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Abstract

The Perrin sequence (Rn)n∈Z is defined by R0 = 3, R1 = 0, R2 = 2, and by
Rn+3 = Rn+1 + Rn for n ∈ Z. In this note, we solve the Diophantine equation
Rn = ±R2

m in integers m,n. We prove that Rn ∩ ±R2
m = {0,±1, 4, 25}.

1. Introduction

The Perrin numbers (Rn)n≥0 are defined by the Fibonacci-like recurrence relation

Rn+3 = Rn+1 +Rn for n ≥ 0,

with initial conditions R0 = 3, R1 = 0, and R2 = 2. For n ≥ 0, the first few Perrin

numbers are

3, 0, 2, 3, 2, 5, 5, 7, 10, 12, 17, 22, 29, 39, 51, 68, 90, . . . .

The Padovan numbers (Pn)n≥0 satisfy the same recurrence equation as Perrin num-

bers, but with different initial values. Therefore, both sequences share the same

characteristic polynomial given by P (X) = X3 − X − 1. For n ≥ 0, the first few

Padovan numbers are

1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, . . . .
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Both sequences can be extended to negative indices by R−n = R−n+3 − R−n+1.

Since the constant term of P is −1, these sequences have integer members as well.

For n ≤ −1, the first few Perrin and Padovan numbers are

−1, 1, 2, −3, 4, −2, −1, 5, −7, 6, −1, −6, 12, −13, 7, 5, −18, 25, . . .

and

0, 1, 0, 0, 1, −1, 1, 0, −1, 2, −2, 1, 1, −3, 4, −3, 0, 4, −7, 7, −3, . . . ,

respectively. In Chapter 8 of his book Math Hysteria [8], and originally in his

Scientific American column [9], Ian Stewart asks if there are any Padovan numbers

beyond P15 = 49 that are squares. He also notes that the squares that do occur

in this short list are squares of Padovan numbers themselves, and he asks if that is

always the case. Surprisingly, Stewart’s two problems are equivalent. This follows

from the fact that there are no Padovan numbers beyond P15 = 49 that are squares

of Padovan numbers, which was proved by de Weger [11] by solving the equation

Pn = P 2
m

in positive integers n,m. Extending the Padovan sequence to negative indices, the

following problems were posed by de Weger [11] in 2004: solve

P−n = ±P 2
m, Pn = P 2

−m, and P−n = ±P 2
−m

in positive integers n,m. Recently, these three equations were solved by Bravo and

Luca [1]. We solve the above four equations with Perrin numbers instead of Padovan

numbers with the technique developed by Bravo et. al [3, 4]. We also deal with

some special cases.

2. Results

Theorem 1. The only solution of equation

Rn = R2
m (1)

in positive integers m,n is R1 = 0 = R2
1.

Theorem 2. The only solutions of equation

R−n = ±R2
m (2)

in positive integers m,n are listed below:

R−5 = 4 = R2
2 = R2

4;

R−18 = 25 = R2
5 = R2

6.
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Theorem 3. There are no solutions in positive integers m,n of equation

Rn = R2
−m. (3)

Theorem 4. The only solutions of equation

R−n = ±R2
−m (4)

in positive integers m,n are given by:

R−29 = R−11 = R−7 = R−1 = −1 = −R2
−1 = −R2

−2 = −R2
−7 = −R2

−11 = −R2
−29;

R−2 = 1 = R2
−1 = R2

−2 = R2
−7 = R2

−11 = R2
−29;

R−5 = 4 = R2
−3 = R2

−6 = R2
−20;

R−18 = 25 = R2
−8 = R2

−16.

3. The Perrin Sequence

We begin by recalling some properties of this ternary recurrence sequence. Denoting

the zeros of P by α, β, γ, with α being the only real zero, the general term of (Rk)k∈Z
is of the form

Rk = αk + βk + γk. (5)

Here

β = α−1/2eiθ and γ = α−1/2e−iθ with θ ∈ (0, π) . (6)

Numerically,

α ∈ (1.32, 1.33) and |β| = |γ| = α−1/2 ∈ (0.86, 0.87).

It follows then that the contribution of the zeros β and γ to Equation (5) is very

small, namely ∣∣Rk − αk
∣∣ ≤ 2α−k/2 holds for all k ≥ 0. (7)

In addition, it can be shown by induction that

αk−2 ≤ Rk ≤ αk+1 for all k ≥ 2. (8)

Furthermore, using Equation (5) and the fact that αβγ = 1, one can easily see that

R2
k = R2k + 2R−k for all k ∈ Z. (9)

Bravo, Bravo, and Luca [2, Lemma 11, Corollary 3] found the following facts about

Perrin sequence.

Lemma 1. For an integer k ≥ 6, we have α
k
2−3×1015 log k < |R−k| < 2.01αk/2.
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Theorem 5. The Perrin sequence has exactly 1 zero.

We end this section of preliminaries on the Perrin sequence by mentioning that we

can identify the automorphisms of the Galois group of the splitting field K = Q(α, β)

of P over Q wih the permutations of the zeros of P , since

Gal
(
K/Q

)
≃ {(1) , (αβ) , (αγ) , (βγ) , (αβγ) , (αγβ)} ≃ S3.

For example, the permutation (αβ) corresponds to the automorphism σαβ : α →
β, β → α.

