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Abstract

In this paper, we provide new integral representations of k-Jacobsthal and k-Jacobs-
thal–Lucas numbers. Using Binet’s formulas for these numbers, we establish several
identities that are provable by simple integral calculus. Our results not only gener-
alize the integral representations of the Jacobsthal and Jacobsthal–Lucas numbers
but also apply to all the companion numbers of k-Jacobsthal numbers.

1. Introduction

Several ways are available to represent integer sequences defined by a second-order

linear recurrence relation without the recurrence relation, including Fibonacci, Lu-

cas, Pell, Pell–Lucas, Jacobsthal, and Jacobsthal–Lucas numbers, one of which is

an integral representation; for examples in recent years, see [6, 10, 13, 16, 17, 18,

19, 20, 23, 24]. Recall that the Jacobsthal numbers Jn are defined by the recurrence

relations

J0 = 0, J1 = 1, and Jn = Jn−1 + 2Jn−2, n ≥ 2.

The Jacobsthal–Lucas numbers jn are defined by the recurrence relations

j0 = 2, j1 = 1, and jn = jn−1 + 2jn−2, n ≥ 2.

The Jacobsthal and Jacobsthal–Lucas numbers are like the related Fibonacci and

Lucas numbers; they are a specific type of Lucas sequences [15]; see more details
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in [12]. In 2024, İpek [13] presented integral representations of the Jacobsthal and

Jacobsthal–Lucas numbers as follows:

Jℓn =
nJℓ
2n

∫ 1

−1

(jℓ + 3Jℓx)
n−1dx

and

jℓn =
1

2n

∫ 1

−1

(jℓ + 3(n+ 1)Jℓx)(jℓ + 3Jℓx)
n−1dx,

where ℓ and n are non-negative integers.

There are some generalizations of Jacobsthal and Jacobsthal–Lucas numbers de-

fined in different ways; see for instance [1, 2, 3, 4, 5, 8, 14, 22, 25]. In 2013, Jhala et

al. [14] introduced and studied a generalization of the Jacobsthal numbers, the so-

called k-Jacobsthal numbers, as follows. For k is a positive integer, the k-Jacobsthal

numbers Jk,n are defined by the recurrence relations

Jk,0 = 0, Jk,1 = 1, and Jk,n = kJk,n−1 + 2Jk,n−2, n ≥ 2. (1)

In 2014, Campos et al. [5] defined the k-Jacobsthal–Lucas numbers jk,n by the

recurrence relations

jk,0 = 2, jk,1 = k, and jk,n = kjk,n−1 + 2jk,n−2, n ≥ 2. (2)

We can see that the classical Jacobsthal and Jacobsthal–Lucas numbers are obtained

for k = 1.

In this paper, we follow in the footsteps of Stewart [23] and İpek [13], giving new

integral representations of k-Jacobsthal and k-Jacobsthal–Lucas numbers. Using

Binet’s formulas for these numbers, we establish several identities, applying simple

integral calculus to prove them. Furthermore, we study all the companion numbers

of k-Jacobsthal numbers that preserve the recurrence relation with arbitrary initial

conditions, and give some new and well-known identities. Finally, we provide the

integral representations of these numbers associated with the k-Jacobsthal and k-

Jacobsthal–Lucas numbers.

2. Preliminaries

In this section, we give some results that are required for the proofs of the main

results. The following identities, which rely on Binet’s formulas. The recurrence

relations (1) and (2) generate a characteristic equation of the form

r2 − kr − 2 = 0. (3)
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Since k ≥ 1, this equation has the roots

r1 =
k +

√
k2 + 8

2
and r2 =

k −
√
k2 + 8

2
.

Therefore, Binet’s formulas for the k-Jacobsthal and k-Jacobsthal–Lucas numbers

are

Jk,n =
1

∆k

(
σn
k − (−2)n

σn
k

)
, (4)

and

jk,n = σn
k +

(−2)n

σn
k

, (5)

where ∆k =
√
k2 + 8 and σk = k+∆k

2 ; see also [14, Proposition 2.1] and [5, Proposi-

tion 2.1]. Equipped with Equations (4) and (5), one may readily verify the algebraic

relations in the next two lemmas.

