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Abstract

This paper proves that for any integer k ≥ 2, the Brocard–Ramanujan Diophantine
equation n!+1 = x2 has only finitely many integer solutions (n, x), assuming x±1 is
a k-free integer or has less than k prime divisors. Specifically, we identify all integer
solutions when x±1 is a 7-free integer or a prime power. We then extend this result
and make a remark on the resolution of the Brocard–Ramanujan problem.

1. Introduction

The Brocard–Ramanujan problem (see [4] and [18]) concerns the Diophantine equa-

tion

n! + 1 = x2. (1)

Only three solutions are known: (4, 5), (5, 11), and (7, 71). Extensive computations

up to 109 (see [2]) have yielded no additional solutions, suggesting these three

pairs may be exhaustive. Despite numerous attempts and varied approaches, this

problem remains unsolved. A review of the existing literature reveals that three

major approaches have been used to address Equation (1). The first is the variant-

based approach, which consists of studying modified versions of Equation (1) (see,

for example, [1], [5], [6], [7], [10], [12], [19], [20]). The second consists of solving

Equation (1) under the abc conjecture or its variants (see [5], [11], [15]). The

third is the subset-based approach, which focuses on exploring solutions within

specific subsets of N. More specifically, it involves solving, for a given integer

sequence (um), the equation n! + 1 = u2
m, where n and m are the unknowns.

Regarding this latter approach, recent studies have explored several variants of

the Brocard–Ramanujan Diophantine equation. D. Marques [14] proved that the

Fibonacci version, n!+1 = F 2
m, has no solution except for (n,m) = (4, 5). J. J. Bravo
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et al. [3] demonstrated that the Tripell version admits no solution except (4, 3). M.

Ismail et al. [9] showed that the Narayana version has no solution. P. T. Young

[21] obtained similar results for the Tribonacci and Tetranacci versions. Finally,

the author [13] observed that Sylvester’s version has no positive integer solutions.

Additional versions involving recurrence sequences can be found in references [16]

and [17].

This paper explores new subsets of N with a finite number of solutions to Equa-

tion (1). We begin by establishing the following theorem.

Theorem 1. The following statements hold.

(i) For any given integer k ≥ 2, there are only finitely many integer solutions (n, x)

to the Brocard–Ramanujan equation n! + 1 = x2, where x ± 1 is a k-free number.

Specifically, this equation has at most the three pairs (4, 5), (5, 11), and (7, 71) as

solutions where x± 1 is a 7-free integer.

(ii) For any given integer l ≥ 2, there are only finitely many integer solutions (n, x)

to the Brocard–Ramanujan equation n! + 1 = x2, where x± 1 has less than l prime

divisors. Specifically, this equation has at most the pair (4, 5) as a solution where

x± 1 is a prime power.

In Section 4, we provide a generalization of Theorem 1 and make a remark on

the resolution of the Brocard–Ramanujan problem.

2. Preliminary Results

We begin by recalling classical number theoretic results. Let π(n) denote the num-

ber of primes less than or equal to n. The Prime Number Theorem states that

π(n) ∼ n
ln(n) as n → ∞. Furthermore, Chebyshev’s theorem refinement yields

n

ln(n)
≤ π(n) ≤ 3

2

n

ln(n)
, for all n ≥ 2.

Stirling’s formula states that n! asymptotically behaves like nn exp(−n)
√
2πn as

n → ∞. Moreover, for all n ≥ 1, we have(n
e

)n

≤ n! ≤ nn.

For a prime p, let νp(n) denote the largest power of p dividing n. Legendre’s formula

states:

νp(n!) =

∞∑
i=1

[
n

pi

]
,
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where [x] is the integer part of x. This yields

νp(n!) ≤
∞∑
i=1

n

pi
=

n

p− 1
.

Thus, if pα divides n!, then p ≤ n and α ≤ n
p−1 . All these classic results can be

found in the reference [8].

For all positive integer x, we let ω(x) denote the number of distinct primes in

the prime factorization of x and we let K(x) denote the maximum exponent in the

prime factorization of x. That is, if the prime factorization of x is

x =
∏
i∈I

pαi
i ,

then we have ω(x) = |I| and K(x) = max
i∈I

αi.

Lemma 1. Let n and x be positive integers. If x divides n!, then

x ≤ exp
(3nK(x)

2

)
.