4. Linear Forms in Logarithms

For an algebraic number η of degree d over Q with minimal primitive polynomial

adX
d + ad−1X

d−1 + · · ·+ a0 = ad(X − η(1)) · · · (X − η(d)) ∈ Z [X] ,

we put

h(η) =
1

d

(
log(|ad|) +

d∑
j=1

max
{
log
(∣∣η(j)∣∣), 0})

for the logarithmic height of η := η(1). In particular, if η = p/q ∈ Q is in lowest

terms with q ≥ 1, then h(η) = logmax
{
|p|, q

}
and h(ηp/q) = |p/q|h(η). These and

the following basic properties of this height will be used later without reference:

h(η) = h
(
η(j)
)
, h(η1 + η2) ≤ h(η1) + h(η2) + log 2, h(η1η

±1
2 ) ≤ h(η1) + h(η2).

A proof of some of these properties can be found in Waldschmidt [10, Property 3.3].

We will only need the special case of two logarithms of the theorem of E. M.

Matveev [7]. So we quote here his result in this case. Let K be a number field of

degree D over Q, let η1 and η2 be non-zero elements of K, and let b1 and b2 be

integers. Set

Λ = ηb11 ηb22 − 1 and B ≥ max {|b1|, |b2|} .

Let A1 and A2 be real numbers such that

Aj ≥ max{Dh(ηj), |log η(j)|, 0.16} for j = 1, 2.

With this notation, the main result of Matveev [7] implies the following estimate.

Theorem 6. If Λ ̸= 0 and K ⊆ C, then we have

|Λ| > exp
(
− 9.20483× 1011D2A1A2(1 + logD)(1 + log(2B))

)
.
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5. Reduction Tools

We now remind to the reader of the Baker-Davenport reduction method from Dujella

and Pethő [5, Lemma 5(a)], which turns out to be useful in order to reduce the

bounds arising from applying Theorem 6.

Lemma 2. Let A,B, κ, µ be real numbers with A > 0 and B > 1. Suppose that M

is a positive integer. Let p/q be a convergent of the continued fraction expansion of

κ such that q > 6M and let ϵ := ∥µq∥ − M ∥κq∥, where ∥·∥ denotes the distance

from the nearest integer. If ϵ > 0, then there is no solution of the inequality

0 < |sκ− r + µ| < AB−w

in positive integers r, s, w, with

s ≤ M and w ≥ log(Aq/ϵ)

logB
.

We now recall some basic results from the theory of continued fractions in order

to prove Lemma 3 below. For each continued fraction [a0, a1, . . . , an] we define

p0, p1, . . . , pn and q0, q1, . . . , qn via

p0 = a0, p1 = a1a0 + 1, pk = akpk−1 + pk−2 (2 ≤ k ≤ n),

q0 = 1, q1 = a1, qk = akqk−1 + qk−2 (2 ≤ k ≤ n).

With the previous notation we have:

Theorem 7 ([6], Theorem 150). The functions pn and qn satisfy

pnqn−1 − pn−1qn = (−1)n−1.

Theorem 8 ([6], Theorem 155). qn ≥ qn−1 for n ≥ 1, with inequality when n > 1.

Let a′n = [an, an+1, . . .] be the nth complete quotient of the continued fraction

x = [a0, a1, . . .]. Then it can be proved that (see [6, pág. 179])

x =
a′n+1pn + pn−1

a′n+1qn + qn−1
. (10)

Theorem 9 ([6], Theorem 168). If [a0, a1, a2, . . .] = x, then

a0 = [x] , an = [a′n] (n ≥ 0).

The theorem that follows implies that pn/qn is the fraction, among all fractions

whose denominator does not exceed qn, that provides the best approximation to x.
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Theorem 10 ([6], Theorem 182). If n > 1, 0 < q ≤ qn, and p/q ̸= pn/qn, then

|pn − qnx| < |p− qx|.

Lemma 2 cannot be applied when µ is a linear combination of 1 and κ since then

ϵ = −M ∥κq∥ < 0 for any choice of q and M . In this case, we use the following

result.

Lemma 3. For n ≥ 0, let pn/qn be the convergents of the continued fraction x =

[a0, a1, . . .]. Let M be a positive integer and put

aM = max{aj : j ∈ [0, N + 1]},

where N is a non-negative integer such that M ∈ [qN , qN+1). If p, q ∈ Z with q > 0,

then ∣∣∣∣x− p

q

∣∣∣∣ > 1

(aM + 2)q2
for all q < M.

Proof. By Equation (10) and Theorem 7 we have∣∣∣∣x− pn
qn

∣∣∣∣ = 1

(a′n+1qn + qn−1)qn
.

From this, and Theorems 8 and 9, we obtain∣∣∣∣x− pn
qn

∣∣∣∣ > 1

(an+1 + 2)q2n
.

Since q < M , there exists s ≤ N such that qs ≤ q < qs+1. Hence, by Theorem 10,

we get

|xq − p| > |xqs − ps| >
1

(as+1 + 2)qs
≥ 1

(aM + 2)q
.

Dividing the resulting inequality by q we arrive at the desired result.

6. The Proof Of Theorem 1

Proof. Here we solve Equation (1) in a completely elementary way. The fact that

|Rn − αn| tends to 0 if n grows is the heart of the proof in the case n − 2m ̸= 0.

In the other case, we use the zero multiplicity of the Perrin sequence to show that

Equation (1) has no solution. Let us see.
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Case 1: n − 2m ̸= 0. Suppose that Equation (1) holds. Then using Equation (7)

we obtain ∣∣αn − α2m
∣∣ = ∣∣(αn −Rn) + (R2

m − α2m)
∣∣

≤ |αn −Rn|+ |Rm − αm||Rm + αm|
≤ |αn −Rn|+ |Rm − αm|(2αm + |Rm − αm|)
≤ 2α−n/2 + 4αm/2 + 4α−m.

