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Abstract

In this paper, we study the arithmetic properties of the coefficients of some mock

theta functions. We present a number of such properties, including infinite families

of congruences. Some recurrence relations connecting the coefficients of the mock

theta functions with certain restricted partition functions are also established.

1. Introduction

In 1920, Ramanujan introduced 17 functions in his last letter to G. H. Hardy [25,

p. 534], which he called mock theta functions. Initially, Ramanujan divided his

list of mock theta functions into odd orders as three, five, and seven. After Ra-

manujan, many new mock theta functions were defined and studied by different

mathematicians. An account of these can be found in the papers by Andrews [4],

Andrews and Hickerson [6], Gordon and McIntosh [14], and Hikami [17], as well as

in [7, 10, 15, 16, 21, 26]. In this paper, we are interested in the following mock theta

functions of order two, six, and eight:

µ(q) =

∞∑
n=0

(−1)nqn
2

(q; q2)n
(−q2; q2)2n

, (1)

σ(q) =

∞∑
n=0

q(n+1)(n+2)/2(−q; q)n
(q; q2)n+1

, (2)

DOI: 10.5281/zenodo.16881797
1Corresponding author.



INTEGERS: 25 (2025) 2

λ(q) =

∞∑
n=0

(−1)nqn(q; q2)n
(−q; q)n

, (3)

v(q) =

∞∑
n=0

q(n+1)2(−q; q2)n
(q; q2)n+1

, (4)

where

(a; q)n :=

n−1∏
k=0

(1− aqk) and (a; q)∞ :=

∞∏
k=0

(1− aqk).

For brevity, we will write, for any positive integer n,

ℓn := (qn; qn)∞, and (a1, a2, ..., an; q)∞ := (a1; q)∞(a2; q)∞...(an; q)∞.

The function defined in Equation (4) is the eighth-order mock theta function defined

in [14, pp. 322-323]. Agarwal and Sood [1] gave a combinatorial interpretation

of v(q) using split (n + t)-color partitions. Rana and Sareen [27] extended their

results using signed partitions. The function defined in Equation (1) is the second-

order mock theta function, which appeared in Ramanujan’s lost notebook [25] (see

also [4]). A combinatorial interpretation of µ(q) was given by Kaur and Rana in [20].

The functions defined in Equations (2)-(3) are the sixth-order mock theta func-

tions. Kaur and Rana [19] proved some particular infinite families of congruences

for the coefficients of the mock theta function λ(q).

In this paper, we prove congruence properties for the coefficients of the mock

theta functions defined in Equations (2) and (4). We also prove some recurrence re-

lations connecting the coefficients of the mock theta functions and certain restricted

partition functions. The results on mock theta functions v(q) and µ(q), σ(q), and

λ(q) are established in Sections 3, 4, and 5, respectively. Section 2 is devoted to

recording some preliminary results, which will be used in the subsequent sections.

We end this section with some definitions. A partition of a positive integer

n can be defined as a finite sequence of positive integers (δ1, δ2, ..., δk) such that∑k
j=1 δj = n, δj ≥ δj+1, where the δj are called the parts or summands of the

partition. The number of partitions of n is denoted by p(n). The generating function

for the partition function p(n) is given by Euler [12] as

∞∑
n=0

p(n)qn =
1

(q; q)∞
=

1

ℓ1
, p(0) = 1. (5)

Euler [3] provided the following recurrence relation for finding the values of the

partition function p(n):

p(n)− p(n− 1)− p(n− 2) + p(n− 5) + p(n− 7)− p(n− 12)− p(n− 15) + ...

+ (−1)kp
(
n− k(3k − 1)/2

)
+ (−1)kp

(
n− k(3k + 1)/2

)
+ .. =

{
1, if n = 0
0, otherwise,
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where the numbers of the form k(3k ± 1)/2 are called pentagonal numbers. For

more results on recurrence relations of different partition functions, one can see

[13, 22, 23, 28, 29]. Ramanujan [24] offered the following congruences for p(n):

p(5n+ 4) ≡ 0 (mod 5),

p(7n+ 5) ≡ 0 (mod 7),

p(11n+ 6) ≡ 0 (mod 11).