Lemma 1. Let k and n be non-negative integers with k ̸= 0. Then the following

hold:

(i) jk,n +∆k Jk,n = 2σn
k ;

(ii) jk,n −∆k Jk,n = 2 (−2)n

σn
k

;

(iii) j2k,n −∆2
kJ

2
k,n = (−2)n+2.

Lemma 2. Let k, m, and n be non-negative integers with k ̸= 0. Then the following

hold:

(i) 2Jk,m+n = Jk,mjk,n + Jk,njk,m;

(ii) 2jk,m+n = jk,mjk,n +∆2
kJk,mJk,n.

Remark 1. Lemmas 1(iii) and 2(i) are presented in [26].

3. The Integral Representations of k-Jacobsthal and k-Jacobsthal–Lucas
Numbers

In this section, thanks to the technique of [23], we obtain new integral representa-

tions of k-Jacobsthal and k-Jacobsthal–Lucas numbers. We start with the integral

representation of k-Jacobsthal numbers Jk,ℓn based on the numbers Jk,ℓ and jk,ℓ.

Theorem 1. Let k, ℓ, and n be non-negative integers with k ̸= 0 and ∆k =
√
k2 + 8.

The k-Jacobsthal numbers Jk,ℓn are represented by

Jk,ℓn =
nJk,ℓ
2n

∫ 1

−1

(jk,ℓ +∆k Jk,ℓx)
n−1dx. (6)
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Proof. For n = 0 or ℓ = 0, we are done. Let us assume that ℓ, n > 0. Let

u(x) = jk,ℓ + ∆kJk,ℓx. Then du = ∆kJk,ℓdx. Using integration by substitution

leads to∫ 1

−1

(jk,ℓ +∆k Jk,ℓx)
n−1dx =

1

n∆k Jk,ℓ
[(jk,ℓ +∆k Jk,ℓx)

n]
1
−1

=
1

n∆k Jk,ℓ
[(jk,ℓ +∆k Jk,ℓ)

n − (jk,ℓ −∆k Jk,ℓ)
n] .

Applying (i) and (ii) of Lemma 1 with n replaced by ℓ, we get∫ 1

−1

(jk,ℓ +∆k Jk,ℓx)
n−1dx =

1

n∆k Jk,ℓ

[(
2σℓ

k

)n −
(
2
(−2)ℓ

σℓ
k

)n]
=

2n

nJk,ℓ

[
1

∆k

(
σℓn
k − (−2)ℓn

σℓn
k

)]
.

It follows from Equation (4), after replacing n by ℓn, that∫ 1

−1

(jk,ℓ +∆k Jk,ℓx)
n−1dx =

2n

nJk,ℓ
Jk,ℓn.

Then Equation (6) has been proved.

The integral representations of the k-Jacobsthal numbers for even and odd orders

are shown as follows:

Theorem 2. Let k and n be non-negative integers with k ̸= 0 and ∆k =
√
k2 + 8.

(i) The k-Jacobsthal numbers Jk,2n are represented by

Jk,2n =
kn

2n

∫ 1

−1

(k2 + 4 + k∆k x)
n−1dx. (7)

(ii) The k-Jacobsthal numbers Jk,2n+1 are represented by

Jk,2n+1 =
1

2n+1

∫ 1

−1

(nk2 + k2 + 4 + k(n+ 1)∆k x)(k
2 + 4 + k∆k x)

n−1dx.

Proof. (i) Notice that Jk,2 = k and jk,2 = k2 + 4. Setting ℓ = 2 in (6), we have

Jk,2n =
kn

2n

∫ 1

−1

(k2 + 4 + k∆k x)
n−1dx.

(ii) Reindexing n by n+ 1 in (7), we get

Jk,2n+2 =
k(n+ 1)

2n+1

∫ 1

−1

(k2 + 4 + k∆k x)
ndx. (8)
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Using Jk,2n+2 = kJk,2n+1 + 2Jk,2n with Equations (7) and (8), we obtain

Jk,2n+1 =
1

k
(Jk,2n+2 − 2Jk,2n)

=
n+ 1

2n+1

∫ 1

−1

(k2 + 4 + k∆k x)
ndx− 2n

2n

∫ 1

−1

(k2 + 4 + k∆k x)
n−1dx

=
1

2n+1

∫ 1

−1

(
(n+ 1)(k2 + 4 + k∆k x)− 4n

)
(k2 + 4 + k∆k x)

n−1dx

=
1

2n+1

∫ 1

−1

(nk2 + k2 + 4 + k(n+ 1)∆k x)(k
2 + 4 + k∆k x)

n−1dx.