Dividing the resulting inequality above by α2m and using the fact that n ≥ m, we

get that ∣∣αn−2m − 1
∣∣ ≤ 2α−5m/2 + 4α−3m/2 + 4α−3m. (11)

Since n − 2m ̸= 0, the minimum of the left-hand side of Equation (11) is reached

at n− 2m = −1, namely∣∣αn−2m − 1
∣∣ ≥ ∣∣α−1 − 1

∣∣ = 0.24512 . . . ,

while when m ≥ 7, the right-hand side of Equation (11) is smaller than that, namely

2α−5m/2 + 4α−3m/2 + 4α−3m ≤ 0.23430 . . . .

Thus, m ≤ 6. Since (Rn)n≥0 is strictly increasing for n ≥ 6, by quick inspection we

find that 0 is the only coincidence between Rn and R2
m for n ≥ 0 and 0 ≤ m ≤ 6.

Case 2: n − 2m = 0. In this case, using Equation (9) with k = m, Equation (1)

becomes

R−m = 0,

which has no solution by Theorem 5. This completes the proof of Theorem 1.

7. The Proof Of Theorem 2

Proof. Suppose (m,n) is a solution of Equation (2) with m ≥ 2 and n ≥ 6. First,

combining Equation (8) and Lemma 1 in Equation (2) we get

α2m−4 ≤ R2
m = | ±R2

m| = |R−n| < 2.01αn/2.

Taking logarithms in the resulting inequality, we obtain

n− 4m ≥ −12. (12)

Putting ε := ±1 and using Equation (5) and Equation (6) with z := e−iθ in Equation

(2), we obtain

αn/2zn − εα2m + αn/2z−n = 2εαm(βm + γm) + ε(βm + γm)2 − α−n.
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Dividing both sides of the above equality by αn/2, taking absolute values, and using

Equation (12), we get

∣∣zn − εα(4m−n)/2 + z−n
∣∣ ≤ 2αm(2|β|m) + (2|β|m)2 + α−n

αn/2

≤ 4α3/2 + 4α−(8m+n)/8 + α−9n/8

α3n/8

<
9

α3n/8
. (13)

But |z| = 1, so∣∣zn − εα(4m−n)/2 + z−n
∣∣ = ∣∣z2n − εα(4m−n)/2zn + 1

∣∣ = ∣∣(zn − λ1)(z
n − λ2)

∣∣, (14)

where λ1, λ2 are the zeros of the quadratic polynomial

X2 − εα(4m−n)/2X + 1. (15)

Consequently, from Equation (13) and Equation (14) we obtain∣∣(zn − λ1)(z
n − λ2)

∣∣ < 9

α3n/8
.

We may assume without loss of generality that |zn − λ1| ≤ |zn − λ2|. Moreover,

|z| = 1, hence

|λ1z
−n − 1| < 3

α3n/16
. (16)

We now find a lower bound for |λ1z
−n − 1| by using Theorem 6. To do this, we put

η1 := λ1 =
εα(4m−n)/2 +

√
α4m−n − 4

2
, η2 := z, b1 := 1, and b2 := −n.

Suppose Λ1 := ηb11 ηb22 − 1 = 0. Then from Equation (14) we get

β−n = εα2m − γ−n.

Conjugating the above relation by the automorphism σαβγ , and then taking absolute

values on both sides of the resulting equality, we get

αn/2 ≤ α−m + α−n,

which is not possible for any n ≥ 2 and m ≥ 2. In consequence Λ1 ̸= 0. Let’s

take K := Q
(√

α, β,
√
α4m−n − 4

)
and let L := Q

(√
α, β

)
. Then we have K =

L
(√

α4m−n − 4
)
and therefore D =

[
K : Q

]
=
[
K : L

][
L : Q

]
≤ 2(12) = 24. We

also take B := n because n ≥ 6. Moreover, since z = (γ/β)1/2 by Equation (6), we

get h(η2) = h(γ/β)/2 ≤ h(β) = (logα)/3. Then, we take A2 := 8 logα. It remains
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to choose A1. It is a straightforward exercise to check that if λ1, λ2 are the zeros of

the quadratic polynomial X2 + bX + c ∈ C[x], then

h(λi) ≤ h(b) + h(c) + log 2, i = 1, 2. (17)

By taking b = −εα(4m−n)/2 and c = 1, by Equation (17) we have

h(η1) ≤ 1
2 |n− 4m|h(α) + log 2. (18)

Combining Equation (2) with Lemma 1 and Equation (8), one has

α
n
2 −3×1015 logn < |R−n| =

∣∣±R2
m

∣∣ = R2
m ≤ α2m+2.

Taking logarithms in the resulting inequality above we get

n− 4m < 6.01× 1015 log n.