In a letter to Hardy, Ramanujan [9] introduced the general partition function pr(n)

as
∞∑

n=0

pr(n)q
n =

1

(q; q)r∞
=

1

ℓr1
, (6)

where r is any non-zero integer and p1(n) is the partition function p(n) defined in

(5). For r ≥ 1, pr(n) is the color partition function of an integer n ≥ 1 in which

each part in the partitions of n is assumed to have r different colors, and all of them

are considered distinct.

To prove recurrence relations, we will also use the restricted partition functions

p̄r(n) and bk
r(n), where p̄r(n) denotes the number of overpartitions of n with r

colors and bk
r(n) denotes the number of k-regular partitions of n with r colors,

respectively. The corresponding generating functions are given by

∞∑
n=0

p̄r(n)q
n =

(
ℓ2
ℓ21

)r

, (7)

∞∑
n=0

brk(n)q
n =

(
ℓk
ℓ1

)r

. (8)

Throughout the paper, it is assumed that p̄r(0) = 1 and brk(0) = 1, and p̄r(n) = 0

and brk(n) = 0 if n is not a non-negative integer.

2. Preliminaries

Ramanujan defined the general theta function f(c, d) [8, p. 34, (18.1)] as

f(c, d) =

∞∑
m=−∞

cm(m+1)/2dm(m−1)/2, |cd| < 1.

Three useful special cases [8, p. 35, Entry 18] of f(c, d) are given by

ϕ(q) := f(q, q) =

∞∑
m=−∞

qm
2

=
ℓ52
ℓ21ℓ

2
4

, (9)
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ψ(q) := f(q, q3) =

∞∑
m=0

qm(m+1)/2 =
ℓ22
ℓ1
, (10)

and

f(−q) := f(−q,−q2) =
∞∑

m=−∞
(−1)mqm(3m−1)/2 = ℓ1. (11)

The product representations on the right-hand side of Equations (9)-(11) are the

consequences of the Jacobi Triple Product identity given by

f(c, d) = (−c; cd)∞(−d; cd)∞(cd; cd)∞.

By using elementary q-operations, it is easily seen that

ϕ(−q) =
∞∑

m=−∞
(−q)m

2

=
(q; q)∞
(−q; q)∞

=
(q; q)2∞
(q2; q2)∞

=
ℓ21
ℓ2
. (12)

In some of the proofs, we will also use Jacobi’s identity [8, p. 39, Entry 24] given

by

ℓ31 =

∞∑
k=0

(−1)k(2k + 1)qk(k+1)/2. (13)

Lemma 1 ([11, Theorem 2.1]). If p is an odd prime, then

ψ(q) =

(p−3)/2∑
m=0

q(m
2+m)/2f

(
q(p

2+(2m+1)p)/2, q(p
2−(2m+1)p)/2

)
+ q(p

2−1)/8ψ(qp
2

).

Furthermore,
m2 +m

2
̸≡ p2 − 1

8
(mod p) for 0 ≤ m ≤ p− 3

2
.

Lemma 2 ([11, Theorem 2.2]). If p ≥ 5 is a prime, then

ℓ1 =

(p−1)/2∑
t=−(p−1)/2
t ̸=(±p−1)/6

(−1)tq(3t
2+t)/2f

(
−q(3p

2+(6t+1)p)/2,−q(3p
2−(6t+1)p)/2

)

+ (−1)(±p−1)/6q(p
2−1)/24ℓp2 ,

where

±p− 1

6
=


(p− 1)

6
, if p ≡ 1 (mod 6)

(−p− 1)

6
, if p ≡ −1 (mod 6).

Furthermore, if −p− 1

2
≤ t ≤ p− 1

2
and t ̸= ±p− 1

6
, then

3t2 + t

2
̸≡ p2 − 1

24
(mod p).
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Lemma 3 ([2, Lemma 2.3]). If p is an odd prime, then

ℓ31 =

(p−1)∑
k=0

k ̸=(p−1)/2

(−1)kqk(k+1)/2
∞∑

n=0

(−1)n(2pn+ 2k + 1)qpn(pn+2k+1)/2

+ p(−1)(p−1)/2q(p
2−1)/8ℓ3p2 .

Furthermore, if k ̸= p− 1

2
and 0 ≤ k ≤ p− 1, then

k2 + k

2
̸≡ p2 − 1

8
(mod p).

