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Abstract

We study a class of polynomials that have all of their roots on the canonical line
and share certain properties with Ehrhart polynomials. Braun showed in 2008 that
the roots of Ehrhart polynomials are bounded quadratically and Higashitani in
2012 provided examples for polytopes whose Ehrhart polynomial roots come close
to this bound. In the case of polynomials of the aforementioned class, we present
an improved bound. As a side effect this confirms a special case of a conjecture
posed by Braun and M. Develin. Furthermore, we show that in low dimensions, the
polytopes with the widest spread of Ehrhart polynomial roots on the canonical line
are the standard reflexive simplices.

1. Introduction

Let P ⊂ Rd be a convex polytope. We call P a lattice polytope if all of its vertices

lie in Zd. Going forward, for the sake of simplicity, we will always assume that P

has full dimension. We define the Ehrhart polynomial of P as the function

EP (k) = |kP ∩ Zd|,

where kP denotes the dilation of P by the non-negative integer factor k and EP (0)

is set to be 1 for every P . In other words, EP counts the lattice points in the integer

dilations of P . The namesake of the Ehrhart polynomial, Eugène Ehrhart, proved

in [7] that these functions are indeed polynomials.

A related notion is the Ehrhart series of a polytope. It is defined as the generating

function of the Ehrhart polynomial, i.e., as the formal power series

ehrP (t) =
∑
k≥0

EP (k) t
k
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and can be rewritten as a rational function

ehrP (t) =
h∗
P (t)

(1− t)d+1
,

where h∗
P denotes a polynomial of degree at most d with non-negative integer coeffi-

cients [22]. We call this polynomial the h∗-polynomial of P . Its vector of coefficients

is also often called the δ-vector of P . The constant coefficient of h∗
P is always equal

to 1.

The Ehrhart polynomial can be fully retrieved from the h∗-polynomial by per-

forming a change of basis:

EP (z) =

d∑
k=0

h∗
k

(
z + d− k

d

)
. (1)

Here h∗
k refers to the k-th coefficient of the h∗-polynomial.

The Ehrhart polynomial and the h∗-polynomial encode information about the

underlying lattice polytope P . For example, the degree of EP is equal to the

dimension of P , the leading coefficient of EP is the volume of P , and the second

highest degree is half the boundary volume of P , where these volumes are suitably

normalized (i.e., the volumes of the polytope and each of its facets are defined

with respect to the volume of the empty hypercubes in the sublattices they lie

in). Other important properties are captured by the h∗-polynomial. For instance,

h∗
1 = |P ∩ Zd| − d − 1, h∗

d = |P ◦ ∩ Zd|, where P ◦ denotes the interior of P , and

h∗
P (1) is equal to the normalized volume (or lattice volume) of P . See [3] for a

comprehensive introduction to Ehrhart theory.

One particularly remarkable property reflected in the h∗-polynomial is that of

reflexivity. A lattice polytope P is called reflexive if its polar dual is also a lattice

polytope. Reflexive polytopes rose to popularity after Batyrev [1] noticed their

connection to string theory. Around the same time, Hibi showed in [11] that P is

reflexive if and only if h∗
P (t) =

∑d
k=0 h

∗
k t

k is palindromic, i.e., its coefficients satisfy

h∗
k = h∗

d−k for every k.

1.1. Ehrhart Polynomial Roots

One popular aspect in the study of Ehrhart theory is the root distribution of Ehrhart

polynomials. For every lattice polytope P , the Ehrhart polynomial EP has rational

coefficients. Hence, we may notice right away that by the complex conjugate root

theorem, z ∈ C being a root of EP implies that its complex conjugate z̄ is also a

root. However, there are more advanced patterns as well.

If P is reflexive, its Ehrhart polynomial roots exhibit a peculiar behavior: they

are distributed symmetrically across the canonical line

CL =

{
z ∈ C : Re(z) = −1

2

}
,
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Figure 1: The root distribution of the Ehrhart polynomial of a 20-dimensional
reflexive non-CL polytope studied in [18].

which is to say that if z ∈ C is a root of EP , then so is −z − 1 (see the example in

Figure 1). This behavior is a consequence of the following statement.

Lemma 1 (Corollary 2.2 in [11]). Let f be a polynomial of degree d, and define

h∗(t) = (1− t)d+1
∑

k≥0 f(k) t
k. Then f satisfies the functional equation

f(z − 1) = (−1)df(−z) (2)

if and only if h∗ has palindromic coefficients.

A reflexive polytope whose Ehrhart polynomial roots do not just lie symmetri-

cally across CL, but on CL is called a CL-polytope. The term was coined in [9],

where the geometric properties of these polytopes were studied in low dimension.