Hence, from Equation (18) and the above inequality we can take A1 := 6.768 ×
1015 log n. Now Theorem 6 implies that

|λ1z
−n − 1| > exp

(
− 6.74539× 1031 log2 n

)
,

where we used the fact that 1 + log(2n) < 2 log n for all n ≥ 6. Combining Equa-

tion (16) and the inequality immediately above, and then taking logarithms in the

resulting inequality, we obtain

n < 9.27× 1036. (19)

Next we reduce the upper bound of n− 4m. Indeed, using Equation (5) we get

|R−k| = |β|−k

∣∣∣∣∣1 +
(
γ

β

)−k
∣∣∣∣∣
∣∣∣∣1 + α−k

β−k + γ−k

∣∣∣∣
> αk/2

∣∣∣∣∣−
(
β

γ

)k

− 1

∣∣∣∣∣
∣∣∣∣∣1−

∣∣∣∣ α−k

β−k + γ−k

∣∣∣∣
∣∣∣∣∣

> 2αk/2

∣∣∣∣∣
(
β

γ

)k

+ 1

∣∣∣∣∣. (20)

In the above we have also used that
∣∣α−k/

(
β−k + γ−k

)∣∣ < (α− 1)−1 for all k ≥ 1,

which follows by Theorem 5 since∣∣β−k + γ−k
∣∣ = ∣∣R−k − α−k

∣∣ ≥ |R−k| − α−k ≥ 1− α−k > (α− 1)α−k.

Combining Equation (2) with Equation (20) with k = n, and using the fact that

R2
m ≤ α2m+2 for all m ≥ 4 by Equation (8), we obtain∣∣∣∣(β

γ

)n

+ 1

∣∣∣∣ < 0.88

α(n−4m)/2
. (21)
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But (β/γ)n = e2inθ by Equation (6) and so Equation (21) becomes∣∣ei(2nθ+π) − 1
∣∣ < 0.88

α(n−4m)/2
. (22)

On the other hand,∣∣ei(2nθ+π) − 1
∣∣ = ∣∣ cos(2nθ + π) + i sin(2nθ + π)− 1

∣∣ ≥ ∣∣ sin(2nθ + π)
∣∣. (23)

If we put r := ⌊(2nθ + π)/π⌉, then 2nθ + π − rπ ∈ [−π/2, π/2]. Therefore

∣∣ sin(2nθ + π)
∣∣ = ∣∣ sin(2nθ + π − rπ)

∣∣ ≥ 2

∣∣∣∣2nθπ + 1− r

∣∣∣∣, (24)

where we used that

|sin y| ≥ (2/π)|y| for all y ∈ [−π/2, π/2] . (25)

Thus, we can conclude from Equation (22), Equation (23), and Equation (24) that∣∣∣∣2θπ − r − 1

n

∣∣∣∣ < 0.44

nα(n−4m)/2
. (26)

Next we apply Lemma 3. To do so, we put x := 2θ/π. Note that θ/π is an irrational

number because otherwise βq = γq for some q ∈ Z+, which is not possible since

conjugating the above relation by the automorphism σαγ , and then taking absolute

values on both sides of the resulting equality, we obtain 1 > |β|q = |α|q > 1.

Therefore, x is an irrational number since it is the multiplication of a non-zero

rational number and an irrational number. Next we calculate the continued fraction

expansion [a0, a1, . . .] = [1, 1, 1, 4, 3, 6, 12, 1, 3, 3, 1, 7102, . . .] of x, and its convergents{
pj
qj

: j = 0, 1, . . .

}
=

{
1, 2,

3

2
,
14

9
,
45

29
,
284

183
,
3453

2225
, . . .

}
.

We also put M := 9.27× 1036, which is an upper bound of n according to Equation

(19). We can check that M ∈ (q68, q69) and so aM = max {aj : j ∈ [0, 69]} = a11 =

7102. Then, by Lemma 3 we have that∣∣∣∣2θπ − r − 1

n

∣∣∣∣ > 1

7104n2
. (27)

Combining Equation (26) and Equation (27) and taking into account that n < 9.27×
1036 by Equation (19), we obtain α(n−4m)/2 < 2.9× 1040 and thus n− 4m ≤ 662.

We can improve this upper bound for n− 4m and hence that of n by repeating

the arguments before Equation (19). For this we again apply Theorem 6 to the

left-hand side of Equation (16) with the same parameters as last time except that

now A1 can be 762. This time we get n < 7.25 × 1021. Now we apply again
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Lemma 3 to the left-hand side of Equation (26) but this time with M = 7.25×1021.

Now q41 < M < q42 so aM = max{aj : j ∈ [0, 42]} = a11 = 7102 and we arrive

again at Equation (27). Combining Equation (26) and Equation (27) with this new

bound for n, we get that n − 4m ≤ 415. By repeating the whole process again,

we get n < 4.56 × 1021 and n − 4m ≤ 411. Thus, from Equation (12) we get

n− 4m ∈ [−12, 411].

Now we reduce the upper bound of n. If n − 4m ∈ [−12,−5], then the zeros of

Equation (15) satisfy |λ1| > 1 and |λ2| < 1 or |λ1| < 1 and |λ2| > 1. In any case we

obtain by Equation (16) that

||λ1| − 1| ≤ |λ1z
−n − 1| < 3α−3n/16

and then

n <
16 log (3/(||λ1| − 1|))

3 logα
.

The maximum value of the right-hand side of the above inequality is reached at

n− 4m = −5 and ε = −1. In this case |λ1| = 0.86884 . . . and therefore n < 59.363.

Hence n ≤ 59 for all n− 4m ∈ [−12,−5].

