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Abstract

This note concerns the non-existence of three consecutive powerful numbers. We
use Pell equations, elliptic curves, and second-order recurrences to show that there
are no such triplets with the middle term a perfect cube and each of the other two
having only a single prime factor raised to an odd power.

1. Introduction and Main Results

A positive integer n is powerful or squareful if p2 | n for all primes p such that p | n.
It is well-known that any powerful number can be factored uniquely as n = a2b3

for some positive integer a and squarefree number b. Here a number n is squarefree

if p2 ∤ n for all primes p. The following is an initial list of powerful numbers:

1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 72, . . . .

Notice that 8 and 9 are consecutive powerful numbers. Indeed, there are infinitely

many such pairs. For example, the solutions of the Pell equation

x2 − 2y2 = 1

give consecutive powerful pairs 2y2, x2 as y is even by considering perfect squares

modulo 4. The interested readers may consult [5] and [8] for more discussions on

this topic. Next, one can ask if there are three consecutive powerful numbers.

Conjecture 1 (Erdős, Mollin, Walsh). No three consecutive powerful numbers

exist.

This appears to be very hard. Some relevant references are [4], [7] and [6].

Conditional on the abc-conjecture, one can show that there are only finitely many

triples of consecutive powerful numbers. In this note, we consider the special case

of three consecutive powerful numbers of the form x3 − 1, x3, x3 + 1 and prove the

following.
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Theorem 1. There are no three consecutive powerful numbers of the form

x3 − 1 = p3y2, x3, x3 + 1 = q3z2 (1)

with primes p, q and positive integers x, y, z.

Corollary 1. The Diophantine equation 64x6 − 1 = p3q3y2 has no solution with

integers x, y and primes p, q.

The author hopes that this note will stimulate further studies of powerful num-

bers and Conjecture 1.

Throughout this paper, all variables are integers. The letters p and q stand for

prime numbers. The symbol a | b means that a divides b, and a ∤ b means that a

does not divide b. The symbol pk ∥ a means that pk | a but pk+1 ∤ a.

2. Some Basic Observations

Lemma 1. The difference between any two perfect squares cannot be 2.

Proof. One simply observes that (n + 1)2 − n2 = 2n + 1 > 2 when n ≥ 1, and

(0 + 1)2 − 02 = 1 ̸= 2.

Lemma 2. If x ≡ 1 (mod 3), then 3 ∥x2 + x+ 1.

Proof. Suppose x ≡ 1 (mod 3). Say x = 3x′ + 1 for some integer x′. Then

x2 + x+ 1 = (3x′ + 1)2 + (3x′ + 1) + 1 = 9x′2 + 9x′ + 3 = 3(3x′2 + 3x′ + 1)

which is divisible by 3 but not 9.

Lemma 3. If x ≡ 2 (mod 3), then 3 ∥x2 − x+ 1.

Proof. This follows from Lemma 2 by the substitution x 7→ −x.

Lemma 4. Suppose a ̸= 0, c and e are some fixed integers. If y2 = ax4+cx2+e has

an integer solution (x, y) with x ̸= 0, so does the elliptic curve Y 2 = X3+cX2+aeX.

Proof. One simply multiplies both sides of y2 = ax4 + cx2 + e by a2x2 and gets

(axy)2 = (ax2)3+ c(ax2)2+ae(ax2). This yields a non-zero integer solution for the

above elliptic curve with X = ax2 ̸= 0 and Y = axy.

Lemma 5. The Pell equation x2−3y2 = 1 has all positive integer solutions (xk, yk)

generated by xk+yk
√
3 = (2+1 ·

√
3)k for k ∈ N. Moreover, the solutions satisfy the

recursions: x1 = 2, x2 = 7, xk = 4xk−1 − xk−2; y1 = 1, y2 = 4, yk = 4yk−1 − yk−2

for k > 2.
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Proof. This is a standard result in the theory of Pell equation that all integer

solutions are generated by some fundamental (minimal) solution. See [1, Theorem

5.3] for example. The recursions easily follow from the observation

(2+
√
3)k−4(2+

√
3)k−1+(2+

√
3)k−2 = (2+

√
3)k−2[(2+

√
3)2−4(2+

√
3)+1] = 0

as 2 +
√
3 is a root to the quadratic equation x2 − 4x+ 1 = 0.

Lemma 6. The generalized Pell equation x2 − 3y2 = −2 has all positive integer

solutions (xk, yk) generated by xk + yk
√
3 = (1 + 1 ·

√
3)(2 + 1 ·

√
3)k for k ∈ N.

Moreover, the solutions satisfy the recursions: x1 = 1, x2 = 5, xk = 4xk−1 − xk−2;

y1 = 1, y2 = 3, yk = 4yk−1 − yk−2 for k > 2.

Proof. One can easily see that x = 1 = y is the smallest positive integer solution

(i.e., x1 + y1
√
3 = 1 + 1 ·

√
3). Then one can generate all the integer solutions by

combining this with the solutions in Lemma 5. See [2, Theorem 3.3] for example.

The recursions follow from a similar observation as in Lemma 5.