The origins of the study of CL-polytopes, however, dates back further. Within

the framework of the local Riemann hypothesis, Bump, Choi, Kurlberg, and Vaaler

proved the CL-ness of cross-polytopes[6, Theorems 4 and 6], i.e., the polytopes of

the form

conv{±e1,±e2, . . . ,±ed} ⊂ Rd,

where the ek refer to the unit vectors of Rd and conv denotes the convex hull

operator. Shortly thereafter, Rodriguez-Villegas gave a criterion for the CL-ness of

a polytope in terms of its h∗-polynomial [20]. This led to Golyshev conjecturing

that smooth Fano polytopes of dimension up to 5 have all their Ehrhart polynomial

roots on CL, which has since been confirmed in [10]. In the same paper, the authors

show that the conjecture does not hold in higher dimensions, which makes it clear

that the study of CL-polytopes cannot be reduced to that of smooth Fano polytopes.
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1.2. Bounds for Ehrhart Polynomial Roots

The study of the bounds of Ehrhart polynomial roots goes back to [2] and starts

with the following theorem.

Theorem 1 (Theorem 1.2 in [2]). (a) The roots of Ehrhart polynomials of lattice

polytopes of dimension d are bounded in norm by 1 + (d+ 1)!.

(b) All real roots of Ehrhart polynomials of d-dimensional lattice polytopes lie in

the half-open interval
[
−d,

⌊
d
2

⌋)
.

The authors noticed that this bound was far from being optimal and conjectured,

based on experimental data, the following.

Conjecture 1 (Conjecture 1.4 in [2]). All roots α of Ehrhart polynomials of lattice

polytopes of dimension d satisfy −d ≤ Re(α) ≤ d− 1.

This conjecture holds true for the real roots of Ehrhart polynomials of degree

5 or less, but has been disproven in general by counterexamples in [13] and [18].

Meanwhile, Braun gave an improvement of the bound in Theorem 1.

Theorem 2 (Theorem 1 in [4]). If P is a lattice polytope of dimension d, then all

the roots of EP lie inside the disc with center − 1
2 of radius d

(
d− 1

2

)
.

Braun obtained this result by studying a larger class of polynomials, called Stan-

ley non-negative polynomials (SNN-polynomials). They are defined as the class

of non-zero polynomials f such that h∗(t) = (1 − t)deg f+1
∑

k≥0 f(k) t
k has only

non-negative coefficients. Notice that for every (not necessarily reflexive) lattice

polytope P , its Ehrhart polynomial EP lies in S. SNN-polynomials were also used

in [5] to give a bound for the imaginary part of Ehrhart polynomial roots.

Theorem 3 (Theorem 2.3 in [5]). For the polynomial Md(t) =
(
t+d
d

)
+
(
t
d

)
, which

is not an Ehrhart polynomial, if βd is the root of Md(t) of maximal norm, then∣∣∣∣βd +
1

2

∣∣∣∣ = d2

π
+O(1)

as d goes to infinity.

The authors also conjecture the following.

Conjecture 2 (Conjecture 2.4 in [5]). The root of the polynomial Md(t) with

largest norm has the maximal imaginary part among all roots of degree d polyno-

mials in S.

In this study, we will use a similar idea to study the roots of CL-polytopes and

define the class C ⊂ R[z] of CL-polynomials. Its elements are the polynomials of

the form

f(z) = b(z)(z2 + z + c0)(z
2 + z + c1) · · · (z2 + z + cm), (3)
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where the ck are real numbers ≥ 1
4 and

b(z) =

{
a if deg f is even,

a(2z + 1) otherwise

for a non-zero real number a. Notice that if P is a CL-polytope, EP does indeed

fall into this class: if − 1
2 + αi is a root of EP with α > 0, then so is − 1

2 − αi and

EP is divisible by z2 + z + 1
4 + α2. If EP has odd degree, then − 1

2 is necessarily a

root, thus EP is divisible by 2z + 1. Furthermore, notice that every f ∈ C satisfies

Equation (2) and thus

h∗(t) = (1− t)deg f+1
∑
k≥0

f(k) tk

is a palindromic polynomial.

However, not every CL-polynomial is an SNN-polynomial. For example, for

f(z) = 2
15

(
z2 + z + 13

4

) (
z2 + z + 1

4

)
, we get h∗(t) = 1 + 2

3 t −
2
15 t

2 + 2
3 t

3 + t4.

Hence, we will focus on the class C ∩S.

