.

The Binet-type formula for Q
(k)
n , found in [17], is

Q(k)
n =

k∑
i=1

(2αi − 2)gk(αi)α
n
i =

k∑
i=1

2(αi − 1)2

(k + 1)α2
i − 3kαi + k − 1

αn
i , (3)

where the αi are the roots of the characteristic polynomial Φk(x) and the function

gk is given by

gk(z) :=
z − 1

(k + 1)z2 − 3kz + k − 1
, (4)

for k ≥ 2.

Additionally, it was also shown in [17] that the roots located inside the unit circle

have a very minimal influence in formula (3), as can be seen by the inequality∣∣∣Q(k)
n − (2α− 2)gk(α)α

n
∣∣∣ < 2, (5)

for n ≥ 2 − k. Furthermore, it was shown by Şiar and Keskin in [17, Lemma 10]

that the inequalities

αn−1 < Q(k)
n < 2αn (6)

hold, for n ≥ 1 and k ≥ 2.
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Lemma 1 ([6], Lemma 1 and [7], Lemma 2.3). Let k ≥ 2 be an integer. Then, we

have

(a) 0.276 < gk(α) < 0.5 and |gk(αi)| < 1, for 2 ≤ i ≤ k.

(b) ϕ2
(
1− ϕ−k

)
< α < ϕ2.

Definition 2. Let α be an algebraic number of degree d, let a > 0 be the lead-

ing coefficient of its minimal polynomial over Z, and let α = α(1), . . . , α(d) be its

conjugates. The logarithmic height of α is defined by

h(α) =
1

d

(
log a+

d∑
i=1

log
(
max{|α(i)|, 1}

))
.

In particular, if η = p/q is a rational number with gcd(p, q) = 1 and q > 0, then

h(η) = logmax{|p|, q}. For any algebraic numbers α and β, we have the following

properties [19, Property 3.3]:

h(αβ) ≤ h(α) + h(β),

h(α± β) ≤ log 2 + h(α) + h(β).

Moreover, for any integer n,

h(αn) ≤ |n|h(α).

With the above notation, Şiar et al. [18] showed that the logarithmic height of

gk(α) satisfies

h(gk(α)) < 5 log k, for k ≥ 2. (7)

Lemma 2. Let α be the dominant root of the characteristic polynomial Φk(x) and

consider the function gk(x) defined in (4). If k ≥ 50 and n > 1 are integers

satisfying n < ϕk/2, then the following inequalities hold:

(i) ([17], Equation 30)

∣∣(2α− 2)αn − 2ϕ2n+1
∣∣ < 4ϕ2n

ϕk/2
,

(ii) ([17], Lemma 13)

|gk(α)− gk(ϕ
2)| < 4k

ϕk
.

Lemma 3 ([16], Lemma 2.3). Let k ≥ 50 and suppose that n < ϕk/2. Then

(2α− 2)gk(α)α
n =

2ϕ2n+1

ϕ+ 2
(1 + ξ), where |ξ| < 1.25

ϕk/2
.
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2.2. Linear Form in Logarithms

Matveev (Corollary 2.3 of [15]) or (Theorem 9.4 of [9]) proved the following result.

Theorem 2. Let η1, . . . , ηs be positive real algebraic numbers in a real algebraic

number field K of degree dK. Let d1, . . . , ds be non-zero integers such that

Γ := ηd1
1 · · · ηds

s − 1 ̸= 0.

Then

− log |Γ| ≤ 1.4 · 30s+3 · s4.5 · d2K(1 + log dK)(1 + logD) ·B1 · · ·Bs,

where

D ≥ max{|d1|, . . . , |ds|},

and

Bj ≥ max{dKh(ηj), | log ηj |, 0.16}, for all j = 1, . . . , s.

2.3. The Reduction Method

Here, we present the following result due to Bravo, Gómez, and Luca (Lemma 1 of

[5]), which is a generalization of the results of Baker and Davenport (Lemma of [3])

and Dujella and Pethö (Lemma 5(a) of [11]).