Proof. Let x =
∏
i∈I

pαi
i be the prime factorization of x. By definition of K(x), we

have αi ≤ K(x) for all i ∈ I. Thus, x ≤
∏
i∈I

p
K(x)
i . Since x divides n!, every prime

factor pi satisfies pi ≤ n. Moreover, the number of distinct prime factors, |I|, is
bounded by π(n). Therefore we have

x ≤ nK(x)|I|

≤ nK(x)π(n)

≤ n
3nK(x)
2 ln(n)

= exp

(
3nK(x)

2

)
.

Lemma 2. Let n, x be positive integers. If x divides n!, then

x ≤ n
n
a

(
aω(x) + 1

)nω(x)

,

for any arbitrary positive integer a.

Proof. Let x =
∏
i∈I

pαi
i be the prime factorization of x and assume that x divides

n!. Note that |I| = ω(x), pi ≤ n for all i ∈ I, and αi ≤ n
pi−1 for all i ∈ I. For a

positive integer a, define:

J =
{
i ∈ I | pi ≤ aω(x) + 1

}
.
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So we have ∑
i∈J

αi ≤
∑
i∈I

n

pi − 1
≤

∑
i∈I

n = nω(x)

and ∑
i∈I\J

αi ≤
∑

i∈I\J

n

pi − 1
≤

∑
i∈I\J

n

aω(x)
≤

∑
i∈I

n

aω(x)
=

n

a
.

Therefore,

x =
∏
i∈I

pαi
i =

∏
i∈J

pαi
i

∏
i∈I\J

pαi
i ≤

(
aω(x) + 1

)∑
i∈J

αi

n

∑
i∈I\J

αi

≤
(
aω(x) + 1

)nω(x)

n
n
a .

3. Proof of Theorem 1

We now apply the preceding lemmas to prove Theorem 1.

Proof of Theorem 1. (i) Let k be a positive integer. We simultaneously consider

the cases where x− 1 and x+ 1 are k-free, relying on the inequality

(x− ε)(x+ ε) ≤ 2(x− ε)2, for ε = ±1 and x ≥ 3.

Let ε = ±1. Suppose (n, x) satisfies Equation (1), where x ≥ 3 and x − ε is a

k-free integer, i.e., K(x− ε) < k. Since x− ε divides n! = (x− ε)(x+ ε), Lemma 1

yields

x− ε ≤ exp
(3nK(x− ε)

2

)
≤ exp

(3nk
2

)
,

and hence

n! = (x− ε)(x+ ε) ≤ 2(x− ε)2 ≤ 2 exp
(
3nk

)
.

Using Stirling’s inequality, (n
e

)n

≤ n!,

implying (n
e

)n

≤ 2 exp
(
3nk

)
,

and hence

n ≤ 2 exp
(
3k + 1

)
. (2)
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Therefore, there are only finitely many solutions.

For solutions (n, x) of Equation (1), with x ± 1 a 7-free integer, i.e., k ≤ 6,

Inequality (2) yields n ≤ 2 exp(19) < 109. So, according to Berndt and Galway’s

computations [2], the possible solutions are (4, 5), (5, 11), and (7, 71).

(ii) Let l be a positive integer and ε = ±1. Suppose (n, x) satisfies Equation (1) ,

where x ≥ 3 and x− ε has fewer than l prime divisors, i.e., ω(x− ε) < l. Applying

Lemma 2, with a = 4, we obtain

x− ε ≤ n
n
4

(
4ω(x− ε) + 1

)nω(x−ε)

≤ n
n
4

(
4l + 1

)nl

,

and hence

n! = (x− ε)(x+ ε) ≤ 2(x− ε)2 ≤ 2n
n
2

(
4l + 1

)2nl
.

Now, applying Stirling’s inequality yields(n
e

)n

≤ n! ≤ 2n
n
2 (4l + 1)2nl,

which simplifies to (n
e

)
≤ 2

√
n(4l + 1)2l.

Thus,

n ≤ 4e2(4l + 1)4l, (3)

establishing that the number of solutions is finite.

For solutions (n, x) of Equation (1), with x ± 1 a prime power, Inequality (3)

yields n ≤ 4e298 < 109. Then the possible solution is (4, 5), according to Berndt

and Galway’s computations [2].