1.3. Interlacing Polynomials

In the course of this study, we will make use of the theory of interlacing polynomials,

which has garnered attention in combinatorics after it was used in [16] and [17] to

prove the Kadison–Singer problem as well as the existence of bipartite Ramanujan

graphs. In Ehrhart theory, interlacing has been used to show that the symmetric

edge polytopes from multipartite graphs of the forms K2,n, K3,n, K1,1,n, K1,2,n,

and K1,1,1,n are CL [14, 15], among other examples.

The general idea behind interlacing polynomials is that the roots of two polyno-

mials, f and g, whose degrees differ by 1, all lie on a real curve embedded in the

complex numbers, where they alternate.

Definition 1. Let f and g be polynomials of degrees d and d + 1, respectively.

Further, let L be a totally ordered subset of C. We say that f L-interlaces g or f

and g interlace on L if all the roots a1, . . . , ad of f and b1, . . . , bd+1 of g lie on L

and satisfy

b1 ≤ a1 ≤ b2 ≤ a2 ≤ · · · ≤ ad ≤ bd+1

with respect to the ordering on L.

We quickly recall some results we need in the course of this paper, two of which

come from the extensive work of Fisk [8]. In the following, we will consider CL-

interlacing by choosing

−1

2
+ ai ≺ −1

2
+ bi if and only if a < b

as our total order.
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Proposition 1 (Theorem 2.1.10, [19]). Let f and g be CL-polynomials with degrees

d and d+1, respectively. Let h∗
f and h∗

g be the polynomials (1 + t)d+1
∑

k≥0 f(k) t
k

and (1 + t)d+2
∑

k≥0 g(k) t
k, respectively. Assume h∗

f and h∗
g also have degrees d

and d+ 1 and their roots interlace on the unit circle. Then f CL-interlaces g.

Proposition 2 (Lemma 1.26, [8], “Leibnitz Rule”). Suppose that f , f1, g, g1 are

polynomials with positive leading coefficients, and with all real roots. Assume that f

and g have no common roots. If f1 R-interlaces f and g1 R-interlaces g, then f1g1
R-interlaces fg1 + f1g which in turn R-interlaces fg, fg1, and f1g. In particular,

fg1 + f1g has all real roots.

Proposition 3 (Corollary 1.41, [8]). Suppose that f1, f2, . . . and g1, g2, . . . are se-

quences of polynomials with all real roots that converge to polynomials f and g,

respectively. If fn and gn R-interlace for all positive integers n, then f and g R-
interlace.

All the statements from [8] refer to interlacing on the real line, but can be trans-

ported to any line of the form c1 R+c2 for complex numbers c1, c2 by performing an

appropriate affine transformation. Further, since roots are invariant under scaling,

positive leading coefficients can always be obtained.

1.4. Outline of this Paper

In Section 2, we prove Conjecture 2 in the case of CL-polynomials.

Theorem (Theorem 4). The root of the polynomial Md(t) with largest norm has

the maximal imaginary part among all roots of degree d polynomials in C ∩S.

Furthermore, in Theorem 4, we show that in dimension d ≤ 9, the standard

reflexive simplices, a family of CL-polytopes, are the lattice polytopes whose roots

on CL come closest to the bound.

In Section 3 we present a sufficient condition for a given f ∈ C to lie in S.

Theorem (Proposition 5). Let f be a CL-polynomial of degree d. Assume that

the ck are ordered by size. Then f ∈ S if the ck satisfy

1

4
≤ ck ≤

{
2k + 2, d is odd,
2k + 1, d is even.

While this condition is only sufficient, we find a number of examples of CL-

polytopes whose Ehrhart polynomials satisfy it.

2. Possible Roots of Polynomials in C ∩ S

Let Ωd denote the set of points z ∈ CL such that there exists a polynomial f ∈ C ∩S

of degree d with f(z) = 0. In the course of this section, we will characterize the
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sets Ωd for every non-negative integer d, using techniques from [4]. We start with

some helpful definitions.

Let a bracketed term with a lower integer index refer to the Pochhammer symbol

(x)j = x(x− 1)(x− 2) · · · (x− j + 1), where (x)0 := 1. For positive integers d and

j, we define the functions

pdj (z) =

{
(z + d− j)d + (z + j)d if 2j ̸= d,

(z + j)d if 2j = d.

If a degree d polynomial f is in C, with the help of Equation (1), it can be expressed

in terms of the pdj ,

d! f(z) =

⌊ d
2 ⌋∑

k=0

h∗
kp

d
k(z),

where h∗
k refers to the k-th coefficient of the polynomial

h∗(t) = (1− t)d+1
d∑

k=0

h∗
k t

k.

Notice however, that for j > 0, the pdj themselves are not in C.