This completes the proof.

Setting k = 1 in Theorems 1 and 2, we have the following two results of [13].

Corollary 1 ([13]). Let ℓ and n be non-negative integers. The Jacobsthal numbers

Jℓn are represented by

Jℓn =
nJℓ
2n

∫ 1

−1

(jℓ + 3Jℓx)
n−1dx.

Corollary 2 ([13]). Let ℓ and n be non-negative integers.

(i) The Jacobsthal numbers J2n are represented by

J2n =
n

2n

∫ 1

−1

(5 + 3x)n−1dx.

(ii) The Jacobsthal numbers J2n+1 are represented by

J2n+1 =
1

2n+1

∫ 1

−1

(n+ 5 + 3(n+ 1)x)(5 + 3x)n−1dx.

Next, we obtain integral representations for the k-Jacobsthal–Lucas numbers

jk,ℓn based on the two numbers Jk,ℓ and jk,ℓ.

Theorem 3. Let k, ℓ, and n be non-negative integers with k ̸= 0 and ∆k =
√
k2 + 8.

The k-Jacobsthal–Lucas numbers jk,ℓn are represented by

jk,ℓn =
1

2n

∫ 1

−1

(jk,ℓ + (n+ 1)∆k Jk,ℓx)(jk,ℓ +∆k Jk,ℓx)
n−1dx. (9)

Proof. For n = 0 or ℓ = 0, it is easy to see that Equation (9) holds. We assume

now that ℓ, n > 0 and will solve Equation (9) using integration by parts. Let u and

v be such that

u(x) = jk,ℓ + (n+ 1)∆k Jk,ℓx and dv = (jk,ℓ +∆k Jk,ℓx)
n−1dx.
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Then du = (n+ 1)∆kJk,ℓdx and so

v =

∫
(jk,ℓ +∆k Jk,ℓx)

n−1dx =
1

n∆k Jk,ℓ
(jk,ℓ +∆k Jk,ℓx)

n
.

It follows that

I =
1

2n

∫ 1

−1

(jk,ℓ + (n+ 1)∆k Jk,ℓx)(jk,ℓ +∆k Jk,ℓx)
n−1dx

=
1

2nn∆k Jk,ℓ
[(jk,ℓ + (n+ 1)∆k Jk,ℓx) (jk,ℓ +∆k Jk,ℓx)

n
]
1

−1

− n+ 1

n2n

∫ 1

−1

(jk,ℓ +∆kJk,ℓx)
ndx. (10)

Replacing n by n+ 1 in Equation (6), we may turn it into

Jk,ℓn+ℓ =
(n+ 1)Jk,ℓ

2n+1

∫ 1

−1

(jk,ℓ +∆k Jk,ℓx)
ndx

and so
2Jk,ℓn+ℓ

nJk,ℓ
=

n+ 1

n2n

∫ 1

−1

(jk,ℓ +∆k Jk,ℓx)
ndx.

This together with Equation (10) gives

I =
1

2nn∆k Jk,ℓ
[(jk,ℓ + (n+ 1)∆k Jk,ℓ) (jk,ℓ +∆k Jk,ℓ)

n
]

− 1

2nn∆k Jk,ℓ
[(jk,ℓ − (n+ 1)∆k Jk,ℓ) (jk,ℓ −∆k Jk,ℓ)

n
]− 2Jk,ℓn+ℓ

nJk,ℓ
.

