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Abstract
Let ped, ;(n) denote the number of [j, k]-overpartitions of a positive integer n with
even parts distinct and where the first occurrence of each distinct part congruent
to j modulo k& may be overlined. In this paper, we establish many infinite families
of congruences modulo powers of 2 for Mg’g(n) and congruences modulo powers of

2 and 3 for Mg’lg(n). For example, for any n > 0 and «, 8 > 0,

7. 34a+2 A 52,3—}-1 +1
4

pedg 15 (2 - 34at3 520+ (5 4 k) + ) =0 (mod 32),

where k£ =0, 1,3, or 4.

1. Introduction

An overpartition of a positive integer n is a partition in which the first occurrence
of each distinct part may be overlined. For example, the overpartitions of 3 are

3,3, 241,241,241, 241, 1+1+1, 1+1+1.
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Let p(n) denote the number of overpartitions of n with 5(0) = 1. Corteel and
Lovejoy [7] obtained the following generating function for p(n):

Zp n_QQ)

(9%

For more information about p(n), one can see [1, 6, 10, 12, 18, 19, 21, 22]. Through-
out the paper, we use the standard g¢-series notation, and fj is defined as

oo

fio= (54" = [[—a™).

n=0

Ramanugan’s general theta function f(a,b) is defined for |ab| < 1 by

f(a b Z ak(k+1)/2bk(k 1)/2

k=—o0
By using Jacobi’s triple product identity [2, Entry 19, p. 35], the function f(a,b)
can be written as
f(a,b) := (—a;ab)oo(—b; ab) oo (ab; ab)
The most important special cases of f(a,b) are as follows:
5

¢(q) == f(g:9) —1+2Zq = (=4:0*)%(¢% ¢*) oo fTQQ (1)
1J4

)z _ (€56%)e _ f3
W(q) = f(g,q° Zq Gde

o0

=) = f(—=q,—*) = > (=1)"¢"C" V7 = (g;9)0 = f1.

n=—oo
If we replace g by —¢ in (1), we get
(@93 _ [T
(q2; qz)oo fa
For positive integers j and k such that k > j > 1, an [j, k|-overpartition of n is a
partition in which the first occurrence of each distinct part congruent to 7 modulo

¢(—q) == f(—q,—q) =

k may be overlined. Let p; ;(n) denote the number of such overpartitions of n with
P;x(0) = 1. The generating function for p, ;. (n) is given by

0 ik
Sp 4’54

ijc (TL) qn — ( . )oo
n=0

(45 9)oo

For example, the [5, 10]-overpartitions of 5 are
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55,441,342, 3+1+1,2+2+1, 24+1+14+1, 1+14+1+14+1.

Mahadeva Naika et al. [14] obtained many infinite families of congruences modulo
powers of 2 for pr; ,(n), the number of [j, k]-regular overpartitions of n in which
none of the parts are congruent to j modulo k. For example, for all n > 0 and
a,B3 >0,

Prg.qs (3215271 (24(5n + i) +23)) =0 (mod 64),

where i = 0,1, 2, or 4. For more information about [}, k]-overpartitions, one can see
13, 16, 17].

Let ped, ;(n) denote the number of [, k]-overpartitions of a positive integer n
with even parts distinct and where the first occurrence of each distinct part congru-
ent to j modulo k£ may be overlined. The generating function for Mj,k(n) is given
by

o~ — w0500 (=075 0") 00
;pedj,k (n)q" = o D . (2)

In [15], the authors proved many infinite families of congruences modulo powers of
2 for @373(71) and @3,6(71). For example, for any n > 0 and «a, 8 > 0,
peds g (8- 342 . 5212 4 ¢y - 340F . 520H) =0 (mod 64),

where ¢ € {23,47,71,119}.