For n − 4m ∈ [−4, 411], Equation (15) has complex zeros with modulus 1. We

write λ1 = eiϕn−4m where ϕn−4m ∈ (0, 2π). Then from Equation (16) and the fact

that z = e−iθ we have ∣∣ei(nθ+ϕn−4m) − 1
∣∣ < 3α−3n/16. (28)

Now putting r := ⌊(nθ + ϕn−4m)/π⌉ we get nθ+ϕn−4m− rπ ∈ [−π/2, π/2]. There-

fore from Equation (25) we get

∣∣ei(nθ+ϕn−4m) − 1
∣∣ ≥ ∣∣ sin(nθ + ϕn−4m)

∣∣ ≥ 2

∣∣∣∣nθπ − r +
ϕn−4m

π

∣∣∣∣. (29)

From Equation (28) and Equation (29) we conclude that

|nκ− r + µn−4m| < AB−n, (30)

where

κ := θ/π, µn−4m := ϕn−4m/π, A := 1.5, and B := α3/16.

Here, we also takeM := 4.56×1021, which is an upper bound of n, and apply Lemma

2 to Equation (30) for each n− 4m ∈ [−4, 411] \ {−3, 8}. We find computationally

that q45 = 862020269673771307850593 is the denominator of the first convergent

of the continued fraction expansion of κ such that q45 > 2.736 × 1022 = 6M . In

addition, we get that the minimum value of ϵ is > 1.56966×10−3 (which is achieved

at n − 4m = 371 with ε = ±1), and the maximum value of log(Aq45/ϵ)/ logB is
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less than 1170.52, which is reached at n− 4m = 312 with ε = ±1. Thus, n ≤ 1170

for all n− 4m ∈ [−4, 411] \ {−3, 8}.
In the cases n − 4m = −3, 8, ϵ is always negative since the argument ϕn−4m of

the complex number

λ1 =
εα(4m−n)/2 +

√
α4m−n − 4

2

satisfies

ϕn−4m =


π − θ if n− 4m = −3, and ε = 1;
θ if n− 4m = −3, and ε = −1;
2π − 2θ if n− 4m = 8, and ε = 1;
2θ − π if n− 4m = 8, and ε = −1.

Equation (30) in the case when n− 4m = −3 and ε = 1 is transformed into∣∣∣∣ θπ − r − 1

n− 1

∣∣∣∣ < 1.5α−3n/16

n− 1
. (31)

Now we apply Lemma 3 to the left-hand side of Equation (31). For this, we calculate

the continued fraction expansion [a0, a1, . . .] and the convergents pj/qj of x := θ/π.

Considering that n − 1 < 4.56 × 1021 := M we get M ∈ (q39, q40) and therefore

aM = max{aj : j ∈ [0, 40]} = a11 = 3550. Thus,∣∣∣∣ θπ − r − 1

n− 1

∣∣∣∣ > 1

3552(n− 1)2
.

Putting together the inequality immediately above with Equation (31) and using

again that n− 1 < 4.56× 1021, we obtain

n <
16 log

(
2.42957× 1025

)
3 logα

< 1108.63.

In all other cases we obtain the same upper bound for n, so n ≤ 1108 for n− 4m =

−3, 8. Therefore, n ≤ 1170 for all n − 4m ∈ [−4, 411]. Then by Equation (12), we

obtain m ≤ 295. By a computational search we complete the proof of Theorem 2

by finding that the only common values between R−n and ±R2
m for n ≤ 1170 and

m ≤ 295 are those recorded in the statement of Theorem 2.

8. The Proof Of Theorem 3

Proof. Suppose that (m,n) is a solution of Equation (3) with m ≥ 6 and n ≥ 2.

Using Equation (5) and Equation (6) with z := e2iθ in Equation (3), we obtain

αm(zm + 2− αn−m + z−m) = βn + γn − α−2m − 2α−m
(
β−m + γ−m

)
. (32)
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But

αm(zm + 2− αn−m + z−m) = αmz−m(z2m + (2− αn−m)zm + 1)

= αmz−m(zm − λ1)(z
m − λ2), (33)

where λ1, λ2 are the zeros of the quadratic polynomial

X2 + (2− αn−m)X + 1. (34)

So from Equation (32) and Equation (33) we get that

αmz−m(zm − λ1)(z
m − λ2) = βn + γn − α−2m − 2α−m

(
β−m + γ−m

)
.

Dividing the above equation by αm and taking absolute values we obtain

|(zm − λ1)(z
m − λ2)| ≤

2α−n/2 + α−2m + 4α−m/2

αm
<

3.3

αm
.

We can assume without loss of generality that |zm − λ1| ≤ |zm − λ2|. In addition,

|z| = 1, and therefore

|λ1z
−m − 1| < 1.82

αm/2
. (35)

Now we apply Theorem 6 with the parameters

η1 := λ1 =
αn−m − 2 +

√
α2(n−m) − 4αn−m

2
, η2 := z,

b1 := 1, and b2 := −m. Here η1, η2 ∈ K := Q
(
α, β,

√
α2(n−m) − 4αn−m

)
. If we put

L := Q(α, β), then we have K = L
(√

α2(n−m) − 4αn−m
)
. So,

D =
[
K : Q

]
=
[
K : L

][
L : Q

]
≤ 2 · 6 = 12.

Since m ≥ 6 we take B := m. Using Equation (8) and Lemma 1 in Equation (3),

we get

|n−m| < 6× 1015 logm. (36)

By taking b = 2− αn−m and c = 1 we have h(η1) < |n−m|h(α) + 3 log 2 < 5.63×
1014 logm due to Equation (17), Equation (36) and the fact that h(α) = (logα)/3.