Lemma 4. We have

ℓ22
ℓ1

=
ℓ6ℓ

2
9

ℓ3ℓ18
+ q

ℓ218
ℓ9
, (14)

ℓ4
ℓ1

=
ℓ12ℓ

4
18

ℓ33ℓ
2
36

+ q
ℓ26ℓ

3
9ℓ36

ℓ43ℓ
2
18

+ 2q2
ℓ6ℓ18ℓ36
ℓ33

. (15)

Identity (14) is Equation (14.3.3) of [18]. The identity (15) follows from Equa-

tions (33.2.1) and (33.2.5) of [18].

In addition to the above identities, we need the following congruences, which are

easy consequences of the binomial theorem. For any prime p, and positive integers

n and t, we have

ℓtpn ≡ ℓtnp (mod p), (16)

ℓ2
t

1 ≡ ℓ2
t−1

2 (mod 2t). (17)

In order to state our congruences, we will also use the Legendre symbol.

Let p be any odd prime and ω be any integer relatively prime to p. Then the

Legendre symbol

(
ω

p

)
is defined by

(
ω

p

)
=

{
1, if ω is a quadratic residue of p

−1, if ω is a quadratic non-residue of p.

We will also use the following notation: for any real number x,

⌊x⌋ = k, where k ≤ x < k + 1 and k is an integer.

3. Results on v(q) and µ(q)

Throughout the section, we set
∑∞

n=0 Pv(n)q
n = v(q), where v(q) is as defined in

Equation (4).
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Theorem 1. For any integer n ≥ 0, we have

∞∑
n=0

Pv(2n+ 1)qn =
ℓ34
ℓ1ℓ2

. (18)

Proof. From Ramanujan’s lost notebook [5, p. 280, Entry 12.5.1] and [21, p. 288],

we note that

µ(−q2) + 4v(q) =
(q4; q4)∞(−q2; q4)3∞
(q2; q4)2∞(−q4; q4)2∞

+ 4q
(q8; q8)∞(−q4; q4)∞
(q4; q8)∞(q2; q4)∞

, (19)

where µ(q) is defined as in Equation (1). Now, simplifying Equation (19), and then

extracting the terms involving q2n+1, dividing by q, and replacing q2 by q, we obtain

∞∑
n=0

Pv(2n+ 1)qn =
(q4; q4)∞(−q2; q2)∞
(q2; q4)∞(q; q2)∞

. (20)

Now, the desired result easily follows from Equation (20).

Theorem 2. For any integer n ≥ 0, we have

(i) Pv(6n+ 5) ≡ 0 (mod 3).

(ii) Let p ≥ 3 be any prime such that

(
−2

p

)
= −1. Then for any integer α ≥ 0

and 1 ≤ j ≤ (p− 1), we have

∞∑
n=0

Pv

(
2 · p2αn+

3 · p2α + 1

4

)
qn ≡ ψ(q)ψ(q2) (mod 2), (21)

Pv

(
2 · p2α+2n+ 2 · p2α+1j +

3 · p2α+2 + 1

4

)
≡ 0 (mod 2). (22)

(iii) Let p ≥ 5 be any prime such that

(
−18

p

)
= −1. Then for integers α ≥ 0 and

1 ≤ j ≤ (p− 1), we have

∞∑
n=0

Pv

(
6 · p2αn+

19 · p2α + 1

4

)
qn ≡ 3ℓ1ℓ

3
6 (mod 6), (23)

Pv

(
6 · p2α+2n+ 6 · p2α+1j +

19 · p2α+2 + 1

4

)
≡ 0 (mod 6). (24)

Proof. (i) Using Equations (14) and (15) in Equation (18), we obtain

∞∑
n=0

Pv(2n+ 1)qn =
ℓ212ℓ

6
18

ℓ33ℓ6ℓ
3
36

+ q
ℓ12ℓ6ℓ

3
9

ℓ43
+ 3q2

ℓ12ℓ
3
18

ℓ33
+ q3

ℓ26ℓ
3
9ℓ

3
36

ℓ43ℓ
3
18

+ 2q4
ℓ6ℓ

3
36

ℓ33
. (25)
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Extracting the terms involving q3n+2 from Equation (25), dividing by q2, and re-

placing q3 by q, we obtain

∞∑
n=0

Pv(6n+ 5)qn = 3
ℓ4ℓ

3
6

ℓ31
. (26)

Hence, the result (i) follows immediately from Equation (26).