Lastly, let f be a polynomial with root set A = {α1, α2, . . . , αd}. We define the

CL-span of f as the set clspan f := conv{A ∩ CL}. If clspan f is non-empty, it is

an interval of CL.

2.1. An Upper Bound for the Roots of CL-Polynomials

The main result in this subsection is a proof of Conjecture 2 in the case of CL-

polytopes. Notice that the polynomials Md mentioned in this conjecture are equal

to the polynomials pd0 above.

We start with a useful lemma telling us that CL-polynomials take on either

exclusively real values or exclusively imaginary values on CL, depending on their

degree.

Lemma 2. Let f ∈ C be a degree d polynomial. Then for every z0 ∈ CL, we find

that f(z0) ∈ R id.

Proof. We can use once again the functional equation in Lemma 1,

f(z − 1) = (−1)df(−z).

Further, we can use that for any z0 ∈ CL, the equality −z0 − 1 = z0 holds. Since f

has real coefficients, we obtain the equality

f(z0) = f(z0) = f(−z0 − 1) = (−1)df(z0),

which implies the statement.
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Remark 1. Notice that this result holds more generally for polynomials with palin-

dromic h∗-polynomials, which includes polynomials not in C.

Lemma 2 enables us to find roots of pdj
∣∣CL

using a variant of the Intermediate

Value Theorem. We use this to study the limit behavior and the extremal roots

these functions. In the following, we will use the convention that t is a real number.

Its purpose will be to parametrize CL via it− 1
2 .

Lemma 3. Let d and j be non-negative integers with 2j ≤ d. Then

(a) limt→∞ pdj
(
it− 1

2

)
i−d = ∞,

(b) For 2j ̸= d, the expression pdj
(
it− 1

2

)
= 0 holds if and only if(

it− 1

2
+ d− j

)
d−2j

∈ R id−2j+1.

(c) clspan pdj ⊂ clspan pdj−1 for every j with 0 < 2j ≤ d.

Proof. We begin with (a). We have

pdj

(
it− 1

2

)
=

{(
it− 1

2 + d− j
)
d
+
(
it− 1

2 + j
)
d

if 2j ̸= d,(
it− 1

2 + j
)
d

if 2j = d.

Observe that this results in a degree d polynomial with leading coefficient 2idt if

2j < d and idt if 2j = d. Multiplying by i−d makes the leading coefficient positive,

which proves the statement.

For (b), we start by noticing the identity

(z +m− n)m = (−1)m(z + n)m, (4)

where m and n are non-negative integers. Next, we rewrite pdj as follows:

pdj (z) = (z + j)2j

(
(z − j)d−2j + (z + d− j)d−2j

)
= (z + j)2j pd−2j

d−j (z) . (5)

Since
(
it− 1

2 + j
)
2j

̸= 0 for all t, the polynomials pdj and pd−2j
d−j have the same

CL-span. It follows that pdj
(
it− 1

2

)
= 0 if and only if(

it− 1

2
+ d− j

)
d−2j

= −
(
it− 1

2
+−j

)
d−2j

= (−1)d−2j+1

(
it− 1

2
+ d− j

)
d−2j

.

The second equality follows from Equation (4). From these equalities, we can see

that
(
it− 1

2 + d− j
)
d−2j

is an element of R id−2j+1.

For (c), we first notice that if d = 2j, the polynomial pdj has an empty CL-span.

Without loss of generality, we can assume that d is odd. Thanks to (b), we have
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(i) pdj−1

(
it− 1

2

)
= 0 if and only if

(
it− 1

2 − j + 1
)
d−2j+2

∈ R,

(ii) pdj
(
it− 1

2

)
= 0 if and only if

(
it− 1

2 − j
)
d−2j

∈ R.

We make another observation: Statement (b) is equivalent to the following state-

ment.

(b’) For 2j ̸= d, the expression pdj
(
it− 1

2

)
= 0 holds if and only if

d−2j−1∑
k=0

arg

(
it− 1

2
+ d− j − k

)
∈ {0, π},

where arg(z) denotes the complex argument of z.

We reverse the order of the sum.

d−2j−1∑
k=0

arg

(
it− 1

2
+ d− j − k

)
=

d−2j−1∑
k=0

arg

(
it+ j +

1

2
+ k

)
.

Hence, we see that for positive t, we get 0 < arg
(
it+ j + 1

2 + k
)
< π

2 . Also for

each k, the function arg
(
it+ j + 1

2 + k
)
is monotonic and tends to π

2 as t tends to

∞. Thus we can rewrite the arguments with error terms εk(t)

arg

(
it+ j +

1

2
+ k

)
=

π

2
− εk(t).