Remark. Consider the sequence (um) of Fermat (respectively, Mersenne) numbers.

Since um − 1 (respectively, um + 1) is a prime power, the Diophantine equation

n! + 1 = u2
m admits a unique solution (n,m) = (4, 1) (respectively, no solutions).

4. Generalization

For any pair (k, l) of positive integers ≥ 2, let us define

Fk = {x ∈ N | K(x) < k} and Pl = {x ∈ N | ω(x) < l}.

Their product set, FkPl, consists of integers yz with y ∈ Fk and z ∈ Pl. Note that

FkPl is larger than the union Fk ∪ Pl.
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Theorem 1 established that for any pair (k, l) of positive integers ≥ 2, the

Brocard–Ramanujan equation has finitely many solutions (n, x), where x belongs

to the set

S = {x1 ± 1 | x1 ∈ Fk ∪ Pl}.

This set can be considered a large one in the sense that its natural density is non-

zero. Indeed, it is well known (see, for example, [8]) that the natural density of

Fk alone equals 1
ζ(k) , where ζ is the Riemann function. To further enlarge S, we

introduce multivariate polynomials where variables take values from FkPl, replacing

Fk ∪ Pl.

Theorem 2. Let k, l, and m be positive integers, with k, l ≥ 2. Let P be a polyno-

mial in m variables with integers coefficients and define

S = {x1 . . . xmP (x1, . . . , xm)± 1 | x1, . . . , xm ∈ FkPl}.

Then the Brocard–Ramanujan Diophantine equation n! + 1 = x2 has only finitely

many integer solutions where x belongs to S.

Proof. Let us write the polynomial

Q = X1 . . . XmP (X1, . . . , Xm)
(
X1 . . . XmP (X1, . . . , Xm)± 2

)
in the form:

Q =
∑

(i1,...,im)∈L

ai1,...,imXi1
1 . . . Xim

m ,

with L a finite subset of Nm and ai1,...,im ∈ Z, for all (i1, . . . , im) ∈ L. The total

degree of Q is given by

d = max
(i1,...,im)∈L

i1 + i2 + . . .+ im.

Define

M =
∑

(i1,...,im)∈L

|ai1,...,im |

and note that for all positive integers x1, . . . , xm, the following inequality holds:

Q(x1, . . . , xm) ≤ M( max
1≤i≤m

xi)
d. (4)

Now assume (n, x) is a positive integer pair satisfying n!+1 = x2, with x ∈ S, i.e.,
x = x1 · · ·xmP (x1, . . . , xm) ± 1 for some x1, . . . , xm ∈ FkPl. We will demonstrate

that n is bounded.

From n! + 1 = x2, we obtain

n! = Q(x1, . . . , xm).
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Using (4), we deduce

n! ≤ M( max
1≤i≤m

xi)
d. (5)

On the other hand, let i0 be an index such that xi0 = max
1≤i≤m

xi and let y ∈ Fk

and z ∈ Pl such that xi0 = yz. By Lemma 1, since y divides n!, we have

y ≤ exp
(3kn

2

)
.

Applying Lemma 2, with a = 2d, yields

z ≤ n
n
2d

(
2dl + 1

)ln
.

Combining these inequalities with (5), we obtain

n! ≤ M
(
exp

(3kn
2

)
n

n
2d

(
2dl + 1

)ln)d

.

Now applying Stirling’s inequality yields(n
e

)n

≤ n! ≤ M
(
exp

(3kn
2

)
n

n
2d

(
2dl + 1

)ln)d

.

Taking into account that M is a positive integer and M
1
n ≤ M , this inequality

simplifies to
n

e
≤ M exp

(3kd
2

)√
n
(
2dl + 1

)dl

.

Thus

n ≤ M2 exp
(
3kd+ 2

)(
2dl + 1

)2dl

,

establishing that the number of solutions is finite.

Remark on the Resolution of the Brocard–Ramanujan Problem. Let us

now observe the set S from Theorem 2, where the equation n!+1 = x2 admits only

finitely many solutions. This set is parameterized by a multivariate polynomial, with

variables running through the large set FkPl. So the potential size of S raises an

intriguing question: For a suitable multivariate polynomial P , does S encompass all

odd positive integers, except perhaps a few, for sufficiently large k and l? Affirming

this would resolve the Brocard–Ramanujan problem, according to Theorem 2.
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