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Abstract

Motivated by their research on automorphism groups of pseudo-real Riemann sur-
faces, Bujalance, Cirre and Conder have conjectured that there are infinitely many
primes p such that p+2 has all its prime factors q ≡ −1 (mod 4). We use theorems
of Landau and Raikov to prove that the number of integers n ≤ x with only such
prime factors q is asymptotic to cx/

√
lnx for a specific constant c = 0.4865 . . ..

Heuristic arguments, following Hardy and Littlewood, then yield a conjecture that
the number of such primes p ≤ x is asymptotic to c′

∫ x

2
(ln t)−3/2dt for a constant

c′ = 0.8981 . . .. The theorem, the conjecture and a similar conjecture applying the
Bateman–Horn Conjecture to other pseudo-real Riemann surfaces are supported by
evidence from extensive computer searches.

1. Introduction

A compact Riemann surface is real (meaning definable, as a complex algebraic curve,

over R) if and only if it has an orientation-reversing automorphism of order 2; it

is called pseudo-real if it has an orientation-reversing automorphism, but none of

order 2. In [5], Bujalance, Cirre and Conder have proved that for each g ≥ 2, the

maximum order M+
ab(g) of an abelian group of (orientation-preserving) automor-

phisms of a pseudo-real Riemann surface of genus g is at least g. To demonstrate

the sharpness of this lower bound, their Theorem 4.8 presents a set A of integers g

for which the cyclic group Cg of order g attains the upper bound M+
ab(g) = g.

These have the form g = p + 1 where p is what we will call a BCC prime, defined

as follows.
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Definition 1. A BCC prime is a prime number p such that p+ 2 has only prime

factors q ≡ −1 (mod 4).

The first sixteen BCC primes are

5, 7, 17, 19, 29, 31, 41, 47, 61, 67, 79, 97, 101, 127, 131 and 137. (1)

In [5], A is described as “a very large and possibly infinite set”. If A is finite,

then conceivably there is a better lower bound for M+
ab(g), valid for all sufficiently

large g (in particular, larger than all those in A, which can then be regarded as

small exceptions). To avoid this possibility, it is important to know whether A is

infinite. We are therefore interested in the following problem.

Problem 1. Are there infinitely many BCC primes, or equivalently, is the set A
infinite?

Of course, the answer will be positive if one can prove that there are infinitely many

prime pairs p, p + 2 with p ≡ 1 (mod 4), but even without this extra congruence

condition, the existence or otherwise of infinitely many prime pairs is a very difficult

open problem. Nevertheless, this would follow from a proof of various conjectures

in number theory, such as the Bateman–Horn Conjecture [3] or Schinzel’s Hypothe-

sis H [21]. Here we give a heuristic argument, supported by computational evidence

for their asymptotic distribution, for the following.

Conjecture 1. There are infinitely many BCC primes.

It follows from a theorem of Iwaniec [10] that there are infinitely many primes p

such that p + 2 has only prime factors q ≡ 1 (mod 4), whereas the corresponding

result with q ≡ −1 (mod 4) is unproved; see Subsection 3.2 for details.

In support of Conjecture 1 we use theorems of Landau [12] and of Raikov [18] to

give, in Theorem 2, an asymptotic estimate of the form cx/
√
lnx (with c a specific

constant) for the number of integers n ≤ x with only prime factors q ≡ −1 (mod 4).

Heuristic arguments, inspired by Hardy and Littlewood [9], then allow us to make

Conjecture 2, that the number of BCC primes p ≤ x is asymptotic to

c′
∫ x

2

dt

(ln t)3/2

for a specific constant c′ = 0.8981751984 . . .. We give numerical evidence, based on

computer searches, to support both Theorem 2 and Conjecture 2. In addition, in

Section 7, we briefly consider another set of primes, defined by similar but more

complicated conditions, also arising from a construction in [5].