Therefore, we can take A1 := 6.76 × 1015 logm. Moreover, we can choose A2 :=

8 logα since h(η2) = h(β/γ) ≤ (2 logα)/3. Let us see that Λ2 := ηb11 ηb22 − 1 ̸= 0. If

it were not the case, then from Equation (33) we obtain

β−2m = αn −
(
2αm + γ−2m

)
,

and so conjugating it by the automorphism σαβγ leads to

αm ≤ α−n/2 + 2α−m/2 + α−2m,



INTEGERS: 25 (2025) 14

which is not true for n ≥ 2 and m ≥ 3. Therefore Λ2 ̸= 0. In summary, we get

|λ1z
−m − 1| > exp (−1.40492× 1031 log2 m),

where we have used again the fact that 1 + log(2m) < 2 logm for all m ≥ 6.

Combining the immediately preceding inequality with Equation (35) we establish

the following result.

m < 6.8× 1035. (37)

Now we reduce m − n as we did with n − 4m in the proof of Theorem 2. In

effect, using that Rn ≤ αn+1 for all n ≥ 2 (by Equation (8)) on the left-hand side

of Equation (3) and apply Equation (20) with k = m on the right-hand side, we

obtain

4αm

∣∣∣∣(β

γ

)m

+ 1

∣∣∣∣2 < |R−m|2 = |Rn| = Rn ≤ αn+1.

This time we obtain ∣∣∣∣(β

γ

)m

+ 1

∣∣∣∣ < 0.58

α(m−n)/2

instead of Equation (21). Using again that (β/γ)m = e2imθ by Equation (6), Euler’s

formula, and Equation (25) we find that the above inequality implies that∣∣∣∣2θπ − r − 1

m

∣∣∣∣ < 0.29

mα(m−n)/2
, (38)

where now r := ⌊(2mθ + π)/π⌉. We next use Lemma 3 again with the irrational

number x := 2θ/π. This time with M = 6.8 × 1035 from Equation (37) we have

that M ∈ (q64, q65) and then aM = {aj : j ∈ [0, 65]} = a11 = 7102. Therefore∣∣∣∣2θπ − r − 1

m

∣∣∣∣ > 1

7104m2
. (39)

Comparing Equation (38) and Equation (39), we get from Equation (37) that

m− n <
2 log

(
0.29 · 7104 · 6.8× 1035

)
logα

< 641.096.

We can further reduce the above upper bound for m − n and hence that for m by

repeating the arguments before Equation (37). To do this we again apply Theorem 6

to the left-hand side of Equation (35) with the same parameters as last time, except

that now A1 can be 746. This time we get m < 5.26× 1020. Now we apply Lemma

3 again to the left-hand side of Equation (38) but this time with M = 5.26× 1020.

Now q39 < M < q40 so aM = max{aj : j ∈ [0, 40]} = a11 = 7102 and we arrive

again at Equation (39). Combining Equation (38) and Equation (39) with this new

bound for m, we obtain that m − n ≤ 393. Repeating the whole process again we

obtain m < 3.26× 1020 and m− n ≤ 390.
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On the other hand, combining Equation (8) and Lemma 1 in Equation (3) we

get m− n ≥ −6, so m− n ∈ [−6, 390].

Now we reduce the upper bound of m. If m− n ∈ {−6,−5}, then Equation (34)

has real zeros such that |λ1| > 1 and |λ2| < 1 or |λ1| < 1 and |λ2| > 1. In any case

we obtain from Equation (35) that

m <
2 log (1.82/(||λ1| − 1|))

logα
< 14.2592.

Therefore m ≤ 14 for m− n ∈ {−6,−5}. For m− n ∈ [−4, 390], Equation (34) has

complex zeros with modulus 1. We write λ1 = eiδm−n where δm−n ∈ (0, 2π). Then

from Equation (35) and the fact that z = e2iθ we have∣∣ei(−2mθ+δm−n) − 1
∣∣ < 1.82

αm/2
.

Using Euler’s formula and Equation (25) on the left-hand side of the above inequality

we get

|mκ− r + µm−n| < AB−m, (40)

where r := ⌊(−2mθ + δm−n)/π⌉,

κ := −2θ/π, µm−n := δm−n/π, A := 0.91, and B := α1/2.

We also takeM = 3.26×1020 sincem < M . Applying Lemma 2 to Equation (40) for

each m−n ∈ [−4, 390]\{−3, 8} we find by means of a computational search that the

maximum value of log(Aq44/ϵ)/ logB is attained at m− n = 385 and is < 407.601,

where q44 = 308299440688761756795932 is the denominator of the first convergent

of the continued fraction expansion of κ such that q44 > 1.956 × 1021 = 6M , and

the minimum value of ϵ is ∥µ117q44∥ −M ∥κq44∥ > 2.02215× 10−3. Thus, m ≤ 407

for all m− n ∈ [−4, 390] \ {−3, 8}.
In the cases m− n = −3, 8, the argument δm−n of the complex number

λ1 =
αn−m − 2 +

√
α2(n−m) − 4αn−m

2

is a linear combination of θ and π, so ϵ is always negative. Indeed,

δm−n =

{
2π − 2θ if m− n = −3;
4π − 4θ if m− n = 8.

If m− n = −3, Equation (40) becomes∣∣∣∣− 2θ

π
− r − 2

m+ 1

∣∣∣∣ < 0.91α−m/2

m+ 1
. (41)
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Using Lemma 3 again with the irrational number x = −2θ/π and M = 3.26× 1020

we get M ∈ (q38, q39) so aM = max{aj : j ∈ [0, 39]} = −1. Then∣∣∣∣− 2θ

π
− r − 2

m+ 1

∣∣∣∣ > 1

(m+ 1)2
.