3. Proof of Theorem 1

We are now ready to prove Theorem 1.

Proof of Theorem 1. First, note that any three consecutive powerful numbers must

be of the form 4n− 1, 4n, 4n+ 1 as 2 ∥ 4n+ 2. Recall that the middle number is a

cube. So, 4n = x3 and x is even. Suppose that, contrary of Theorem 1, we have

(x− 1)(x2 + x+ 1) = p3y2 and (x+ 1)(x2 − x+ 1) = q3z2. (2)

Note that x > 1 as p, y > 0. By the fact that gcd(a, b) = gcd(a, b − a), we have

gcd(x − 1, x2 + x + 1) = gcd(x − 1, (x − 1)(x + 2) + 3) = gcd(x − 1, 3) = 1 or 3.

Hence,

gcd(x− 1, x2 + x+ 1) =

{
3, if x ≡ 1 (mod 3),
1, otherwise.

(3)

Suppose x ̸≡ 1 (mod 3). Then gcd(x − 1, x2 + x + 1) = 1 by Equation (3). It

follows that if p | x−1, then p3 | x−1 and x2+x+1 is a perfect square by Equation

(2). This is impossible as x2 < x2 + x + 1 < (x + 1)2. Hence, p3 | x2 + x + 1. In

summary, we have

x ̸≡ 1 (mod 3) implies p3 | x2 + x+ 1 and x− 1 is a perfect square. (4)

Applying the substitution x 7→ −x to the above argument, we also have

gcd(x+ 1, x2 − x+ 1) =

{
3, if x ≡ 2 (mod 3),
1, otherwise,

(5)
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and

x ̸≡ 2 (mod 3) implies q3 | x2 − x+ 1 and x+ 1 is a perfect square. (6)

Case 1: x ≡ 0 (mod 3). From Equations (3) and (5), we have

gcd(x− 1, x2 + x+ 1) = 1 = gcd(x+ 1, x2 − x+ 1).

By Equations (4) and (6), both x−1 and x+1 are perfect squares which contradicts

Lemma 1.

Case 2: x ≡ 1 (mod 3). From Equations (3) and (5), we have

gcd(x− 1, x2 + x+ 1) = 3 and gcd(x+ 1, x2 − x+ 1) = 1.

Hence, q3 | x2 − x+ 1 and x+ 1 = u2 for some integer u > 0 by Equation (6).

Suppose p = 3. We have (x− 1)(x2+x+1) = 33y2 and 3 ∥x2+x+1 by Lemma

2. Thus, 9 | x − 1 and x − 1 = 9x′2 = (3x′)2 for some integer x′. This contradicts

Lemma 1.

Suppose p ̸= 3. If p | x2+x+1, then p3 | x2+x+1 by Equation (3). This forces

x − 1 = 3v2 or x − 1 = (3v)2 for some integer v. The latter contradicts Lemma 1.

The former yields u2 − 3v2 = 2 which is also impossible as u2 ≡ 0 or 1 (mod 3).

Therefore, we must have p | x− 1 and, hence, p3 | x− 1 by Equation (3). From

Equation (2) and Lemma 3, we have x2 + x+ 1 = 3v2 and x− 1 = 3p3w2 for some

integers v, w > 0 with gcd(v, 3) = 1 = gcd(v, w). Substituting x = u2 − 1 into

x2 + x+ 1, we obtain

3v2 = u4 − u2 + 1 or y2 = 3u4 − 3u2 + 3

where y = 3v. By Lemma 4, the elliptic curve Y 2 = X3− 3X2+9X has a non-zero

integer solution. This contradicts (X,Y ) = (0, 0) being the only integer solution by

the SageMath command

E = EllipticCurve([0,-3,0,9,0]); E.integral points(),

for example.

Case 3: x ≡ 2 (mod 3). From Equations (3) and (5), we have

gcd(x− 1, x2 + x+ 1) = 1, and gcd(x+ 1, x2 − x+ 1) = 3.

Hence, p3 | x2 +x+1 and x− 1 = u2 for some integer u > 0 with 3 ∤ u by Equation

(4).

Suppose q = 3. We have (x+1)(x2 −x+1) = 33y2 and 3 ∥x2 −x+1 by Lemma

3. Thus, 9 | x + 1 and x + 1 = 9x′2 = (3x′)2 for some integer x′. This contradicts

Lemma 1.



INTEGERS: 25 (2025) 5

Suppose q ̸= 3. We have either q3 | x + 1 or q3 | x2 − x + 1 by Equation (5).

If the former is true, then x + 1 = 3q3v2 and x2 − x + 1 = 3w2 for some integers

v, w > 0 with gcd(w, 3) = 1 = gcd(v, w). Substituting x = u2 + 1 into x2 − x + 1,

we obtain

3w2 = u4 + u2 + 1 or y2 = 3u4 + 3u2 + 3

with y = 3w. By Lemma 4, the elliptic curve Y 2 = X3 + 3X2 + 9X has a non-zero

integer solution. The SageMath command

E = EllipticCurve([0,3,0,9,0]); E.integral points()

yields (X,Y ) = (0, 0) and (3,±9) as the only such solutions. It follows from the

proof in Lemma 4 that X = 3u2 = 3 and u = 1. Hence, x = u2 + 1 = 2 but

x3 − 1 = 7 is not powerful.