(ii) Using Equation (16) in Equation (18), we obtain

∞∑
n=0

Pv(2n+ 1)qn ≡ ψ(q)ψ(q2) (mod 2),

which is the α = 0 case of Equation (21). Assume that Equation (21) is true for

some α ≥ 0. Now, using Lemma 1 in Equation (21), we obtain

∞∑
n=0

Pv

(
2 · p2αn+

3 · p2α + 1

4

)
qn

≡
[ (p−3)/2∑

m=0

q(m
2+m)/2f

(
q(p

2+(2m+1)p)/2, q(p
2−(2m+1)p)/2

)
+ q(p

2−1)/8ψ(qp
2

)
]

×
[ (p−3)/2∑

k=0

q(k
2+k)f

(
q(p

2+(2k+1)p), q(p
2−(2k+1)p)

)
+

q(p
2−1)/4ψ(q2p

2

)
]
(mod 2). (27)

Consider the congruence(
m2 +m

2

)
+
(
k2 + k

)
≡ 3

(
p2 − 1

8

)
(mod p),

which is equivalent to

(2m+ 1)2 + 2(2k + 1)2 ≡ 0 (mod p). (28)

For

(
−2

p

)
= −1, the congruence given in Equation (28) has only one solution,

m = k =
(p− 1)

2
. Therefore, extracting the terms involving qpn+3(p2−1)/8 from

Equation (27), dividing by q3(p
2−1)/8, and replacing qp by q, we obtain

∞∑
n=0

Pv

(
2 · p2α+1n+

3 · p2α+2 + 1

4

)
qn ≡ ψ(qp)ψ(q2p) (mod 2). (29)

Extracting the terms involving qpn and replacing qp by q in Equation (29), we obtain

∞∑
n=0

Pv

(
2 · p2α+2n+

3 · p2α+2 + 1

4

)
qn ≡ ψ(q)ψ(q2) (mod 2),
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which is the α + 1 case of Equation (21). Hence, by the method of induction, we

complete the proof of Equation (21). Again, extracting the terms involving qpn+j ,

1 ≤ j ≤ (p− 1) from Equation (29), we arrive at Equation (22).

(iii) Using Equation (17) in Equation (26), we obtain

∞∑
n=0

Pv(6n+ 5)qn ≡ 3ℓ1ℓ
3
6 (mod 6),

which is the α = 0 case of Equation (23). Now, proceeding in the same way as in

(ii) of Theorem 2, we arrive at Equations (23) and (24).

Theorem 3. For any integer n ≥ 0, we have

Pv(2n+ 1) =

∞∑
m=0

b14

(
n−m(m+ 1)

)
,

where
∑∞

n=0 Pv(n)q
n = v(q), and v(q) and b14(n) are as defined in (4) and (8),

respectively.

Proof. From Equation (18), we have

∞∑
n=0

Pv(2n+ 1)qn =
ℓ4
ℓ1

· ℓ
2
4

ℓ2

=

( ∞∑
n=0

b14(n)q
n

)
ψ(q2)

=

( ∞∑
n=0

b14(n)q
n

)( ∞∑
m=0

qm(m+1)

)

=

( ∞∑
n=0

∞∑
m=0

b14

(
n−m(m+ 1)

))
qn. (30)

On comparing the coefficients of qn in Equation (30), we arrive at the desired

result.

Theorem 4. For any integer n ≥ 0, we have

Pv(6n+ 5) = 3b36(n) + 3

∞∑
m=1

(−1)mb36

(
n− 2m(3m+ 1)

)
+ 3

∞∑
m=1

(−1)mb36

(
n− 2m(3m− 1)

)
,

where
∑∞

n=0 Pv(n)q
n = v(q), and v(q) and b36(n) are as defined in (4) and (8),

respectively.
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Proof. From Equation (26), we note that

∞∑
n=0

Pv(6n+ 5)qn = 3

(
ℓ6
ℓ1

)3

ℓ4. (31)

Employing Equations (8) and (11) in Equation (31), we obtain

∞∑
n=0

Pv(6n+ 5)qn = 3

( ∞∑
n=0

b36(n)q
n

)( ∞∑
m=−∞

(−1)mq2m(3m−1)