Lemma 4. Let M be a positive integer, let p/q be a convergent of the continued

fraction of an irrational number τ such that q > 6M , and let A, B, and µ be real

numbers with A > 0 and B > 1. Further, let ε = ||µq|| − M · ||τq||, where || · ||
denotes the distance from the nearest integer. If ε > 0, then there is no solution of

the inequality

0 < |mτ − n+ µ| < AB−k,

in positive integers m, n, and k with

m ≤ M and k ≥ log(Aq/ε)

logB
.

Note that Lemma 4 cannot be applied for µ = 0 (since then ε < 0). For this

case, we use the following technical result from Diophantine approximation, known

as Legendre’s criterion. This comes from the theory of continued fractions (see [13],

pages 30 and 37).

Lemma 5. Let τ be an irrational number.

(i) If x, y are positive integers such that∣∣∣τ − y

x

∣∣∣ < 1

2x2
,

then y/x = pk/qk is a convergent of τ .
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(ii) Let M be a positive real number and p0/q0, p1/q1, . . . be all the convergents

of the continued fraction [a0, a1, a2, . . .] of τ . Let N be the smallest positive

integer such that qN > M . Put a(M) = max{ak : k = 0, 1, . . . , N}. Then, the
inequality ∣∣∣τ − y

x

∣∣∣ > 1

(a(M) + 2)x2

holds for all pairs (x, y) of integers with 0 < x < M .

2.4. Other Useful Results

We conclude this section by recalling the following results that we will need.

Lemma 6 (Lemma 2.2 of [20]). Let a, x ∈ R. If 0 < a < 1 and |x| < a, then

| log(1 + x)| < − log(1− a)

a
· |x|

and

|x| < a

1− e−a
· |ex − 1|.

Lemma 7 (Lemma 7 of [12]). If ℓ ≥ 1, T > (4ℓ2)ℓ, and T > x/(log x)ℓ, then

x < 2ℓT (log T )ℓ.

Theorem 3 (Theorem 1 of [4]). The Diophantine inequality

|F (k)
n − 2m| < 2m/2

has two parametric families of solutions (n, k, m) with n, k ≥ 2, and m ≥ 0,

namely

1. (n, k, m) = (t, k, t− 2) for 2 ≤ t ≤ k + 1, and

2. (n, k, m) = (k+2+ t, k, k+ t) for 0 ≤ t ≤ max{x ∈ Z : 2+x < 21+(k−x/2)}.

3. In addition, we have the sporadic solution (n, k, m) = (12, 3, 9).

Theorem 4 (Theorem 1.1 of [10]). There are only 8 Fibonacci numbers which are

close to a power of 2. Namely, the solutions (Fn, 2
m) of the inequality

|Fn − 2m| < 2m/2

are (1, 2), (2, 2), (3, 2), (3, 4), (5, 4), (8, 8), (13, 16), and (34, 32).
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3. Proof of Theorem 1

In this section, we give all details about the proof of our main theorem. We establish

some preliminary results.

The following result gives us the bounds of m in terms of n.

Lemma 8. If (m,n, k) is a solution of Diophantine Inequality (1) with n ≥ 1,

m ≥ 2, and n ≥ k + 1, then we have the inequalities

0.69n− 1.69 < m < 1.39n+ 3.78.

Proof. Combining Inequality (6) with Equation (1), we have

2m−1 ≤ 2m − 2m/2 < Q(k)
n < 2αn ≤ αn+2

and

αn−1 < Q(k)
n < 2m + 2m/2 < 2m+1.

Since 2m−1 < αn+2 and αn−1 < 2m+1, it follows that (m − 1) log 2 < (n + 2) logα

and (n− 1) logα < (m+ 1) log 2. So, we get

(n− 1)
logα

log 2
− 1 < m < (n+ 2)

logα

log 2
+ 1.

Because ϕ2(1− ϕ−2) < α < ϕ2, by Lemma 1(b), for k ≥ 2, we deduce that

0.69n− 1.69 < m < 1.39n+ 3.78.

This finishes the proof of the lemma.

The following result gives an upper bound of m and n in terms of k.