In this paper, we establish many infinite families of congruences modulo powers
of 2 for pedy ¢(n) and congruences modulo powers of 2 and 3 for pedy 15(n). For
example, for any n > 0 and «a, 5 > 0,

7.3l 5200 4
4

pedy 15 <2 L 34ad3 520+ (50 4 k) + ) =0 (mod 32),

where k = 0,1, 3, or 4.

2. Preliminary Results

Define
_ N
 qfofis
and
g
@ fo fis’

Let H be the “huffing” operator defined by

H (Z anq") = Zagnq?’”.
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From Chan [5, (11)-(19)], for each i > 1, we have

1 ‘ mi,j
#(@) -2

Jj=1

where m; ;’s are defined in the following matrix. The m; ;’s form a matrix, the first
six rows of which are

0 O 0 0
21 0 0 0
27T 243 O 0

18 324 2187 0
5 270 3645 19683
0 1 126 3645 39366 177147

OO =N W

0 0
0 0
0 0
0 0
0 0
0
with m; ; = 0 for ¢ > 4 and, for j > 2, we have

M = 9mi_15-1+3mi_2j_1+mM;_3 ;1.
In fact m4;—3; =0 for j <i—1, so we can write

1 4i—3 m 3i—2 m 3i—2 “
N 4i—3,j 4i—3,i4+j—1 i,j
H (C4i3> - Z T - Z Ti+i—1 - Z Ti+i—1’ (3)

Jj=1 J=1 Jj=1

where
Q5 = M4;—-3i4+5—1-
Similarly, my;—1; = 0 for j <i — 1, so we can write

4i—1 3i 3i
1 _ Mai—15 Mai— 10451 b ; (1)
C4z‘—1 - T3 - . Ti+i—1 - Ti+i—1’

j=1 j=1 j=1
where
bv',,j = M4i—1,i+5j—1-
Also, my; ; = 0 for j <, so we can write
,

1 41 m 31 m 31 c

44,5 41,145 4,J

H(4)=Y = Saw (5)

C4z T Ti+J T+
j=1+i j=1 j=1

where
Ci,j = Mai ity
Equation (3) can be written as

Fo fis 4i—3 731‘—2 B < 3f3f118>i+j—1
H((qf1f2) ) 7.2%’] 1 fafe ’

Jj=1
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which implies that

o (fafs 4i—3 _3i—2 s (f9f18)4j—1
H(Q <f1f2> > - Zawqj f3fe )

j=1

Equation (4) can be written as

fgflg 4i—1 31 < Bfgffs)i-‘rj_l
bi j )
H(Gﬁﬁ) ) 20 \ g

Jj=

which implies that
o (g (f3f6>4i_1 _ ib 8 <f9f18>4j_3
fife = " f3fe
Similarly, Equation (5) can be written as

fofis\") | = 44(3f§1ffs)i+j
H(@ﬁb)>‘§3W THIE)

j=1

which implies that

 ( fsfo 4i - 3i 443‘(f9f18)4j

H<q<hh) )‘;;%”] iufs )
Lemma 1 ([9]). The following 2-dissections hold:
o [ofS 9 fafTs

fl_fff126_ q Te (6)
o Ji° fifs
NeprlE g
Lemma 2 ([9]). The following 2-dissections hold:
- Rfifh  fifefi
he=prm  RREm )
B _ R fh
fi _f22f12+qf4' ©)
Lemma 3. The following 3-dissections hold:
3 fefs | fis
i hhs R (10
s, Bk
TR (1)
4 46 3 £3 2 3
S Jelo +2qf6f9 +4q2f6f18. (12)

B f3 s f3 13
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Equations (10) and (11) can be found in [9]. Equation (12) is from [3].