The formulae we obtain involve various multiplicative factors. These are defined

in terms of well-known constants such as e, γ and π, together with constants such

as C(k, u) (defined later) which have been computed elsewhere to over 100 decimal
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places, so in principle these factors can be computed with similar accuracy. However,

for simplicity we have usually presented numerical data to about ten significant

figures, since this is adequate for the arguments we wish to present.

Although our main emphasis here is on number theory and computation, for

readers interested in Riemann surfaces we have described the construction in [5]

of pseudo-real surfaces in more detail in a final appendix. For the benefit of such

readers, or any others unfamiliar with number theory, we have occasionally included

explanations and citations for facts which may seem obvious to experts in that field.

2. Raikov’s Theorem and Its Application

If P is any non-empty set of prime numbers, then let us define an integer n ∈ N to

be a P-integer if all its prime factors are elements of P, and let P∗ denote the set

of all P-integers. Note that 1 is a P-integer, represented by the empty product. If

we define gn = 1 or 0 as n ∈ P∗ or not, then the function

g(x) :=
∑
n≤x

gn (2)

gives the number of P-integers n ≤ x. We will consider the asymptotic behavior

of g(x) as x → ∞.

In [12] Landau showed that if, for some k ∈ N, P is the set of all primes in the

union of l distinct congruence classes of units (mod k), then

g(x) ∼ cx

(lnx)1−l/φ(k)
as x → ∞

for some constant c > 0 depending on P, where φ is Euler’s totient function.

Motivated by Problem 1, we take k = 4 and define P to be the set of primes in

the congruence class [−1] ∈ Z∗
4, so that Conjecture 1 asserts that n− 2 is prime for

infinitely many n ∈ P∗. From Landau’s result we see that

g(x) ∼ cx√
lnx

as x → ∞

for some c > 0. Our first aim is to determine this constant c, and then to compare

the resulting estimates with the actual values of g(x) for various x.

For any set P of primes, the corresponding Dirichlet series

F (s) :=

∞∑
n=1

gn
ns

(3)

converges absolutely for Re(s) > 1 by comparison with the Riemann zeta func-

tion ζ(s), so that it represents a holomorphic function in this half plane. (For the
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basic properties of Dirichlet series, see [2, Ch. 11] or [11, Ch. IV, §2], for example.)

The function n 7→ gn is completely multiplicative, so F (s) has an Euler product

expansion

F (s) =
∏
q∈P

(
1− 1

qs

)−1

=
∏
q∈P

1

1− q−s
. (4)

A theorem of Raikov [18], as given in [6, Theorem 2.4.1], states the following.

Theorem 1. Let F (s) =
∑

n≥1 an/n
s be a Dirichlet series with non-negative co-

efficients, converging for Re(s) > 1. Suppose that F (s) extends analytically at all

points on Re(s) = 1 apart from s = 1, and that at s = 1 we can write

F (s) =
H(s)

(s− 1)1−α
(5)

for some α ∈ R and some H(s) holomorphic in the region Re(s) ≥ 1 and nonzero

there. Then ∑
n≤x

an ∼ cx

(lnx)α
(6)

as x → ∞, with

c =
H(1)

Γ(1− α)
(7)

where Γ is the Gamma function.

In the case of Problem 1 we take

P := {q | q is prime and q ≡ −1 (mod 4)}.

Thus the P-integers n ≤ 100 are

1, 3, 7, 9, 11, 19, 21, 23, 27, 31, 33, 43, 47, 49, 57, 59, 63, 67, 69, 71, 77, 79, 81, 83, 93, 99. (8)

These 26 integers represent just over half of the odd integers n ≤ 100. However,

this proportion decreases towards 0 as the upper bound increases: see Theorem 2

and Table 1.

Next we will determine the function H and hence the constants α and c for

the sequence (gn) corresponding to this set P. We will do this by expressing the

corresponding function F in terms of ζ and related functions, so that the analyticity

conditions for F required in Theorem 1 will follow from similar properties of these

functions.