In view of Lemma 1(i)(ii) and Lemma 2(i), we have

I =
1

2nn∆k Jk,ℓ

[
2nσℓn

k (jk,ℓ + (n+ 1)∆k Jk,ℓ)
]

− 1

2nn∆k Jk,ℓ

[
2n

(−2)
ℓn

σℓn
k

(jk,ℓ − (n+ 1)∆k Jk,ℓ)

]
− 2Jk,ℓn+ℓ

nJk,ℓ

=
1

nJk,ℓ

[
1

∆k

(
σℓn
k − (−2)

ℓn

σℓn
k

)
jk,ℓ + (n+ 1)Jk,ℓ

(
σℓn
k +

(−2)
ℓn

σℓn
k

)]
− 2Jk,ℓn+ℓ

nJk,ℓ

=
1

nJk,ℓ
(Jk,ℓnjk,ℓ + (n+ 1)Jk,ℓjk,ℓn)−

2Jk,ℓn+ℓ

nJk,ℓ

= jk,ℓn +
1

nJk,ℓ
(Jk,ℓnjk,ℓ + Jk,ℓjk,ℓn)−

2Jk,ℓn+ℓ

nJk,ℓ

= jk,ℓn,

which completes the proof.
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Setting k = 1 in Theorem 3, we have the following result of [13].

Corollary 3 ([13]). Let ℓ and n be non-negative integers. The Jacobsthal–Lucas

numbers jℓn are represented by

jℓn =
1

2n

∫ 1

−1

(jℓ + 3(n+ 1)Jℓx)(jℓ + 3Jℓx)
n−1dx.

Finally, we establish integral representations for general forms Jk,ℓn+r and jk,ℓn+r

by using both Jk,ℓn and jk,ℓn shown in the following two theorems.

Theorem 4. Let k, ℓ, n, and r be non-negative integers with k ̸= 0 and ∆k =√
k2 + 8. The k-Jacobsthal numbers Jk,ℓn+r are represented by

Jk,ℓn+r

=
1

2n+1

∫ 1

−1

(nJk,ℓjk,r + Jk,rjk,ℓ + (n+ 1)∆k Jk,ℓJk,rx) (jk,ℓ +∆k Jk,ℓx)
n−1dx.

Proof. Using (i) of Lemma 2 with m and n replaced by ℓn and r, respectively, we

get

Jk,ℓn+r =
1

2
Jk,ℓnjk,r +

1

2
Jk,rjk,ℓn.

An application of Theorems 1 and 3 leads us to

Jk,ℓn+r

=
1

2

(
nJk,ℓ
2n

∫ 1

−1

(jk,ℓ +∆k Jk,ℓx)
n−1dx

)
jk,r

+
1

2
Jk,r

(
1

2n

∫ 1

−1

(jk,ℓ + (n+ 1)∆k Jk,ℓx)(jk,ℓ +∆k Jk,ℓx)
n−1dx

)
=

1

2n+1

∫ 1

−1

(nJk,ℓjk,r + Jk,rjk,ℓ + (n+ 1)∆k Jk,ℓJk,rx) (jk,ℓ +∆k Jk,ℓx)
n−1dx.

This completes the proof.

Remark 2. Notice that the integral representations of the k-Jacobsthal numbers

for even and odd orders given in Theorem 2 are recovered from Theorem 4 by setting

(ℓ, r) = (2, 0) and (ℓ, r) = (2, 1), respectively.

Setting k = 1 in Theorem 4, we have the following result of [13].

Corollary 4 ([13]). Let ℓ, n, and r be non-negative integers. The Jacobsthal num-

bers Jℓn+r are represented by

Jℓn+r =
1

2n+1

∫ 1

−1

(nJℓjr + Jrjℓ + 3(n+ 1) JℓJrx) (jℓ + 3 Jℓx)
n−1dx.
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Theorem 5. Let k, ℓ, n, and r be non-negative integers with k ̸= 0 and ∆k =√
k2 + 8. The k-Jacobsthal–Lucas numbers jk,ℓn+r are represented by

jk,ℓn+r

=
1

2n+1

∫ 1

−1

(
n∆2

kJk,ℓJk,r + jk,ℓjk,r + (n+ 1)∆kJk,ℓjk,rx
)
(jk,ℓ +∆kJk,ℓx)

n−1dx.

Proof. Using (ii) of Lemma 2 with m and n replaced by ℓn and r, respectively, we

get

jk,ℓn+r =
1

2
jk,ℓnjk,r +

1

2

(
∆2

kJk,ℓnJk,r
)
.

This together with Theorems 1 and 3 completes the proof.

Using the same idea as in Theorem 2, or setting (ℓ, r) = (2, 0) and (ℓ, r) = (2, 1) in

Theorem 5, we also have the following integral representations of the k-Jacobsthal–

Lucas numbers for even and odd orders.