Lemma 4. The following 3-dissections hold:

fof§ 33 f18
3= —3qf3 +4q 13
1 fo?g 9 fﬁ ( )
fofs 2 fafis
= - —2q 14
fifa f2 afof1s Fof2 (14)
4 23
fi_ f132f;8 +qf6£9‘£36 2% 2f6f18f36' (15)
hv f3fs f5fis f3
Equations (13), (14), and (15) can be found in [9], [11], and [4], respectively.
Lemma 5 ([9]). The following 5-dissection holds:
fi = fa5(R(@°) ™" — 4 — ¢R(¢°)), (16)
where £ i
—q,—q
R(q)= "4 749
@ (= —¢*)
Lemma 6 ([9]). The following 7-dissection holds:
B(¢") _ Ald) _ 5C(q7)>
- - @+ , 17
=t (G 15007 o+ "
where A(q) = f(—4¢*,—q"), B(q) = f(—¢*,—¢°) and C(q) = f(—q,—¢°).
3. Congruences for pedg o(n)
Theorem 1. For alln > 0 and o > 0, we have, modulo 32,
4o+2
Zpedg (34"“ TR ) PRI ORI (18)
2 12
o 1.4a+5_1 7 1_4a+3_1
pedyg o (4 -3ty 4 932> = pedy g (4 -3ty 4 932> ,
(19)
> 19 . 3443 . 528 _ )
Zpedw <4~34a+4 5% + 9.3 2 > ) " =16f1fs, (20)
n=0
_ C2da+3 | 52841 _
pedy g (4 - 3tatd 524 (5 1) 4 233 25 1) =0, (21)

where 1 = 0,1,2, or 4.
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Proof. Setting j = k =9 in (2), we find that

o~ — n_ Jaf
T;p‘ids),g (n)q" = ;1;98- (22)

Employing (15) in (22) and then collecting the coefficients of ¢3"*! from both sides
of the resultant equation, we obtain

o© -
Zpedg,g Bn+1)¢" = f2J:3f12' o)
=0 fifs
Substituting (12) in (23), we find that
oo ‘o
ZMQ,Q (In+4)¢" = 41;1{;3;4 + 164 f2f4f6 ‘ o
1 J6

n=0

From the binomial theorem, it is easy to see that for any positive integers k and m,

2" = fo (mod 2), (25)
fclm = f2m  (mod 4), (26)
Sm = fm o (mod 8), (27)
16m = f8m (mod 16). (28)

Invoking (25) and (27) in (24), we find that, modulo 32,

2@99(9714—4”" f1f3f4f6

+ 164/,
n=0 7 f2 ‘

which is the o = 0 case of (18). Now assume that Congruence (18) is true for a > 0.
Employing (12) and (13) in (18), we have

Zped <34a+3 glots ) _JBBR | JBIS B o

2 fis f3 I3
34a+3 —1
pedg <34a+3 2 ) =16/ + QOfIfjff?’ 5 4 16aft, (30)
12

n=0

Zpedg (34a+3 5 340‘;2 ) f3}§4+16qf§f{f’2_ (31)
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Employing (13) and (14) in (30), we obtain

> 3dot3 _ g 4
> pedy (340‘+4n + > " =164 + 20 f};f;f“ (32)
n=0 6

oo

_ 34a+4 -1 3
S pedys (34"‘+4n i 2) = 12% 1658 +160f8,  (33)
n=0 2

o~ 53443 ] 3 f8
> " pedy g (34O‘+4n + 2) " =24 fofs (34)
n=0 f4

Utilizing (12) and (13) in (33), we find that

. datd _q 2 6 £3 30 03
> pedy g <34°‘+5n + 3> g =122 f§’ J6 4 16f, +16qf1 1 + 2473 f§f6 ,
n=0 2 Iia fi