The L-function

L(s) = L(s, χ) :=

∞∑
n=1

χ(n)

ns
=

∏
q prime

(
1− χ(q)

qs

)−1

=
∏

q prime

1

1− χ(q)q−s
(9)
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corresponding to the character χ (mod 4) generated by χ(3) = −1 is holomorphic

on the half plane Re(s) > 1; analytic continuation extends it to an entire function

on C (see [2, Theorem 12.5], for example).

Comparing the Euler product expansions for ζ and L shows that

(1− 2−s) ζ(s)

L(s)
=

∏
q≡−1(4)

1 + q−s

1− q−s
=

∏
q≡−1(4)

1− q−2s

(1− q−s)2
=

F (s)2

F (2s)
(10)

for Re(s) > 1, where the products are over the indicated primes q. Writing this as

F (s)2 =
(1− 2−s)ζ(s)

L(s)
F (2s) (11)

gives an analytic continuation of F (s)2 to the half plane Re(s) > 1/2; it is mero-

morphic there, with a simple pole at s = 1, and it may have poles in the strip

1/2 < Re(s) < 1 arising from possible non-trivial zeros of L(s) away from its criti-

cal line. It may have zeros in this strip arising from possible non-trivial zeros of ζ(s),

but it has no zeros with Re(s) = 1. It follows that there is a simply connected region

Ω ⊂ C, containing the half plane Re(s) ≥ 1, such that h(s) := (s − 1)F (s)2 is a

non-vanishing holomorphic function on Ω, and hence H(s) :=
√
h(s) =

√
s− 1F (s)

is a non-zero holomorphic function on Ω, where
√
· has the usual branch. Thus F (s)

satisfies the hypotheses of Theorem 1, with α = 1/2.

In order to find the constant c in Theorem 1 we need to find H(1). To make the

transition from Re(s) > 1 to s = 1 we will use Abel’s continuity theorem, with real

s → 1+. From (10),

F (s)2

ζ(s)
=

(
1− 1

2s

)
·

∏
q≡−1(4)

(
1− 1

qs

)−2

·
∏

q≡±1(4)

(
1− 1

qs

)

=

(
1− 1

2s

)
·

∏
q≡±1(4)

(
1− 1

qs

)±1

for Re(s) > 1, so that in this half plane

(s− 1)F (s)2 =

(
1− 1

2s

)
·

∏
q≡±1(4)

(
1− 1

qs

)±1

· (s− 1)ζ(s). (12)

We need to check that the product on the right-hand side converges when s = 1,

and to find its limit. The first and last factors have values 1/2 and 1 (the residue

of ζ(s) at its simple pole s = 1).

To deal with the infinite product in (12), we can use some results of Languasco

and Zaccagnini [13, 14, 15]. For each integer k ≥ 3 and each unit u (mod k) they
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define a non-zero Mertens-type constant C(k, u) by the asymptotic estimate

P (k, u;x) :=
∏

x≥q≡u(k)

(
1− 1

q

)

=
C(k, u)

(lnx)1/φ(k)
+O

(
1

(lnx)1+1/φ(k)

)
as x → ∞, (13)

where the product is over all primes q ≡ u (mod k) such that q ≤ x. In [14,

Equation (2)] they show that

C(k, u)φ(k) = e−γ
∏

q prime

(
1− 1

q

)α(q)

(14)

where γ is the Euler–Mascheroni constant, the product is now over all primes q,

and α(q) := φ(k)− 1 or −1 as q ≡ u (mod k) or not. By taking k = 4 and u = 1 in

(14), we see that

∏
q≡±1(4)

(
1− 1

q

)±1

= eγC2

(
1− 1

2

)
=

eγC2

2
,

where C := C(4, 1). Thus, when s = 1 the right-hand side of (12) converges to

eγC2/4. It therefore follows from Abel’s theorem that

H(1)2 = lim
s→1+

(s− 1)F (s)2 =
eγ

4
C2 ̸= 0,

so that this particular instance of (5) becomes F (s) = H(s)/(s− 1)1/2 and hence

α =
1

2
and H(1) =

√
eγ · C

2
.