Therefore, taking into account that m+ 1 < 3.26× 1020 we get

m <
2 log

(
2.9666× 1020

)
logα

< 335.272.

When m− n = 8, we get Equation (41) with r − 4 and m+ 2 instead of r − 2 and

m+1, respectively. Taking into account that m+2 < 3.26× 1020, we arrive at the

same absolute upper bound for m as in the case when m−n = −3. Thus, m ≤ 335

for m− n = −3, 8.

Therefore, m ≤ 407 holds for all m − n ∈ [−4, 390]. Since m − n ≥ −6, we

get n ≤ 413. Through a computational search we finish the proof of Theorem 3

by finding that there are no coincidences between Rn and R2
−m for n ≤ 413 and

m ≤ 407.

9. The Proof Of Theorem 4

Proof. Here we solve Equation (4) in two cases. Let us see.

Case 1: 2m − n = 0 and ε = 1. In this case, using Equation (9) with k = −m

we transform Equation (4) into Rm = 0, which implies that m = 1 by Theorem 5.

Thus, (m,n) = (1, 2) is the only solution of Equation (4) in this case.

Case 2: 2m − n ̸= 0 and ε = ±1, or 2m − n = 0 and ε = −1. From now on we

assume that Equation (4) holds and that m,n ≥ 6. By using Lemma 1 in Equation

(4), we get the inequalities

α
n
2 −3×1015 logn < |R−n| =

∣∣±R2
−m

∣∣ < 4.0401αm

and

αm−6×1015 logm <
∣∣±R2

−m

∣∣ = |R−n| < 2.01αn/2.

Taking logarithms in the two resulting inequalities above, we obtain

|2m− n| < 1.2× 1016 log(max{m,n}). (42)

Now combining Equation (5) and Equation (6) with z := e−2iθ in Equation (4) with

ε := ±1, we get

(β2m−n−ε)αmzm−2εαm+(γ2m−n−ε)αmz−m = εα−2m+2εα−m(β−m+γ−m)−α−n.
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Dividing the above equation by (β2m−n − ε)αm and taking absolute values, we get∣∣∣∣zm − 2ε

β2m−n − ε
+

γ2m−n − ε

β2m−n − ε
z−m

∣∣∣∣ ≤ α−2m + 4α−m/2 + α−n

|α−(2m−n)/2 − 1|αm
<

14

αm
, (43)

Now we can rewrite Equation (43) by multiplying its left-hand side by |zm| = 1 as∣∣(zm − λ1)(z
m − λ2)

∣∣ < 14

αm
,

where λ1, λ2 are the zeros of the quadratic polynomial

X2 − 2ε

β2m−n − ε
X +

γ2m−n − ε

β2m−n − ε
. (44)

We may assume without loss of generality that |zm − λ1| ≤ |zm − λ2|. Moreover,

|z| = 1, and therefore

|λ1z
−m − 1| < 3.75

αm/2
. (45)

Next we apply Theorem 6 to Λ3 = λ1z
−m − 1. This is not zero, otherwise we get

εβ−2m − β−n = γ−n − ε(2αm + γ−2m),

which, conjugating by the automorphism σαγ and taking absolute values, implies∣∣αm − αn/2
∣∣ ≤ α−n + 2α−m/2 + α−2m,

which is impossible for all n ≥ 6 and m ≥ 5. In consequence, Λ3 ̸= 0. We put

η1 := λ1 =
ε

β2m−n − ε
+

√
1

(β2m−n − ε)2
− γ2m−n − ε

β2m−n − ε
, η2 := z,

and b2 := −m. Here K = Q
(
α, β,

√
(β2m−n − ε)−2 − (β2m−n − ε)−1(γ2m−n − ε)

)
so D ≤ 12. Since m ≥ 6 we have B = m. On the side of the logarithmic heights,

h(η2) = h(γ/β) ≤ (2/3) logα, so A2 = 4 logα is a correct choice. Again using

Equation (17) with b = −2ε/(β2m−n−ε) and c = (γ2m−n−ε)/(β2m−n−ε) we have

h(η1) ≤ (logα)|2m− n|+ 5 log 2, so A1 = 2.03× 1016 log(max{m,n}) is an allowed

choice by Equation (42). Theorem 6 then tells us that

|λ1z
−m − 1| > exp

(
− 1.05473× 1031 log(max{m,n})(1 + log(2m))

)
.

Comparing this with Equation (45) and using again that 1 + log(2m) < 2 logm for

all m ≥ 6, we get

m < 1.51× 1032 log(max{m,n}) logm. (46)

If n ∈ [m, 4m] then Equation (46) implies that m < 1.51 × 1032 log(4m) logm and

therefore m < 1.05 × 1036 and n ≤ 4m < 4.2 × 1036. In the case when m > n, by
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Equation (42) we have m < 2m−n < 1.2×1016 logm and therefore m < 4.88×1017.

Similarly, when n > 4m it follows from Equation (42) that n/2 < 1.2 × 1016 log n

and so n < 9.94× 1017. In either case, we have

max{m,n} < 4.2× 1036. (47)

Now we reduce the bound of |n − 2m|. Using that |R−k| < 2.01αk/2 holds for all

k ≥ 6 (by Lemma 1) and Equation (20) in Equation (4), we get

2αn/2

∣∣∣∣(β

γ

)n

+ 1

∣∣∣∣ < |R−n| = | ±R2
−m| < 4.0401αm

and

4αm

∣∣∣∣(β

γ

)m

+ 1

∣∣∣∣2 < | ±R2
−m| = |R−n| < 2.01αn/2.