Theorem 6. Let k and n be non-negative integers with k ̸= 0 and ∆k =
√
k2 + 8.

(i) The k-Jacobsthal–Lucas numbers jk,2n can be represented by the integral

jk,2n =
1

2n

∫ 1

−1

(k2 + 4 + k(n+ 1)∆kx)(k
2 + 4 + k∆kx)

n−1dx.

(ii) The k-Jacobsthal–Lucas numbers jk,2n+1 can be represented by the integral

jk,2n+1 =
k

2n+1

∫ 1

−1

(
n∆2

k + k2 + 4 + k(n+ 1)∆kx
) (

k2 + 4 + k∆kx
)n−1

dx.

Setting k = 1 in Theorem 5, we have the following result of [13].

Corollary 5 ([13]). For ℓ, n, and r are non-negative integers, the Jacobsthal–Lucas

numbers jℓn+r can be represented by the integral

jℓn+r =
1

2n+1

∫ 1

−1

(9nJℓJr + jℓjr + 3(n+ 1)Jℓjrx) (jℓ + 3Jℓx)
n−1dx.

4. The Companion k-Jacobsthal Numbers

In this section, we study all the companion numbers of k-Jacobsthal numbers that

preserve the recurrence relation with arbitrary initial conditions and establish some

new and well-known identities. Further, we give integral representations of these



INTEGERS: 25 (2025) 9

numbers associated with the k-Jacobsthal and k-Jacobsthal–Lucas numbers. We

define the companion k-Jacobsthal numbers Jk,n = Jk,n(a, b) by

Jk,0 = a,Jk,1 = b, and Jk,n = kJk,n−1 + Jk,n−2, n ≥ 2,

where a and b are arbitrary non-negative integers. Note that Jk,n corresponds to a

special case of Horadam numbers [11]. The first companion k-Jacobsthal numbers

are:

Jk,0 = a

Jk,1 = b

Jk,2 = bk + 2a

Jk,3 = bk2 + 2ak + 2b

Jk,4 = bk3 + 2ak2 + 4bk + 4a

Jk,5 = bk4 + 2ak3 + 6bk2 + 8ak + 4b

Jk,6 = bk5 + 2ak4 + 8bk3 + 12ak2 + 12bk + 8a

Jk,7 = bk6 + 2ak5 + 10bk4 + 16ak3 + 24bk2 + 24ak + 8b.

Some particular cases of the previous definition are:

1. the k-Jacobsthal numbers [14] Jk,n = Jk,n(0, 1);

2. the k-Jacobsthal–Lucas numbers [5] jk,n = Jk,n(2, k);

3. the associated k-Jacobsthal numbers [22] Ak,n = Jk,n(1, 1);

4. the associated k-Jacobsthal–Lucas numbers [22] Bk,n = Jk,n(2, k + 4);

5. the Jacobsthal-like numbers [21] Vn = J1,n(2, 2).

Theorem 7 (Binet’s formulas). Let k and n be non-negative integers with k ̸= 0,

∆k =
√
k2 + 8 and σk = k+∆k

2 . The companion k-Jacobsthal numbers Jk,n are

given by

Jk,n =

(
2b− ak + a∆k

2∆k

)
σn
k +

(
ak − 2b+ a∆k

2∆k

)
(−2)n

σn
k

. (11)

Proof. The roots of the characteristic equation (3) are

r1 =
k +∆k

2
and r2 =

k −∆k

2
.

Note that r2 < 0 < r1, r1r2 = −2, r1 + r2 = k, and r1 − r2 = ∆k. Therefore, the

general term of Jk,n can be expressed in the form:

Jk,n = C1r
n
1 + C2r

n
2
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for some coefficients C1 and C2. Since Jk,0 = a and Jk,1 = b, we get

C1 + C2 = a and C1r1 + C2r2 = b.

It can be shown that

C1 =
b− ar2
r1 − r2

=
2b− ak + a∆k

2∆k
and C2 =

ar1 − b

r1 − r2
=

ak + a∆k − 2b

2∆k
.

Let σk = k+∆k

2 . Then r1 = σk and r2 = −2
σk

. Therefore, Equation (11) has been

proved.