Since Γ( 12 ) =
√
π, we therefore have

c =
H(1)

Γ( 12 )
=

√
eγ

π
· C
2
, (15)

giving the following result1.

Theorem 2. The function g(x) satisfies

g(x) ∼ cx√
lnx

=

√
eγ

π
· C
2
· x√

lnx
as x → ∞. (16)

1Here we cannot resist expressing our pleasure at the appearance of the constant
√

eγ/π, in
which the three basic constants e, π and γ of analysis are united by three of the basic operations
(division, exponentiation and taking square roots) of algebra; its application to number theory
adds to the pleasure.
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In [14, 15] Languasco and Zaccagnini have evaluated many of these constants

C(k, u) to over 100 decimal places. These include

C = C(4, 1) = 1.2923041571286886071091383898704320653429 . . . , (17)

which, together with√
eγ

π
= 0.7529495060464205959354997575876048108386 . . . ,

allows us to evaluate

c = 0.4865198883858909971272456405868234055382 . . . (18)

We use this value in Table 1 to test the accuracy of the resulting estimates given

by Theorem 2. The second column gives the number g(x) of P-integers n ≤ x for

x = 10k with k = 1, . . . , 10. For example, the 26 such integers n ≤ 102 are listed

in (8). Just 12 of these correspond to BCC primes p = n − 2, namely the first 12

primes displayed in (1), with 12 associated genera g = p+1 = n−1 ∈ A. The third

column of Table 1 gives the estimates cx/
√
lnx for g(x), and the fourth column

gives their errors.

x g(x) cx/
√
lnx error E(x) error

10 4 3.21 −19.75% 3.08 −23.00%
102 26 22.67 −12.81% 25.58 −1.62%
103 201 185.11 −7.91% 202.61 1.80%
104 1 680 1 603.11 −4.58% 1 710.35 1.80%
105 14 902 14 338.63 −3.78% 15 069.0 1.12%
106 135 124 130 893.21 −3.13% 136 274.75 0.85%
107 1 243 370 1 211 835.68 −2.54% 1 253 639.87 0.83%
108 11 587 149 11 335 684.78 −2.17% 11 672 710.45 0.74%
109 108 941 388 106 873 861.02 −1.90% 109 666 579.94 0.67%
1010 1 031 330 156 1 013 894 469.43 −1.69% 1 037 530 754.16 0.60%

Table 1: Estimates cx/
√
lnx and E(x) = c

∫ x

2
dt√
ln t

for g(x).

An error of 1.69% for x = 1010 is not impressive, but then the simple form

π(x) ∼ x/ lnx of the Prime Number Theorem, which can also be viewed as an

instance of Raikov’s Theorem, has an error of about 5% here. Motivated by the

much greater accuracy of Li(x) =
∫ x

2
(ln t)−1dt as an estimate for π(x), we considered

whether

E(x) := c

∫ x

2

dt√
ln t

might give a better estimate for g(x). The evidence is given in the fifth and sixth

columns of Table 1.
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More generally, the estimate (6) in Raikov’s Theorem can be restated as∑
n≤x

an ∼ c

∫ x

2

dt

(ln t)α
,

where c and α are as defined before, since the two estimates are asymptotically

equivalent. Our experience, together with heuristic arguments based on the ex-

pected values of certain random variables, suggests that this integral form will

usually give more accurate approximations.

3. Two Digressions

3.1. An Alternative Evaluation of c

For an alternative approach to evaluating c, we will use the Dedekind zeta function

ζK(s) of the field K = Q(i), defined (for any algebraic number field K) by

ζK(s) :=
∑
I

1

N(I)s
=

∏
P

(
1− 1

N(P )s

)−1

=
∏
P

1

1−N(P )−s
, (19)

where I and P range over all ideals and prime ideals of OK , and N(·) denotes their
norm. We claim that if K = Q(i) then

ζK(s) = ζ(s)L(s). (20)

To see this, when K = Q(i), so that OK = Z[i], the prime q = 2 ramifies, primes

q ≡ 1 (mod 4) split into two prime ideals (a± ib) with norm q = a2+b2, and primes

q ≡ −1 (mod 4) are inert, each giving one prime ideal with norm q2, so that for

Re(s) > 1 we have

ζK(s) =
1

1− 2−s
·

∏
q≡1(4)

1

(1− q−s)2
·

∏
q≡−1(4)

1

1− q−2s

=

 1

1− 2−s

∏
q≡1(4)

1

1− q−s

∏
q≡−1(4)

1

1− q−s


×

 ∏
q≡1(4)

1

1− q−s

∏
q≡−1(4)

1

1 + q−s

 = ζ(s)L(s).