(35)
da+5 _ 1 316
Zped (34a+5 32) q"=16f5 + QSW’ (36)
. Q4a+4 1 6 3 3
Zped (34"+5 532) " = 24%54 + 16qf3f{12. (37)
Substituting (13) and (14) in (36), we get
dats _q 2 p4
Zpe 9.9 (34”6 ’ 5 ) " = 16f4 + 28f}f;’;§4, (38)
2J6
34oz+6 1
Zped (34a+6 > >q _ f1f;f4f6 + 164f5, (39)
2
5 34a+5
Zpedg’g glat6, 7 ° - fz /e . (40)
2 fa

n=0

Equation (39) is the oo + 1 case of (18). By induction, Congruence (18) holds for
all integer o > 0. Employing (6) and (7) in (32), we have

> —_— 4a+4 34044»371 fffg
ped, (2~3°‘ n+>q"_16f +20 41
2_pedog > 0 W
and
do+4 7-3%1 1 3 3
Zpedg 9(2-3 n+ s = 24f2fy + 164 f2 f15. (42)
Equation (42) implies
> 7. 34a+3 —1
Zp6d979 <4 gtatdy 4 2) = 24f1f23 (43)
n=0
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and - A
_ 19 3%a+3 _ ]
> pedy (4 I R 2) q" =161, f2. (44)
n=0
Employing (6) and (7) in (38), we have
—— 3hots 1 fifé
ped (2 . gatty 4 ) q" =16fy + 28 45
2y 2 g W
and
— 4a+6 7 34a+5 -1 n 3 3
> pedgg (2-3%F0n + ) 4" =8/ i + 164f2 i (46)
n=0
Equation (46) implies
o0
— . 7 3045 1\
Zpedg,g (4 -3 4 2> " =8hf3 (47)
n=0
and
—~— 19 3%+5 1
> pedy (4 -3ty 4 2) q" =161 f2. (48)
n=0

From Equations (44) and (48), we obtain (19). Equation (44) is the 8 = 0 case of
(20). Suppose that Congruence (20) is true for 8 > 0. Using (16) in (20), we find
that

23 . 34a+3 . 52[34—1 -1
2

> ety (131 5 )i = 16615
n=0

which implies (21) and
19 . 34a+3 . 526+2 —1
2

> pedy (4 glatt 52042y 4

n=0

which proves that Congruence (20) is true for 5+ 1. By induction, Congruence (20)
is true for all o, 8 > 0. O

Theorem 2. For alln >0 and «, 8,7 > 0, we have, modulo 16,

_ 13.3%4a+5 _ 1 _ 13 . 34a+3 _q

pedy o (4 -3ty 4 332> = pedy o (4 L 3totdy 4 332> =0,
(49)

— 7.3%H5 1\ — 7.3%43 1

pedy o (4 - 3tethy 4 2) = pedy g (4 -3ty 4 2) . (50)

— 11 3%+ 1 — 11 3%+2 1

pedy o (2 -34Sy 4 2) = pedy g (2 - 3tatdn 4 2) =0,

(51)
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pedy (2 -3ty 4 1134&;5_1> = pedy o (2 S3tetin 4 1134&;“) =0,
(52)

iz@g,g (4 gteta g8y 0 34%32' L 1) q" =8f], (53)

n=0

pedy o <4 glatd 52041 (5 4 ) 4 1 34a+3;2ﬁ+1 - 1> =0, (54)

ipﬁsw (4 glats |72y, 5- 34a+22. 72y _ 1) g =85, (55)

n=0

pedy o (4 3ot 2t (7 4 ) + ak 34%2;2%1 — 1) =0, (56)

where 1 = 0,2,3, or4 and j =0,2,3,4,5, or 6.