Theorem 8 (Asymptotic behavior). Let k be a positive integer. Then

lim
n→∞

Jk,n+1

Jk,n
= σk.

Proof. By using Equation (11), we have

lim
n→∞

Jk,n+1

Jk,n
= lim

n→∞

(
2b−ak+a∆k

2∆k

)
σn+1
k +

(
ak−2b+a∆k

2∆k

)
(−2)n+1

σn+1
k(

2b−ak+a∆k

2∆k

)
σn
k +

(
ak−2b+a∆k

2∆k

)
(−2)n

σn
k

= lim
n→∞

(
2b−ak+a∆k

2∆k

)
σk +

(
ak−2b+a∆k

2∆k

)
(−2)n

σ2n
k

· (−2)
σk(

2b−ak+a∆k

2∆k

)
+
(

ak−2b+a∆k

2∆k

)
(−2)n

σ2n
k

. (12)

Since σk is the root of Equation (3), we have σ2
k = kσk + 2 > 2 and so

∣∣∣−2
σ2
k

∣∣∣ < 1.

Then

lim
n→∞

(−2)n

σ2n
k

= lim
n→∞

(
−2

σ2
k

)n

= 0.

This together with Equation (12) gives

lim
n→∞

Jk,n+1

Jk,n
= σk.

This completes the proof.

The companion k-Jacobsthal numbers are associated with the k-Jacobsthal and

k-Jacobsthal–Lucas numbers in the following results.

Theorem 9. Let k and n be non-negative integers with k ̸= 0. Then

Jk,n =
a

2
jk,n +

2b− ak

2
Jk,n. (13)
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Proof. It follows from (i) and (ii) of Lemma 1 and Equation (11) that

Jk,n =

(
2b− ak + a∆k

2∆k

)
σn
k +

(
ak − 2b+ a∆k

2∆k

)
(−2)n

σn
k

=

(
2b− ak + a∆k

2∆k

)(
jk,n +∆k Jk,n

2

)
+

(
ak − 2b+ a∆k

2∆k

)(
jk,n −∆k Jk,n

2

)
=

a

2
jk,n +

2b− ak

2
Jk,n.

This completes the proof.

Theorem 10 (Generating functions). Let k be a positive integer. The generating

function for the companion k-Jacobsthal numbers is

∞∑
n=0

Jk,nx
n =

a+ (b− ak)x

1− kx− 2x2
.

Proof. Notice that the generating functions for the k-Jacobsthal numbers [14] and

k-Jacobsthal–Lucas numbers [5] are

∞∑
n=0

Jk,nx
n =

x

1− kx− 2x2
and

∞∑
n=0

jk,nx
n =

2− kx

1− kx− 2x2
.

Then, by Equation (13),

∞∑
n=0

Jk,nx
n =

a

2

∞∑
n=0

jk,nx
n +

2b− ak

2

∞∑
n=0

Jk,nx
n

=
a

2

(
2− kx

1− kx− 2x2

)
+

2b− ak

2

(
x

1− kx− 2x2

)
=

a+ (b− ak)x

1− kx− 2x2
.

This completes the proof.

Theorem 11 (Catalan’s identity). Let k, n, and r be positive integers. Then

Jk,n−rJk,n+r − J 2
k,n = (2b− ak + a∆k)(ak − 2b+ a∆k)(−2)n−r−2J2

k,r.

Proof. Let C1 = 2b−ak+a∆k

2∆k
and C2 = ak−2b+a∆k

2∆k
. By using Equation (11), we have

Jk,n−rJk,n+r =

(
C1σ

n−r
k + C2

(−2)n−r

σn−r
k

)(
C1σ

n+r
k + C2

(−2)n+r

σn+r
k

)
= C2

1σ
2n
k + C2

2

(−2)2n

σ2n
k

+ C1C2(−2)n−r

(
σ2r
k +

(−2)2r

σ2r
k

)
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and

J 2
k,n =

(
C1σ

n
k + C2

(−2)n

σn
k

)2

= C2
1σ

2n
k + C2

2

(−2)2n

σ2n
k

+ C1C2(−2)n−r (2(−2)r) .