Lemma 9. If the integers n, k, and m satisfy Diophantine Equation (2) with

n ≥ k + 1, then we have the following estimates:

n < 1.7 · 1015 · k4 · log3 k and m < 2.37 · 1015 · k4 · log3 k.

Proof. Let us express Equation (2) as follows:

2m − (2α− 2)gk(α)α
n = Q(k)

n − (2α− 2)gk(α)α
n − e.

Taking the absolute value of both sides, we obtain

|2m − (2α− 2)gk(α)α
n| ≤

∣∣∣Q(k)
n − (2α− 2)gk(α)α

n
∣∣∣+ |e| < 2 + 2m/2.

Dividing through by (2α− 2)gk(α)α
n, we get∣∣∣∣ 1

(2α− 2)gk(α)
α−n2m − 1

∣∣∣∣ < 1

(α− 1)gk(α)αn

(
1 + 2(m−2)/2

)
.
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Since the inequalities 0.276 < gk(α) < 0.5 hold for k ≥ 2 (see Lemma 1) and

2m−1 < αn+2, we deduce that∣∣∣∣ 1

(2α− 2)gk(α)
α−n2m − 1

∣∣∣∣ < 5.87 ·

(
1

αn
+

2−1/2
(
αn+2

)1/2
αn

)

< 5.87 ·
(

1

αn/2
+

2−1/2 · α
αn/2

)
< 5.87 ·

(
1 + 2−1/2 · ϕ2

αn/2

)
<

16.74

αn/2
. (8)

Let

Γ1 :=
1

(2α− 2)gk(α)
α−n2m − 1.

Observe that Γ1 ̸= 0. If Γ1 = 0, then (2α − 2)gk(α)α
n = 2m. Using the Q-

automorphisms σi : α 7→ αi, i ≥ 2, of the Galois extension Q(α) over Q and Lemma

1, we find that

16 ≤ 2m = |gk(αi)| |αn
i | |2αi − 2| < 4,

which is a contradiction. Thus Γ1 ̸= 0. Now, we can apply Theorem 2 to Γ1. Let

us consider

η1 =
1

(2α− 2)gk(α)
, η2 = α, η3 = 2, d1 = 1, d2 = −n, d3 = m.

The numbers η1, η2, η3 are elements of the number field K := Q(α) with dK = k.

We have

h(η2) =
logα

k
<

2 log ϕ

k
and h(η3) = log 2.

Moreover, we get

max{kh(η2), | log η2|, 0.16} < 0.97 = A2,

and

max{kh(η3), | log η3|, 0.16} ≤ k log 2 = A3.

Using the properties of the logarithmic height and (7), we obtain

h(η1) ≤ log 2 + h(α− 1) + h(gk(α))

< 2 log 2 +
logα

k
+ 5 log k

< 2 log 2 + log ϕ+ 5 log k

< 7.8 log k,
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for k ≥ 2. So, we can take

max{kh(η1), | log η1|, 0.16} < 7.8k log k = A1.

Finally, from Lemma 8, we can choose D = 6n > 1.39n+ 3.78 ≥ max{1,m, n}, for
n ≥ 1. Thus, Theorem 2 tells us that

log |Γ1| ≥ −7.51 · 1011 · k4 · log k · (1 + log k)(1 + log(6n)).

By the facts 1 + log(6n) < 2.3 log n and 1 + log k < 2.5 log k, which hold for n ≥ 9

and k ≥ 2, we obtain

log |Γ1| > −4.32 · 1012 · k4 · log2 k · log n. (9)

Combining Inequalities (8) and (9), we get

n < 1.8 · 1013 · k4 · log2 k · log n.

Thus, we obtain
n

log n
< 1.8 · 1013 · k4 · log2 k.

Applying Lemma 7 with T = 1.8 · 1013 · k4 · log2 k, x = n, and ℓ = 1, we have

n < 2 · (1.8 · 1013 · k4 · log2 k) · log(1.8 · 1013 · k4 · log2 k)
< (3.6 · 1013 · k4 · log2 k) · (30.53 + 4 log k + 2 log log k)

< 1.7 · 1015 · k4 · log3 k. (10)

In the above inequalities, we have used the fact that

30.53 + 4 log k + 2 log(log k) < 47 log k

holds for k ≥ 2. Finally, using Inequality (10) and Lemma 8, we obtain

m < 2.37 · 1015 · k4 · log3 k.