Proof. From Equations (41) and (45), we obtain (49). In view of Equations (43)
and (47), we obtain (50). Equation (43) becomes, modulo 16,

— 7.3%043
Zpedg)g (4 . 34Ct+4n + 2) q

n=0

"=,
which is the 8 = 0 case of (53). Now assume that Congruence (53) is true for § > 0.
Utilizing (16) in (53), we find that

—— N 1134352040 1
Zped&g (4 cgdatd 520+, 4 5 > q = 8‘]f577
n=0

which implies (54) and

N 7. 34a+3 . 526+2 -1
2

Z@gg <4 . 340¢+4 . 52ﬁ+2n

n=0

)q"—8f17,

which shows that Congruence (53) is true for 8+ 1. By induction, Congruence (53)
holds for all o, 8 > 0. Equation (31) implies, modulo 16,

—— 5.3%+2 3
Zped%) (2 -310% 0 2) q" = 8%- (57)
n=0

Using (9) in (57), we find that

> 5. 34a+2 -1
Zpedg)g (4 -3t 4 2) q" =8f7,
n=0
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which is the v = 0 case of Congruence (55). Now assume that Congruence (55) is
true for v > 0. Using (17) in (55) and then collecting the coefficients of ¢"**2 from
both sides of the resultant equation, we get

o—— 11 - 3et2. 72941 _
Zpedg,g (4 . 3404-!-3 . 72’Y+1n + 5 ) qn = Sqf;),
n=0

which implies (56) and

5. 34a+2 . 72'\/-&-2 -1
2

Zﬁg,g (4 RN G ) q" =817,
n=0

which implies that Congruence (55) is true for v+ 1. By induction, Congruence (55)
holds for all o,y > 0. From Equations (31) and (37), we arrive at (51). In view of
Congruences (34) and (40), we obtain (52). O

Theorem 3. For alln >0 and «, 3,7 > 0, we have, modulo 16,

pedy g (4 gtatdy 4 1334?2_1> =0, (58)
pedy g (4 - gtatdy 4 1934;+2_1) =0, (59)
izﬂg,g (4 L qlats 528, L 7. 34a+22. 528 _ 1) ' =8f, (60)
n=0

pedy (4 gloct3 520+ (5, 4 ) 4 1L 34%255%1 — 1) =0, (61)
pedy g (4 -3ty 4 1334?4_1> =0, (62)

_ 7.34a+4_1 o 7,34a+2_1

pedy g (2 -3ty 4 2) = pedy o (2 -3ty 4 2) , (63)
o~ — 5313 . 72—

> pedy (4 Sgtetd 7y g 5 ) q" =87, (64)
n=0

_ 11 - 34a+3 3 72’y+1 -1

pedyg (4 BT T (T - ) + 5 ) =0, (65)

where 1 = 0,2,3, or4 and j =0,2,3,4,5, or 6.

Proof. Equation (29) becomes, modulo 16,

> 4o¢+271 2 r2 3 r3
Zp€d99(34a+3n+3 >qn:4f2f3f6 +8qf2f3f6 (66)
= 2 fi2 fi
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Employing (6) and (9) in (66), we get

> 34a+2 3
> pedy (2 L glatdp 4 2) q" f”;f’f” + 8¢ fgffﬁ (67)
n=0 6
and
> 7. 34a+2
S bedy o (2 3oty | 2) g/ fo 5 4 8afafy.  (68)
n=0

Substituting (8) and (9) in (67) and then comparing the coefficients of ¢?**1

both sides of the resultant equation. we arrive at (58). Using (9) in (68), we obtain
(59) and

on

oo

— T O e A
Zpedg,g (4'34 +3n+2>q =8f],
n=0

which is the 8 = 0 case of (60). The rest of the proofs of Identities (60) and (61) are
similar to the proofs of Identities (53) and (54), so we omit the details. Equation
(35) becomes, modulo 16,

glatd _q 2 p2 3 43
Zpedg (34a+a 5 >qn512f2‘f-}‘132f6 +8qf2.§31f6 (69)
n=0

Utilizing (6) and (9) in (69), we have

da+4 _ 3
Zpedgg( 34a+5 + 3 1) 12f1f3f12 +8 f3f6 (70)

2 I fi
and - .
. 7.3t
> pedy (2 L glotoy, 4 2) q" fjff?’ + 8qf2f1s- (71)
n=0

Employing (8) and (9) in (70) and then collecting the coefficients of ¢?"*1 from
both sides of the resultant equation, we get (62). From Equations (68) and (71),
we obtain (63). Equation (34) implies, modulo 16,