Summarizing all this, we can restate (i) and (ii) for positive t:

(i’) pdj−1

(
it− 1

2

)
= 0 if and only if

(d− 2j)π

2
−

d−2j−1∑
k=0

εk(t) ∈
{
0,

π

2

}
,

(ii’) pdj
(
it− 1

2

)
= 0 if and only if

(d− 2j − 2)π

2
−

d−2j−2∑
k=1

εk(t) ∈
{
0,

π

2

}
.

Since d is odd, the equality{
(d− 2j)π

2
,
(d− 2j − 2)π

2

}
=

{
π

2
,
3π

2

}
holds As a consequence, t > 0 is a root of pdj−1 if and only if

d−2j−1∑
k=0

εk(t) ∈
{
π

2
,
3π

2

}
.
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Since the εk(t) are monotonic functions, there exists an a > 0 such that

d−2j−1∑
k=0

εk(t) =
π

2
if t = a,

d−2j−1∑
k=0

εk(t) <
π

2
if t < a.

We can conclude that the CL-span of pdj−1 is bounded by the values ±ia− 1
2 . Finally,

we see that 

d−2j−2∑
k=1

εk(t) <
π

2
if t = a,

d−2j−2∑
k=1

εk(t) <
π

2
if t < a,

which implies that the values ±ia− 1
2 lie outside the CL-span of pdj .

Finally, we may discuss the bound of the roots.

Theorem 4. For every degree d polynomial f ∈ C ∩S, the inclusion clspan f ⊆
clspan pd0 holds.

Proof. Let b > 0 be a real number such that ib − 1
2 ̸∈ clspan pd0. By Lemma 3(c),

we also get ib− 1
2 ̸∈ clspan pdj for every integer j with 0 < 2j ≤ d. Write

i−d d! f

(
ib− 1

2

)
=

⌊ d
2 ⌋∑

k=0

h∗
k i

−d pdk

(
ib− 1

2

)
,

where the h∗
k are non-negative real numbers. Lemma 3(a) indicates that the value

of i−d d! f
(
ib− 1

2

)
is greater than 0 and thus not a root.

2.2. The Standard Reflexive Simplex

The following is a classical result by Hibi.

Theorem 5 (Hibi’s Lower Bound Theorem [12]). Let P be a lattice polytope of

dimension d with h∗-polynomial h∗(t) =
∑d

k=0 h
∗
k t

k. Further, suppose that h∗
d ̸= 0.

Then the inequalities h∗
1 ≤ h∗

k hold for every 1 ≤ k < d.

The theorem shows that the polynomials pd0 are not themselves Ehrhart polyno-

mials of any polytope. Hence it is natural to ask which CL-polytopes have Ehrhart

polynomials with large extremal roots. In dimension at most 9, this question can

be answered by the standard reflexive simplex, which is given by

∆d
sr = conv

{
e1, e2, . . . , ed,−

d∑
k=1

ek

}
,



INTEGERS: 25 (2025) 11

where the ek are a lattice basis of Zd.

We can write ∆d
sr as a union of simplices

∆e = conv

({
0, e1, e2, . . . , ed,−

d∑
k=1

ek

}
\ {e}

)
,

where e is an element of
{
e1, e2, . . . , ed,−

∑d
k=1 ek

}
. This is a unimodular trian-

gulation into d + 1 elements and implies that ∆d
sr has lattice volume d + 1. Thus

h∗
∆d

sr
(1) = d+1 (see Introduction) and using Hibi’s Lower Bound Theorem, we can

see that h∗
k = 1 for every coefficient of ∆d

sr.

Proposition 4. For every reflexive polytope P of dimension d ≤ 9, the inclusion

clspanEP ⊆ clspanE∆d
sr

holds.

Proof. There are two cases: d ≤ 5 and 5 < d ≤ 9. In the case d ≤ 5, we verify with

a computer that

clspan pd1 ⊂ clspanE∆d
sr

⊂ clspan pd0.

Let ia − 1
2 be the boundary point of clspanE∆d

sr
in the upper half plane. Lemma

3(a) implies that for j > 0 and b ≥ a,

i−dpdj

(
ib− 1

2

)
> 0.

Assume the Ehrhart polynomial of P is given by

EP (z) =

⌊ d
2 ⌋∑

k=0

h∗
k p

d
k(z).

Since h∗
0 = 1,

i−dEP

(
ib− 1

2

)
> i−dE∆d

sr

(
ib− 1

2

)
≥ 0.

In the case 5 < d ≤ 9, we can verify with a computer that

clspan pd2 ⊂ clspanE∆d
sr

⊂ clspan pd1.