)

= 3

( ∞∑
n=0

b36(n)q
n

)

×

(
1 +

∞∑
m=1

(−1)mq2m(3m+1) +

∞∑
m=1

(−1)mq2m(3m−1)

)

= 3

∞∑
n=0

b36(n)q
n + 3

∞∑
n=0

∞∑
m=1

(−1)mb36

(
n− 2m(3m+ 1)

)
qn

+ 3

∞∑
n=0

∞∑
m=1

(−1)mb36

(
n− 2m(3m− 1)

)
qn. (32)

On comparing the coefficients of qn in Equation (32), we arrive at the desired

result.

Remark 1. Let µ(q) be as defined in Equation (1) and
∑∞

n=0 Pµ(n)q
n = µ(q).

Then from Equations (6) and (19), we have

∞∑
n=0

Pµ(n)q
n ≡ 1

ℓ31
=

∞∑
n=0

p3(n)q
n (mod 4),

which implies Pµ(n) ≡ p3(n) (mod 4).

4. Results on σ(q)

In this section, we set
∑∞

n=0 Pσ(n)q
n = σ(q), where σ(q) is as defined in Equation

(2).

Theorem 5. For any integer n ≥ 0, we have

∞∑
n=0

Pσ(2n+ 1)qn =
ℓ22ℓ

2
6

ℓ21ℓ3
. (33)
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Proof. Ramanujan listed the linear relation connecting the sixth-order mock theta

functions in [15]:

ν(q2)− σ(−q) = q
ℓ24ℓ

2
12

ℓ22ℓ6
, (34)

where ν(q) is the sixth-order mock theta function defined by

ν(q) =

∞∑
n=0

qn+1(−q; q)2n+1

(q; q2)n+1
.

Replacing q by −q in Equation (34), we obtain

σ(q) = ν(q2) + q
ℓ24ℓ

2
12

ℓ22ℓ6
. (35)

Extracting the terms involving q2n+1 from Equation (35), dividing by q, and re-

placing q2 by q, we arrive at the desired result.

Theorem 6. Let p ≥ 5 be any prime such that

(
−2

p

)
= −1 and j be any integer

with 1 ≤ j ≤ (p− 1). Then for integers n, α ≥ 0, we have

∞∑
n=0

Pσ

(
2 · p2αn+

11 · p2α + 1

12

)
qn ≡ ℓ2ψ(q

3) (mod 2), (36)

Pσ

(
2 · p2α+2n+ 2 · p2α+1j +

11 · p2α+2 + 1

12

)
≡ 0 (mod 2). (37)

Proof. Employing Equations (10) and (16) in Equation (33), we obtain

∞∑
n=0

Pσ(2n+ 1)qn ≡ ℓ2ψ(q
3) (mod 2),

which is the α = 0 case of Equation (36). Now, proceeding in the same way as in

(ii) of Theorem 2, we arrive at Equations (36) and (37).

Theorem 7. For any integer n ≥ 0, we have

Pσ(2n+ 1) =

∞∑
m=0

b22

(
n− 3m2 + 3m

2

)
,

where
∑∞

n=0 Pσ(n)q
n = σ(q), and σ(q) and b22(n) are as defined in (2) and (8),

respectively.
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Proof. From Equation (33), we note that

∞∑
n=0

Pσ(2n+ 1)qn =

(
ℓ2
ℓ1

)2

ψ(q3). (38)

Employing Equations (8) and (10) in Equation (38), we obtain

∞∑
n=0

Pσ(2n+ 1)qn =

( ∞∑
n=0

b22(n)q
n

)( ∞∑
m=0

q3m(m+1)/2

)

=

∞∑
n=0

( ∞∑
m=0

b22

(
n− 3m2 + 3m

2

))
qn. (39)

On comparing the coefficients of qn in Equation (39), we arrive at the desired

result.

5. Results on λ(q)

The following three identities from [19] will be useful in this section:

∞∑
n=0

Pλ(2n)q
n =

ℓ32ℓ
2
3

ℓ31ℓ6
, (40)

∞∑
n=0

Pλ(6n+ 2)qn = 3
ℓ53
ℓ6

(
ℓ2
ℓ21

)3

, (41)

∞∑
n=0

Pλ(6n+ 4)qn =
ℓ22ℓ

2
3ℓ

2
6

ℓ51
, (42)

where
∞∑

n=0

Pλ(n)q
n = λ(q), and λ(q) is as defined in Equation (3).