—— 5.3%+3 3
> pedy (2 gtatdn 4 2) q" = 8%{3 : (72)
n=0

Substituting (9) in (72), we have

—— «a 5- 34a+3 -1 n 5
Zpedg,g (4'34 +4“+2>q =87,
n=0

which is the 7 = 0 case of (64). The rest of the proofs of Identities (64) and (65)
are similar to the proofs of Identities (55) and (56), so we omit the details. O
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4. Congruences for pedy 15(n)

Theorem 4. For alln > 0 and o > 0, we have, modulo 64,

34a+3 1
Zpedg s <34a+2 +) _ 12f1 f3 (73)
4 5
o 7.3404-&-4_'_1 o 7.34o¢+2+1
pedg 15 (34a+5n + 4> = pedg 18 (34‘”'371 + 4> , (74)
— 11-3%+t 41 — 11-3%+2 41
pedy 15 (34a+5n + 4> = pedyg 15 <34a+3” + 4> ;. (75)
o 5. 34a+5 1 o 5. 34a+3 1
pedy 15 (34a+6” + 4+> = pedy 15 (34a+4n + 4+> . (76)
Proof. Setting j =9 and k = 18 in (2), we find that
—— fafts
ed n)q" = . 77
T;p 9,18( )q F1fof6 ( )

Using (15) in (77) and then extracting the terms involving ¢3"™! from both sides
of the resultant equation, we obtain

—— w313
> pedy s (3n+1)q" = 252 (78)
n=0 fl

Subtituting (12) in (78), we obtain

> pedy 15 (In+1)q" = §§4f6 + 16472 f3 fG : (79)
n=0

o] 4 r6

Z@g,ls (9n+4)q" ff123j; + 164 f21J:)6 ) (80)
n=0 1

> pedy 15 (In+7)q" —12f2f3. (81)
n=0 1

Invoking (28) in (81), we find that, modulo 64,

S pedy s (9 + 7)q" = 129155
n=0 2

which is the a = 0 case of (73). Now assume that Congruence (73) is true for o > 0.
Employing (11) in (73), we get

34a+3 1
6
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S pedy s (34a+3n +
n=0
S pedy s (340‘+3n +

n=0
Utilizing (13) in (82), we find that

o0

n=0

Zpedg 18 (34a+4
S by 1 (34a+4n n
n=0
Using (11) in (87), we have
Zpedg 18 (34a+5
Zpedg 18 (34a+5

o0

Z 1@9,18 <34a+5n

n=0

34(x+3 1
E p6d9718 (34a+4n+ + ) qn = 12f1 fﬁ
4a+5 1 4 r6

34a+5 + 1) _ fl f3
7. 3%t 4 1)

11 3%+4 41
_'_7

7.3%+2 11

4) q¢" = 1617 fofsfo,
11-3%F2 41\

4) q" = 4813 f5.

+ 32¢q

4 I3 fi

. 24043
5-3 +1>qn556f1f3f6+32

4 f2

4 f3

4 i

1 =16/} fof3 /e,

e =

1313

(86)

(88)

(89)

(90)

In view of Equations (83) and (89), we obtain (74). From Equations (84) and (90),

we obtain (75). Substituting (13) in

Zpedg 15 (34a+6

oo

n=0

Z pedyg 15 (340‘+6

R 5 . 34a+5 1 3
> pedy 1 (34a+6n " +> "= s lid3f6

Y oz B

(88), we arrive at

34a+5+1> fLfE 313
2 T =aadlIS |39,
4 I3 i
6
+ 32q=>

4 f2

4 i

(91)

(92)

(93)

Equation (93) is the o 4+ 1 case of (73). So, by induction, Congruence (73) holds

for all & > 0. In view of Congruences (86) and (92), we arrive at (76).