Let ia − 1
2 be the boundary point of clspanE∆d

sr
in the upper half plane. Lemma

3(a) implies that for j > 1 and b ≥ a,

i−dpdj

(
ib− 1

2

)
> 0.

Assume the Ehrhart polynomial of P is given by

EP (z) =

⌊ d
2 ⌋∑

k=0

h∗
k p

d
k(z).
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Since h∗
0 = 1 and, by Hibi’s Lower Bound Theorem, h∗

k ≥ h∗
1 for k > 1, we get

i−dEP

(
ib− 1

2

)
≥ h∗

1

d∑
k=1

i−dpdk

(
ib− 1

2

)
+ i−dpd0

(
ib− 1

2

)
> i−dE∆d

sr

(
ib− 1

2

)
≥ 0,

which concludes the proof.

For higher degrees, it is no longer true that clspan pd2 ⊂ clspanE∆d
sr

⊂ clspan pd1
and thus Hibi’s Lower Bound Theorem can no longer guarantee that the h∗

k for k ≥ 3

are large enough to balance out h∗
3. In particular, in degree 10, for 2 ≤ m ≤ 14 the

polynomial

f(z) = p50(z) + p51(z) +mp52(z) + p53(z) + p54(z) + p55(z)

is a CL-polynomial whose extremal roots have a larger absolute imaginary part than

those of the Ehrhart polynomial of ∆sr. We still conjecture the following.

Conjecture 3. Let P be a reflexive polytope of dimension d whose h∗-polynomial

is unimodal, i.e., satisfies the inequalities

h∗
0 ≤ h∗

1 ≤ · · · ≤ h∗
⌊ d

2 ⌋
≥ · · · ≥ h∗

d−1h
∗
d,

where h∗
k is the k-th coefficient of h∗

P . Then clspanEP ⊆ clspanE∆d
sr
.

Remark 2. Table 1 gives an overview of the behavior of the maximal root of pd0,

the maximal root of the standard reflexive simplex, and the bounds from Theorems

2 and 3 for selected values of d. The values were obtained using SAGEMATH [21].

2.3. Connectedness of the Set of Possible Roots

We return to the characterization of the sets Ωd we defined in the very beginning

of this section. After establishing a sharp bound, it is natural to ask, which values

on CL within that bound can be assumed by the roots of an appropriate degree d

polynomial in C.

Lemma 4. For any positive integer d, the polynomial pd0 CL-interlaces pd+1
0 .

Proof. Equation (1) tells us that

h∗
pd
0
(t) = (1 + t)d+1

∑
k≥0

pd0(k) t
k = d!

(
1 + td

)
.

An analogous results holds for pd+1
0 . The roots of h∗

pd
0
and h∗

pd+1
0

are

exp

(
1

d
(1 + 2n)πi

)
and exp

(
1

d+ 1
(1 + 2n)πi

)
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d αd βd
d2

π d(d− 1
2 )

2 0.866 0.645 1.273 3
3 2.398 1.658 2.865 7.5
4 4.603 3.040 5.093 14
5 7.457 4.761 7.958 22.5
6 10.952 6.811 11.459 33
7 15.085 9.186 15.597 45.5
8 19.857 11.882 20.372 60
9 25.267 14.899 25.783 76.5
10 31.313 18.236 31.831 95
20 126.802 69.147 127.324 390
30 285.956 151.904 286.479 885
100 3182.575 1622.493 3183.099 9950
150 7161.449 3627.845 7161.972 22425

Table 1: Comparison of the maximal roots iβd − 1
2 of E∆d

sr
to the maximal roots

iαd − 1
2 of pd0 to the bounds from Theorems 3 and 2.

respectively, where n ranges from 0 to d− 1 (resp. d). These roots interlace on the

unit circle and hence, by Proposition 1, they interlace on the canonical line.

Lemma 5. For any positive integer d and every positive real number w, the poly-

nomial pd0 CL-interlaces by pd+1
0 + w(2z + 1)pd0.

Proof. Since w is positive, we can without loss of generality assume that w = 1. We

start with the case when d is odd. From Lemma 4 we know that pd0 CL-interlaces

pd+1
0 . Further, 2z + 1 trivially CL-interlaces (2z + 1)2. Since

pd+1
0

(
−1

2

)
=

(
−1

2
+ d+ 1

)
d+1

+

(
−1

2

)
d+1

is not a root, pd+1
0 does not share a root with (2z + 1)2. Hence, by Proposition

2, (2z + 1)pd0 interlaces (2z + 1)(pd+1
0 + (2z + 1)pd0). Dividing 2z + 1 from both

expressions yields the statement.