This completes the proof of Lemma 9.

The last preliminary result established is the following lemma.

Lemma 10. There is no solution for Inequality (1) with k > 350 and n ≥ k + 1.

Proof. Referring to Lemma 9, we have

n < 1.7 · 1015 · k4 · log3 k < ϕk/2, for k > 350.
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Thus, from Lemma 3, Equation (2), and Inequality (5), we have∣∣∣∣2m − 2ϕ2n+1

ϕ+ 2

∣∣∣∣ = ∣∣∣∣2ϕ2n+1

ϕ+ 2
ξ +Q(k)

n − (2α− 2)gk(α)α
n − e

∣∣∣∣
<

2.5ϕ2n+1

(ϕ+ 2) · ϕk/2
+ 2 + 2m/2.

Multiplying through by (ϕ + 2)/2ϕ2n+1, and using the facts that 2 < ϕ2 and m <

1.39n+ 3.78 < 1.5n for n > 34 (see Lemma 8), we obtain

|Γ2| <
1.25

ϕk/2
+

ϕ+ 2

ϕ2n+1
+ 2m/2 · ϕ+ 2

2ϕ2n+1

<
1.25

ϕk/2
+

3.62

ϕ2n+1
+

1.81ϕm

ϕ2n+1

<
4.87

ϕk/2
+

1.81

ϕn/2

<
6.68

ϕk/2
, (11)

where

Γ2 := (ϕ+ 2)ϕ−2n−12m−1 − 1.

Observe that Γ2 ̸= 0. Indeed, we have 2m−1 = ϕ2n+1

ϕ+2 , which is impossible because

the left-hand side is an integer whereas it can be seen that the right-hand side is

irrational as n > 351 and m > 240. So, we can apply Theorem 2 to Γ2 with

η1 = ϕ+ 2, η2 = ϕ, η3 = 2, d1 = 1, d2 = −2n− 1, and d3 = m− 1.

Since K := Q(η1, η2, η3) = Q(ϕ), it follows that dK = 2. Also, we have

h(η2) =
log ϕ

2
and h(η3) = log 2.

Moreover, one has

h(η1) ≤ h(ϕ) + h(2) + log 2 ≤ log ϕ

2
+ 2 log 2 < 1.63.

Thus, we can take

A1 := 3.26, A2 := log ϕ, and A3 := 2 log 2.

Here we can take D = 2n+1. Using the fact that 1+ log(2n+1) < 1.8 log n, which

holds for n ≥ 9, from Theorem 2 we get

log |Γ2| > −3.8 · 1012 · log n. (12)
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Next, we put (11) and (12) together to obtain

k < 1.58 · 1013 · log n. (13)

By Lemma 9, we have

log n < log(1.7 · 1015 · k4 · log3 k) < 10.9 log k, for k ≥ 350. (14)

Using Inequalities (13) and (14), we obtain

k < 1.73 · 1014 log k.

It follows that

k < 6.3 · 1015.
We deduce that

n < 1.29 · 1083.
In order to reduce the above bounds of n, we put

Λ2 = − log

(
1

ϕ+ 2

)
− (2n+ 1) log ϕ+ (m− 1) log 2 = log(Γ2 + 1).

Hence, Λ2 ̸= 0 because Γ2 ̸= 0. So, we get

0 < |Λ2| <
13.36

ϕk/2
.

Dividing through by log 2, we get

|(2n+ 1)τ − (m− 1) + µ| < 20

ϕk/2
, (15)

with

τ =
log ϕ

log 2
and µ =

log
(

1
ϕ+2

)
log 2

.

Now, we apply Lemma 4 with A = 20, B = ϕ, and M = 2.58 · 1083. Using Maple,

we find that q165 satisfies the hypotheses of Lemma 4, and we get

k

2
< 415.14.

Thus, for k ≤ 830, using Lemma 9, we obtain

n < 2.45 · 1029.

We apply again Lemma 4 to Inequality (15) with A = 20, B = ϕ, M = 4.9 · 1029
to obtain

k

2
< 157.73.