Theorem 5. For alln >0 and «, 8,7 > 0, we have, modulo 32,

pedy, s (34a+6n + 2

34a+5 +1

) = pedy 1s (34“+4n 2

34(1-‘1—3 + 1

O

). o
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—— 731042520 4]
> pedy (2 -glot3 . 520 4 1 ha ) ¢" =16f],
n=0

4

19342520 4 1Y

23 . 34a+2 . 52[5+1 + 1) _o

_ 11 - 34a+2 . 52B+1 1
pedy 15 (2 - 3hat3 524 (5 1) + + > =0,

ZMS),IS (2 -3t 520 4

n=0

pedy 15 (2 - 3tet3 520+ (50 4 4) +

4

o 23 . 34a+2 1
pedy 15 (2 -3ty 4 +> =0,

4
o~ —— 11-3%+2.520 41
Zpedg’lg (2 -3t 526y 4 1 ) q" =16/ f3,
n=0

o 7 . 34a+2 . 525—0—1 1
pedy 15 (2 L 3Rek3 5200 (5 4 k) + + ) =0,

4
where 1 =0,2,3, or4, j =0,1,2, or 4, and k=0,1,3, or 4.

Proof. From Equations (85) and (91), we obtain (94). Equation (83) becomes,

modulo 32,

> . . da+2 1 3 r3
Zped&18 (34°‘+‘3n + 77 3 1 + ) q" = 16f2ff3 .
1

n=0

Employing (9) in (102), we find that

= 7-3%+2 41
> pedg i (2 310 4 4) ¢" =16f{
n=0
and
S 19-3%+2 41
> pedy 1 (2 31 4 4) q" = 16£1£3.
n=0

(102)

(103)

(104)

Equation (103) is the 8 = 0 case of (95). The rest of the proofs of Identities (95)
and (96) are similar to the proofs of Identities (53) and (54), so we omit the details.
Equation (104) is the 5 = 0 case of (97). The rest of the proofs of Identities (97)
and (98) are similar to the proofs of Identities (20) and (21), so we omit the details.

Equation (84) becomes, modulo 32,

—— o 11-3%F2 1\
Zpedg,lg <34 n 4 4> q" = 16142,
n=0

which implies (99) and

© N 11 - 34a+2 +1 "
Zped9718 (2 3tet3ny 4 4) q" = 16fof3,
n=0
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which is the 8 = 0 case of (100). Suppose that Congruence (100) is true for 8 > 0.
Using (16) in (100), we find that

o N 7. 34a+2 X 52B+1 +1 n
z:ped&18 (2 - 3ot 52+, 4 1 ) q" =164 frofis,
n=0

which implies (101) and

11 - 34o¢+2 . 52[5+2 =+ 1
4

[ee]
Z pedy 15 (2 (3 52 4

n=0

) q" = 16fof3,

which implies that Congruence (100) is true for 8 + 1. By induction, Congruence
(100) holds for all «, 8 > 0. O

Theorem 6. For alln >0 and «, B,y > 0, we have

[ee]
— 13- 3%+3.528 4
Zpedms (2 L glatd 526 4 1 + > ¢" =8fi* (mod 16),  (105)
n=0
_ 17 - 34a+3 . 526+1 4 1
pedy 1 (2 - 3totd 5204 (5 4 4) + 1 + ) =0 (mod 16), (106)
(oo}
— 5.3%+3 .72 11
> pedy 1 (2 R CalT 1 * ) ¢" =8f° (mod 16), (107)
n=0

11 - 34(x+3 . 72’)/+1 + 1
4
34’1"'34-1) _ { 4 (mod 8) if n is a pentagonal number,

pedy 1 (2 3tetd ol (7 4 ) ) =0 (mod 16), (108)

pedy (2 -3tetin

4 0 (mod 8) otherwise,
(109)
where 1 =0,1,3, or 4, and j =0,2,3,4,5, or 6.
Proof. Equation (85) becomes
> 34a+3 1
> pedy 1 (34O‘+4n + 4+) " =12f (mod 16). (110)
n=0