In the case where d is even, pd+1
0 has a root at − 1

2 due to symmetry. The root

has multiplicity 1, because if it had a higher multiplicity, pd0 would need to have

two roots at − 1
2 as well due to interlacing, but we already saw that this is not the

case. Hence we define polynomials

gk(z) = z2 + z +
1

4
+ ε2k,

where ε1 > ε2 > · · · is a sequence of positive reals that goes to 0. The roots of

gk are − 1
2 ± ϵki. Hence, they are CL-interlaced by 2z + 1 and, with appropriately
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chosen ϵk, none of them have a common root with pd+1
0 . Hence, by Proposition 2,

(2z+1)pd0 interlaces (2z+1)pd+1
0 (z)+pd0(z) gk(z). Using Proposition 3, we get that

(2z + 1)(pd+1
0 (z) + (2z + 1)pd0(z)) interlaces (2z + 1)pd+1

0 (z) and dividing by 2z + 1

again yields the statement.

Lemma 6. Let f be a degree d SNN-polynomial. Then (2z + 1)f(z) is also an

SNN-polynomial.

Proof. Since by Equation (1) f is a non-negative linear combination of polynomials(
z + d− k

d

)
, we may restrict ourselves to these. Using z = (z+d−k+1)−(d−k+1)

and then (
z + d− k

d

)
=

(
z + d− k + 1

d+ 1

)
−
(
z + d− k

d+ 1

)
,

we get

z

(
z + d− k

d

)
= k

(
z + d− k + 1

d+ 1

)
+ (d− k + 1)

(
z + d− k

d+ 1

)
and thus

(2z + 1)

(
z + d− k

d

)
= (2k + 1)

(
z + d− k + 1

d+ 1

)
+ (2(d− k) + 1)

(
z + d− k

d+ 1

)
.

This is a positive linear combination of polynomials

(
z + (d+ 1) + k

d+ 1

)
. Hence,

(2z + 1)f(z) is an SNN-polynomial.

With these three lemmas, we can prove the main statement of this subsection.

For simplicity, we will use the convention

h∗
f (t) = (1 + t)d

∑
k≥0

f(k) tk

for any degree d polynomial f .

Theorem 6. For every positive integer d, the set Ωd is connected.

Proof. In the case d = 1, the set Ω1 = {− 1
2} is a singleton and hence connected.

Consider the case d = 2. Let c be a positive real number. Then h∗
fc
(t) = 1+ct+t2

corresponds to an SNN-polynomial fc whose roots are

−1

2
±

√
c2 − 4c− 12

2c+ 4
.

For 0 ≤ c ≤ 6, the roots of fc lie on CL and f0 is exactly p20, which marks the

boundary of Ω2. The roots of f6 are both − 1
2 . Since the roots depend continuously

on c, the set Ω2 is connected.
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The proof for higher degrees d > 2 can be built inductively. First, take an

element z0 ∈ Ωd and a degree d polynomial f ∈ C ∩S with f(z0) = 0. The

polynomial g(z) = (2z + 1) f(z) is a degree d+ 1 polynomial with g(z0) = 0 and it

is in C. By Lemma 6, g lies also in S and thus, z0 ∈ Ωd+1.

Now, pick z0 = ci − 1
2 ∈ clspan pd+1

0 \ Ωd in the upper half plane. Denote the

roots of pd0 by bki − 1
2 , where bm < bn if m < n. Analogously, we denote the roots

of pd+1
0 by aki − 1

2 . From Lemma 4, it follows that ad < bd < c < ad+1. Define the

function g(z) = (2z + 1)pd0(z). Lemmas 2 and 3(a) imply

i−d−1pd+1
0 (z0) < 0 and i−d−1(2z0 + 1)pd0(z0) > 0.

Thus, for an appropriate number w > 0, the linear combination

λ(z) = pd+1
0 (z) + w(2z + 1)pd0(z)

satisfies λ(z0) = 0. In particular, λ ∈ S. Since by Lemma 4 λ is interlaced by pd0,

it follows that λ ∈ C. Thus z0 ∈ Ωd+1.

3. Inequalities for C ∩ S

In Equation (3), we define CL-polynomials in terms of parameters ck ≥ 1
4 . Every

ck corresponds to a pair of roots − 1
2 ±

√
ck − 1

4 i, which is a fact we used several

times throughout the previous section. Thus, Theorem 4 can be interpreted as an

inequality that gives a necessary condition for the ck to correspond to an SNN-

polynomial.

Theorem 7 (Restatement of Theorem 4). Let f be a CL-polynomial of degree d

with parameters ck. If f ∈ S, the inequality

ck ≤ md
0

is satisfied for every k, where md
0 is the maximal parameter of pd0.