Theorem 8. For any integer n ≥ 0, we have

Pλ(2n) = b32(n) + 2

∞∑
k=1

(−1)kb32(n− 3k2),

where b32(n) is as defined in (8).

Proof. From Equation (40), we note that

∞∑
n=0

Pλ(2n)q
n =

(
ℓ2
ℓ1

)3

ϕ(−q3). (43)
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Employing Equations (8) and (12) in Equation (43), we obtain

∞∑
n=0

Pλ(2n)q
n =

( ∞∑
n=0

b32(n)q
n

)( ∞∑
k=−∞

(−1)kq3k
2

)

=

( ∞∑
n=0

b32(n)q
n

)(
1 + 2

∞∑
k=1

(−1)kq3k
2

)

=

∞∑
n=0

b32(n)q
n + 2

∞∑
n=0

∞∑
k=1

(−1)kb32(n− 3k2)qn. (44)

On comparing the coefficients of qn in Equation (44), we arrive at the desired

result.

Theorem 9. For any integer n ≥ 0, we have

Pλ(6n+ 2) = 3

∞∑
m=0

(−1)m(2m+ 1)p̄3

(
n− 3m(m+ 1)

2

)

+ 6

∞∑
m=0

∞∑
k=1

(−1)m+k(2m+ 1)p̄3

(
n− 3k2 − 3m(m+ 1)

2

)
,

where p̄3(n) is as defined in (7).

Proof. From Equation (41), we note that

∞∑
n=0

Pλ(6n+ 2)qn = 3

(
ℓ2
ℓ21

)3

ϕ(−q3)ℓ33. (45)

Employing Equations (7), (12), and (13) in Equation (45), we obtain

∞∑
n=0

Pλ(6n+ 2)qn = 3

(
ℓ2
ℓ21

)3
(
1 + 2

∞∑
k=1

(−1)kq3k
2

)

×

( ∞∑
m=0

(−1)m(2m+ 1)q3m(m+1)/2

)

= 3

( ∞∑
n=0

p̄3(n)q
n

)( ∞∑
m=0

(−1)m(2m+ 1)q3m(m+1)/2

)

+ 6

( ∞∑
n=0

p̄3(n)q
n

)( ∞∑
m=0

∞∑
k=1

(−1)m+k(2m+ 1)q3k
2+3m(m+1)/2

)
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= 3

∞∑
n=0

∞∑
m=0

(−1)m(2m+ 1)p̄3

(
n− 3m(m+ 1)

2

)
qn

+ 6

∞∑
n=0

∞∑
m=0

∞∑
k=1

(−1)m+k(2m+ 1)p̄3

(
n− 3k2 − 3m(m+ 1)

2

)
qn. (46)

On comparing the coefficients of qn in Equation (46), we arrive at the desired

result.

Theorem 10. For any integer n ≥ 0, we have

Pλ(6n+ 4) =
∞∑

m=0

⌊n−m(m+1)
2 ⌋∑

k=0

b23

(
n− m(m+ 1)

2
− k
)
b26(k),

where b23(n) and b
2
6(n) are as defined in (8).

Proof. From Equation (42), we note that

∞∑
n=0

Pλ(6n+ 4)qn =

(
ℓ3
ℓ1

)2(
ℓ6
ℓ1

)2(
ℓ22
ℓ1

)
. (47)

Using Equations (8) and (10) in Equation (47), we obtain

∞∑
n=0

Pλ(6n+ 4)qn =

( ∞∑
n=0

b23(n)q
n

)( ∞∑
k=0

b26(k)q
k

)( ∞∑
m=0

qm(m+1)/2

)

=

 ∞∑
n=0

⌊n⌋∑
k=0

b23(n− k)b26(k)q
n

( ∞∑
m=0

qm(m+1)/2

)

=

∞∑
n=0

∞∑
m=0

⌊n−m(m+1)
2 ⌋∑

k=0

b23

(
n− m(m+ 1)

2
− k
)
b26(k)q

n. (48)

On comparing the coefficients of qn in Equation (48), we arrive at the desired

result.
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