Substituting (6) in (110), we have

> 4a+3 1
> pedy 1 (2 - 3oty 4 34*) "= 12% (mod 16) (111)
2

n=0

and

—— 13- 34043 4 1
Zpedgus (2 - 3toty 4 4+> ¢" =8f1% (mod 16),
n=0
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which is the S = 0 case of (105). The rest of the proofs of Identities (105) and
(106) are similar to the proofs of Identities (53) and (54), so we omit the details.
Equation (86) becomes

.g4a+3 4 q 3
Zpedg 15 (34a+4 534+> "= 8f}f3 (mod 16). (112)
1

Employing (9) in (112), we obtain

> 5. 34a+3 1
> pedy 1 (2 -3tetdy 4 4+) " =8f7 (mod 16),

which is the v = 0 case of (107). The rest of the proofs of Identities (107) and (108)
are similar to the proofs of Identities (55) and (56), so we omit the details. From
Equation (111), we arrive at (109). O

Theorem 7. For all n > 0, we have
pedy 15 (2Tn+16) =0 (mod 9), 113

pedy 15 (270 +25) =0 (mod 9), 114

( 0 (113)
( 0 (114)
pedy 15 (2430 +142) =0 (mod 27), (115)
( (116)
( (117)

pedy 1 (243n+223) =0 (mod 27), 116
pedy 15 (7297 4 547) =0 (mod 27). 117

Proof. From the binomial theorem, it is easy to see that for positive integers ¢ and
k,
2P = f38 (mod 9). (118)

Invoking (118) in (81), we see that

n=0 1

Using (10) in (119), we get

o~ n_ 100213 18

> pedy 15 (2T +7) ¢" = 127252 +12¢ (mod 27), (120)
n=0 ’ f6 f3

S ey 15 (270 +16) 0" = 9173 3 (mod 27), (121)
n=0

> pedy s (2Tn +25) " = 97 fof§  (mod 27). (122)

n=0
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From Equations (121) and (122), we obtain (113) and (114) respectively. Employing
(13) in (120) and then collecting the coefficients of ¢®**2 from both sides of the
resultant equation, we find that

ZMQJS (Bln+61)¢" =95 f (mod 27),

n=0

which implies (115), (116), and

> pedy 15 (243n 4 61) " = 9f7 f5  (mod 27). (123)

n=0

Utilizing (14) in (123) and then extracting the coefficients of ¢3"*2 from both sides
of the resultant equation, we obtain (117). O

Theorem 8 (Theorem 5, [8]). For each n >0 and a > 0, we have

© 32a+5 1 [eS) . 4i—3
Zpedms (32a+5n + +) q" = Qnga,iq’_l (fg’fﬁ) (mod 27),
i=1

n=0 4 Jif2
(124)
e} o} 4i—1
o 32a+7 +1 ) f3f6
ed 32a+6y, 4 ) "=9 Toar1.iq " () mod 27),
nz:%p 9,18 ( 4 q ; 2a+1,i4 1 f2 ( )
(125)
where the coefficient vectors Xo = (Ta1,Za,2,--.) are given by
X() = ($071,£B072,.’£073, e ) = (1,0,0, e )
and
Xat+1 = XaA if « is even,
Xotr1=XoB if «a is odd,
where A = (aiyj)i’j21 and B = (bi,j)i,jZL
Proof. Equation (123) can be written as
> pedy 15 (243n + 61) ¢" = gf3J6
S fif
=9 az(n)q" (mod 27), (126)
n=0

where as(n) denotes the number of 3-regular cubic partitions of n, whose generating

function is

3 n_ Isfo
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Equation (126) is the ow = 0 case of (124). O
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