Therefore, we must have q3 | x2 − x+ 1. By Equation (5), we have x+ 1 = 3v2

and x2−x+1 = 3q3w2 for some integers v and w. Combining these with x−1 = u2,

we get the generalized Pell equation u2 − 3v2 = −2. By Lemma 6, u = uk satisfies

u1 = 1, u2 = 5, and uk = 4uk−1 − uk−2 for k > 2. (7)

By substituting x = u2 + 1 into x2 − x+ 1, we obtain

3q3w2 = (u2 + 1)2 − (u2 + 1) + 1 = u4 + u2 + 1 = (u2 + u+ 1)(u2 − u+ 1).

Since x is even and x− 1 = u2, it follows that u is odd and

gcd(u2 + u+ 1, u2 − u+ 1) = gcd(u2 + u+ 1, 2u) = gcd(u2 + u+ 1, u) = 1. (8)

Subcase 1: u ≡ 1 (mod 3). Then 3 | u2 + u+ 1. Suppose q | u2 + u+ 1. We have

u2 + u + 1 = 3q3w2
1 and u2 − u + 1 = w2

2 by Equation (8). This is impossible as

(u−1)2 < u2−u+1 < u2 unless u = 1. However, u = 1 yields x = 2 and x3−1 = 7

which is not powerful. Therefore, we must have q | u2−u+1. So, u2+u+1 = 3w2
1

and u2 − u+ 1 = q3w2
2 by Equation (8). After some algebra, one arrives at

(2w1)
2 − 3

(2u+ 1

3

)2

= 1.

Then Lemma 5 gives 2w1 +
2u+1

3

√
3 = gl + hl

√
3 = (2 +

√
3)l where

h1 = 1, h2 = 4, and hl = 4hl−1 − hl−2 for l > 2. (9)

Thus, uk = u = 3hl−1
2 for some indices k, l ≥ 1.

From Equations (7) and (9), one can show by induction that uk and hl are positive

increasing sequences (for example, u2 > u1 > 0 and the induction hypothesis uk−1 >

uk−2 > 0 implies uk = 4uk−1 −uk−2 > uk−1 +3(uk−1 −uk−2) > uk−1 > 0). Hence,

uk = 4uk−1 − uk−2 > 4uk−1 − uk−1 = 3uk−1, and, similarly, hl > 3hl−1. (10)
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Moreover, one can form the new sequence vk := uk − hk which satisfies

v1 = 0, v2 = 1, and vk = 4vk−1 − vk−2 for k > 2.

As v3 = 4, one can see that vk = hk−1 > 0 for k ≥ 2. Hence, uk = hk + hk−1 > hk

for all k ≥ 2. By Equation (10) and the inequality 4n
3 < 3n−1

2 when n ≥ 4, we have

uk = hk + hk−1 <
4hk

3
<

3hk − 1

2
<

3uk − 1

2
< 3uk < uk+1

for all k ≥ 2. Therefore, uk = 3hl−1
2 is possible only when k = l = 1. This gives

x = u2
1 + 1 = 2 but x3 − 1 = 7 is not powerful.

Subcase 2: u ≡ −1 (mod 3). This is very similar to subcase 1 with 3 | u2 − u+ 1

and (2w1)
2 − 3( 2u−1

3 )2 = 1 instead. It also yields a contradiction.

4. Proof of Corollary 1

Using Theorem 1, we can now prove Corollary 1.

Proof of Corollary 1. Suppose the equation 64x6 − 1 = ((2x)3 − 1)((2x)3 + 1) =

p3q3y2 has a solution with some integers x, y, and primes p, q. By the fact that

gcd(a, b) = gcd(a, b− a), we have

gcd((2x)3 − 1, (2x)3 + 1) = gcd((2x)3 − 1, 2) = 1. (11)

Suppose pq | (2x)3 − 1. By Equation (11), we must have (2x)3 − 1 = p3q3y21 and

(2x)3+1 = y22 for some integers y1 and y2. However, the elliptic curve Y 2 = X3+1

has (X,Y ) = (−1, 0), (0,±1) and (2,±3) as its only integer solutions by SageMath

for example. Thus, x = 0 or 1. However, neither 06 − 1 = −1 nor 26 − 1 = 63 are

of the form p3q3y21 .

Suppose pq | (2x)3 + 1. By Equation (11), we must have (2x)3 + 1 = p3q3y21
and (2x)3 − 1 = y22 for some integers y1 and y2. This contradicts (X,Y ) = (1, 0)

being the only solution to the elliptic curve Y 2 = X3 − 1 (see [3, Theorem 3.2] for

example).

Therefore, p divides exactly one of (2x)3−1 or (2x)3+1, and q divides the other

one. Without loss of generality, say (2x)3 − 1 = p3y21 and (2x)3 + 1 = q3y22 . This

contradicts Theorem 1. Consequently, 64x6 − 1 = p3q3y2 cannot have any integer

solution.
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