Therefore ∣∣∣∣(β

γ

)max{m,n}

+ 1

∣∣∣∣ < 4.0401

α|n−2m|/4 .

Again using that (β/γ)max{m,n} = e2imax{m,n}θ by Equation (6), Euler’s formula,

and Equation (25), we get that the above inequality implies that∣∣∣∣2θπ − r − 1

max{m,n}

∣∣∣∣ < 2.02005

max{m,n}α|n−2m|/4 , (48)

where now r := ⌊(2max{m,n}θ + π)/π⌉. Using Lemma 3 again with the irrational

number x := 2θ/π and M = 4.2 × 1036 (see Equation (47)), we get M ∈ (q67, q68)

so aM = a11 = 7102 and then∣∣∣∣2θπ − r − 1

max{m,n}

∣∣∣∣ > 1

7104max{m,n}2
. (49)

Thus, from Equation (48), Equation (49), and Equation (47) we get |n−2m| ≤ 1335.

We can further reduce this bound for |n− 2m|. To do this, we reduce the bound of

max{m,n} given in Equation (47) by again applying Theorem 6 to Equation (45).

In this application we use the same parameters as last time, only now A1 can be

4547. Now we obtain then that max{m,n} < 6.56× 1021. Next, we apply Lemma

3 again to the left-hand side of Equation (48) but with M = 6.56× 1021. This time

N = 40 and then aM = a11 = 7102, so we arrive again at Equation (49). Combining

again Equation (48) and Equation (49) but using that max{m,n} < 6.56 × 1021,

we get that |n − 2m| ≤ 850. If we repeat for the third time the whole process we

get max{m,n} < 4.28× 1021 and |n− 2m| ≤ 844.

Next, we reduce the upper bound of m. For 2m−n ∈ [−844, 844], Equation (44)

has complex zeros with modulus 1. We write λ1 = eiζ2m−n with ζ2m−n ∈ (0, 2π).

Then from Equation (45) and the fact that z = e−2iθ, we obtain∣∣ei(2mθ+ζ2m−n) − 1
∣∣ < 3.75

αm/2
.
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Using Euler’s formula and Equation (25) on the left-hand side of the above inequality

we arrive at

|mκ− r + µ2m−n| < AB−m, (50)

where now r := ⌊(2mθ + ζ2m−n)/π⌉,

κ := 2θ/π, µ2m−n := ζ2m−n/π, A := 1.875, and B := α1/2.

We also take M = 4.28 × 1021 since m ≤ max{m,n} < M . Applying Lemma 2

to Equation (50) for each 2m − n ∈ [−844, 844] except when 2m − n ∈ {−3,−1}
and ε = −1, and when 2m − n = 5 and ε = 1, we get computationally that

q72 = 45364104060616757805315065148766863569 > 2.568 × 1022 = 6M is the

denominator of the first convergent of the continued fraction expansion of κ which

guarantees that the smallest value of ϵ is > 6.83742 × 10−16 (which is obtained at

2m− n = 839 and ε = −1) and the largest value of m is < 872.719 and is reached

at 2m − n = 839 and ε = −1. Since 2m − n ≥ −844, we obtain that n ≤ 2588 for

all 2m − n ∈ [−844, 844] except when 2m − n ∈ {−3,−1} and ε = −1, and when

2m− n = 5 and ε = 1.

At these last values of 2m − n and ε, we have that ϵ < 0 since the argument

ζ2m−n of the complex number

λ1 =
ε

β2m−n − ε
+

√
1

(β2m−n − ε)2
− γ2m−n − ε

β2m−n − ε

satisfies that

ζ2m−n =

 2θ − 2π if 2m− n = −3 and ε = −1;
π − 2θ if 2m− n = −1 and ε = −1;
4π − 4θ if 2m− n = 5 and ε = 1.

If 2m− n = −3 and ε = −1, then Equation (50) becomes∣∣∣∣2θπ − r + 2

m+ 1

∣∣∣∣ < 1.875α−m/2

m+ 1
. (51)

We finally use Lemma 3 with x = 2θ/π. Since m + 1 ≤ max{m,n} + 1 < 4.28 ×
1021 := M we can see computationally that M ∈ (q39, q40) giving aM = a11 = 7102.

Therefore, a lower bound for the left-hand side of Equation (51) is 1/7104(m+ 1)2

and hence

m <
2 log

(
5.70096× 1025

)
logα

< 421.801,

where we used again that m + 1 < 4.28 × 1021. In the other two special cases we

manage to convert Equation (50) into Equation (51) with r − 1 and r − 4 instead

of r + 2, and m− 1 and m− 2 instead of m+ 1. So the obtained upper bound for
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m is the same as the obtained in the first special case. Since 2m − n ≥ −844, we

get n ≤ 1686 for 2m− n ∈ {−3,−1} and ε = −1, and for 2m− n = 5 and ε = 1.

Therefore, n ≤ 2588 and m ≤ 872 holds for all 2m − n ∈ [−844, 844]. We now

computationally search R−n ∩ ±R2
−m for n ≤ 2588 and m ≤ 872 obtaining the

remaining solutions listed in Theorem 4. This ends the proof of Theorem 4.
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