Then

Jk,n−rJk,n+r − J 2
k,n

= C1C2(−2)n−r

(
σ2r
k +

(−2)2r

σ2r
k

− 2(−2)r
)

=

(
2b− ak + a∆k

2∆k

)(
ak − 2b+ a∆k

2∆k

)
(−2)n−r

(
σr
k − (−2)r

σr
k

)2

= (2b− ak + a∆k)(ak − 2b+ a∆k)

(
(−2)n−r

(−2)2

)[
1

∆k

(
σr
k − (−2)r

σr
k

)]2
= (2b− ak + a∆k)(ak − 2b+ a∆k)(−2)n−r−2J2

k,r.

This completes the proof.

Finally, new integral representations for the companion k-Jacobsthal numbers

associated with the k-Jacobsthal and k-Jacobsthal–Lucas numbers are presented as

follows.

Theorem 12. Let k, ℓ, and n be non-negative integers with k ̸= 0 and ∆k =√
k2 + 8. The companion k-Jacobsthal numbers Jk,ℓn are represented by

Jk,ℓn =
1

2n+1

∫ 1

−1

(ajk,ℓ + (2b− ak)nJk,ℓ + a(n+ 1)∆k Jk,ℓx)(jk,ℓ +∆k Jk,ℓx)
n−1dx.

Proof. Applying the integral representations of Jk,ℓn and jk,ℓn from Theorems 1

and 3 to Equation (11), we obtain

Jk,ℓn =
a

2
jk,ℓn +

2b− ak

2
Jk,ℓn

=
a

2

(
1

2n

∫ 1

−1

(jk,ℓ + (n+ 1)∆k Jk,ℓx)(jk,ℓ +∆k Jk,ℓx)
n−1dx

)
+

2b− ak

2

(
nJk,ℓ
2n

∫ 1

−1

(jk,ℓ +∆k Jk,ℓx)
n−1dx

)
=

1

2n+1

∫ 1

−1

(ajk,ℓ + (2b− ak)nJk,ℓ + a(n+ 1)∆k Jk,ℓx)(jk,ℓ +∆k Jk,ℓx)
n−1dx.

This completes the proof.

Remark 3. As in Theorems 7 and 12, we have the following results.
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1. If a = 0, then Jk,n = bJk,n and

Jk,ℓn =
bnJk,ℓ
2n

∫ 1

−1

(jk,ℓ +∆k Jk,ℓx)
n−1dx.

2. If ak = 2b, then Jk,n = a
2 jk,n and

Jk,ℓn =
a

2n+1

∫ 1

−1

(jk,ℓ + (n+ 1)∆k Jk,ℓx)(jk,ℓ +∆k Jk,ℓx)
n−1dx.

3. When a ̸= 0, and when Jk,ℓ and Jk,ℓ are known, then we can use

jk,ℓ =
2

a

(
Jk,ℓ −

2b− ak

2
Jk,n

)
.

4. When ak ̸= 2b, and when Jk,ℓ and jk,ℓ are known, then we can use

Jk,ℓ =
2

2b− ak

(
Jk,ℓ −

a

2
jk,n

)
.

Remark 4. Notice that the integral representations of the associated k-Jacobsthal

numbers Ak,n and associated k-Jacobsthal–Lucas numbers Bk,n are obtained by

setting (a, b) = (1, 1) and (a, b) = (2, k + 4), respectively.

Setting k = 1 in Theorem 12, we have the following corollary.

Corollary 6. Let ℓ and n be non-negative integers. The companion 1-Jacobsthal

numbers J1,ℓn are represented by

J1,ℓn =
1

2n+1

∫ 1

−1

(ajℓ + 3(2b− a)nJℓ + a(n+ 1) Jℓx)(jℓ +∆k Jℓx)
n−1dx.

Remark 5. As in Corollary 6, the integral representations of Jacobsthal-like num-

bers Vn are deduced by setting (a, b) = (2, 2).

Remark 6. The integral representations for general forms Jk,ℓn+r are established

by applying Theorems 4, 5, and 7.

5. Conclusions

In this paper, we discuss the integral representations of the k-Jacobsthal and k-

Jacobsthal–Lucas numbers. It is worth mentioning that the new integral represen-

tations apply to all the companion numbers of k-Jacobsthal numbers that preserve

the recurrence relation with arbitrary initial conditions.
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