However, the condition in Theorem 7 is very far from being sufficient to charac-

terize the class C ∩S. For example, the polynomial f(z) = 1
400 (z

2 + z + 20)2 has

its roots at around − 1
2 ± 4.44i, which by Table 1 lies within Ω4, but

h∗
f (t) = 1− 379

100
t+

564

100
t2 − 379

100
t3 + t4.

In the following, we give a sufficient condition. We base it on a computational

lemma.
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Lemma 7. Let d be a positive integer and j ≤ d be a non-negative integer. Further,

let c ≥ 1
4 be a real number. Then

(z2 + z + c)

(
z + d− j

d

)
= α

(
z + d− j + 2

d+ 2

)
+ β

(
z + d− j + 1

d+ 2

)
+ γ

(
z + d− j

d+ 2

)
,

where

α = j2 + j + c,

β = 2(dj − j2 + d+ 1− c),

γ = d2 − 2dj − j + j2 + d+ c.

Proof. By adapting the technique used in Lemma 6,

(z + c)

(
z + d− j

d

)
= (j + c)

(
z + d− j + 1

d+ 1

)
+ (d− j + 1− c)

(
z + d− j

d+ 1

)
.

Equation (1) implies that

∑
k≥0

(
k + d− j

d

)
tk =

tj

(1− t)d+1
,

which means that we can write∑
k≥0

(k + c)

(
k + d− j

d

)
tk =

(j + c)tj + (d− j + 1− c)tj+1

(1− t)d+2
.

We can use the same identity to compute
∑
k≥0

k2
(
k + d− j

d

)
tk by applying it twice

with c = 0 both times. Thus,
∑
k≥0

k2
(
k + d− j

d

)
tk is given by

j2tj+

(
j(d+ 2− j) + (d+ 1− j)(j + 1)

)
tj+1 + (d+ 1− j)2tj+2

(1− t)d+3
.

Summing up gives the values for α, β, and γ as stated.

Proposition 5. Let f be a CL-polynomial of degree d. Assume that the ck are

ordered by size. Then f ∈ S if the ck satisfy

1

4
≤ ck ≤

{
2k + 2, d is odd
2k + 1, d is even.

(6)
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Proof. The proof proceeds inductively. The idea is to take a degree d element f

of C ∩S and multiply it with z2 + z + c, where c is chosen so that it preserves

non-negativity of the coefficients of the h∗
f . That is in particular the case when

the three factors from Lemma 7, α = j2 + j + c, β = 2(dj − j2 + d + 1 − c), and

γ = d2 − 2dj − j + j2 + d + c, are non-negative. Since c is positive, α and γ are

always non-negative. For β, the largest possible choice for c is d+ 1 since j ranges

from 0 up to d.

To complete the induction, we only have to look at the cases of d = 1 and d = 2.

We start with the former. If f has degree 1, it is of the form z+ 1
2 and h∗

f (t) = 1+ t.

Thus c0 ≤ 2, c1 ≤ 4, c2 ≤ 6, etc. If f has degree 2, it is of the form z2 + z + c0 and

has h∗
f (t) = c0 + 2(1− c0)t+ c0t

2. Thus, c0 ≤ 1, c1 ≤ 3, c2 ≤ 5, etc.

The class of CL-polynomials that satisfy this proposition trivially includes the

Ehrhart polynomials E[−1,1]d of reflexive hypercubes since they satisfy

c1 = c2 = · · · = cd =
1

4
.

It is possible to construct further examples.

Example 1. Let P be a CL-polytope of dimension d. Then there exists a non-

negative integer n, such that the Ehrhart polynomial of P × [−1, 1]n satisfies In-

equalities (6).

If EP is defined by the parameters c1, c2, . . . , cd, then EP×[−1,1]n is defined by

the parameters 1
4 ,

1
4 , . . . ,

1
4 , c1, c2, . . . , cd, where

1
4 appears n times. For the ck, this

changes the equations to

1

4
≤ ck ≤

{
2(k + n) + 2, d is odd
2(k + n) + 1, d is even.

which is always satisfied for a sufficiently large n.

Using the same idea, we also get another example.

Example 2. Let P be a CL-polytope of dimension d and let Q be a CL-polytope

of dimension 2m + 1. Then there exists a non-negative integer n, such that the

Ehrhart polynomial of P ×Qn satisfies Inequalities (6).

However, there exist counter-examples as well. The Ehrhart polynomial of stan-

dard reflexive 4-simplex ∆4
sr does not satisfy Inequalities 6:

E∆4
sr
(k) =

5

24
(x2 + x+ 0.505558989151154)(x2 + x+ 9.49444101084885).
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