We obtain k ≤ 315, which is a contradiction to the fact that k > 350. Therefore, we

deduce that Inequality (1) does not admit any solution for k > 350. This completes

the proof of Lemma 10.
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Proof of Theorem 1. For this, two cases will be considered according to the values

of n.

Case 1: 1 ≤ n ≤ k. First, observe that for 1 ≤ n ≤ k, we have Q
(k)
n = 2F2n (see

Lemma 10 of [17]), where Fn is the nth Fibonacci number. Hence, Inequality (1)

becomes ∣∣F2n − 2m−1
∣∣ < 2(m−2)/2. (16)

By Theorems 3 and 4, we deduce that the solutions (F2n, n,m − 1) of Inequality

(16) are (1, 1, 0), (3, 2, 2), and (8, 3, 3). Therefore, the solutions (Q
(k)
n , k, n,m) of

Inequality (1) are

(2, k, 1, 1), k ≥ 2, (6, k, 2, 3), k ≥ 2, and (16, k, 3, 4), k ≥ 3.

Case 2: n ≥ k + 1. We assume that n ≥ k + 1. Furthermore, considering the

solutions of Inequality (16) and checking for the small values for n, we may assume

that n ≥ 9. Then applying Lemma 8, we have m > 4. Next by Lemma 9 we get

n < 1.7 · 1015 · k4 · log3 k and m < 2.37 · 1015 · k4 · log3 k.

Subsequently, we will discuss different cases depending on the size of k.

Case 2.1: 2 ≤ k ≤ 350. To reduce the above bound on n (see Lemma 9), we

assume that n ≥ 12 and we put

Λ1 := m log 2− n logα+ log

(
1

(2α− 2)gk(α)

)
= log(Γ1 + 1).

By Inequality (8), we obtain

0 < |Γ1| <
16.74

αn/2
< 0.94, for n ≥ 12.

Applying Lemma 6 with a := 0.94, x := Γ1 we have

0 < |Λ1| <
51

αn/2
.

Dividing through by logα, we get

|mτ − n+ µ| < 106

αn/2
, (17)

where

τ =
log 2

logα
and µ =

log

(
1

(2α− 2)gk(α)

)
logα

.

Now, we apply Lemma 4 to (17), for 3 ≤ k ≤ 350, by putting

M = Mk := ⌊2.37 · 1015 · k4 · log3 k⌋, A = 106, and B = α.
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And a quick computation with Mathematica reveals that

n

2
< 76.42, for k ∈ [3, 350].

Note that Lemma 4 cannot be applied to (17) for k = 2 because µ = 0. So, for

k = 2, we rewrite Inequality (17) as follows:∣∣∣τ − n

m

∣∣∣ < 106

mαn/2
. (18)

If
106

mαn/2
≥ 1

2m2
, then

n

2
≤ log(212m)

logα
≤ log(212 · 2.37 · 1015 · 24 · log3 2)

logα
< 48.15.

If
106

mαn/2
<

1

2m2
, then we apply Lemma 5 to (18) using

τ =
log 2

logα
, M = 2.37 · 1015 · 24 · log3 2, x = m, and y = n.

After a computation using Maple, we obtain that 32 is the smallest positive integer

such that q32 > M and a(M) = 100. So, we have

1

102m2
<
∣∣∣τ − n

m

∣∣∣ . (19)

Combining Inequality (19) with Inequality (18), we get

n

2
<

log(106 · 102m)

logα
≤ log(10812 · 2.37 · 1015 · 24 · log3 2)

logα
< 52.61.

In all cases, we see that n/2 < 76.42.

Finally, using a Maple program to search all the solutions of Equation (2) with

2 ≤ k ≤ 350, 0 ≤ n ≤ 152, 0 ≤ m ≤ 215 (as m < 1.39n+ 3.78), and n ≥ k + 1, we

obtain the remaining solutions of this equation mentioned in our main theorem.

Case 2.2: k > 350. By Lemma 10, we deduce that Inequality (1) does not admit

any solution in this case. This complete the proof of Theorem 1.
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