If K is any algebraic number field then ζK(s) converges absolutely for Re(s) > 1,

and has a meromorphic extension to C with a unique pole at s = 1. This pole is
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simple, with residue ρK = lims→1 (s − 1)ζK(s) given by the class number formula

(see [4, Ch. 5, §1.1] or [11, Ch IV, Theorem 2.12], for example)

ρK = lim
s→1

(s− 1)ζK(s) =
2r1(2π)r2Rh

w
√
|D|

,

where r1 is the number of real embeddings of K in C, 2r2 is the number of complex

embeddings, R is the regulator, h is the class number, w is the number of roots of 1

in K, and D is the discriminant. Thus ζ = ζQ has residue ρQ = 1 at s = 1, whereas

when K = Q(i) we have r1 = 0, r2 = 1 (the identity and complex conjugation),

R = 1 (since r1 = 0), h = 1 (all ideals in OK = Z[i] are principal), w = 4 (the

roots of 1 are the powers of i) and D = −4, so that ρK = π/4. (There is also a

geometric proof of this, counting lattice points a+ ib ∈ Z[i] in the first quadrant of

disks a2 + b2 ≤ N : see [17, Example 10.1.7 and Exercise 10.1.8] for details, or [22]

for an outline.)

Since ζ and ζK have meromorphic continuations in a neighborhood of 1, it follows

that the function L = ζK/ζ is meromorphic there, with

L(1) = lim
s→1

ζK(s)

ζ(s)
=

ρK
ρQ

=
π

4
. (21)

If we multiply (11) by s− 1 and then take limits as s → 1 we see that

H(s)2 = (s− 1)F (s)2 → 2F (2)

π

since (s− 1)ζ(s) → 1 and L(s) → L(1) = π/4. Thus in Raikov’s Theorem we have

α = 1/2 and H(1) =
√

2F (2)/π, so

c =
H(1)

Γ( 12 )
=

1

π

√
2F (2)

where

F (2) =
∏

q≡−1(4)

(
1− 1

q2

)−1

=

∞∑
n=1

gn
n2

= 1 +
1

32
+

1

72
+ · · · .

The partial sums
∑N

n=1 gn/n
2 of this series converge to F (2) from below as N → ∞.

To obtain a sequence converging to F (2) from above we use

∞∑
n=1

1

n2
= ζ(2) =

π2

6

(see [7, Exercise 9.7], for example), so∑
oddn

1

n2
= ζ(2)− 1

22
ζ(2) =

π2

8
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and hence

F (2) =
π2

8
−

∞∑
n=1

hn

n2
=

π2

8
−
(

1

52
+

1

133
+ · · ·

)
where hn = 1− gn or 0 as n is odd or even, so that the sum is over all odd n ̸∈ P∗.

Thus

L :=

N∑
n=1

gn
n2

< F (2) <
π2

8
−

N∑
n=1

hn

n2
:= U (22)

for all N , with both bounds converging monotonically to F (2) as N → ∞, so one

can evaluate F (2) to any desired accuracy by taking N sufficiently large.

For example, taking N = 109 in (22) and evaluating terms to 30 decimal places

gives upper and lower bounds

U = 1.16807558580668082351574608710,

L = 1.16807558530668082351574605022,

with U − L = 5.0000000000000003688× 10−10. For the constant

c =
1

π

√
2F (2),

this gives upper and lower bounds

U ′ = 0.486519888468395460325765388132,

L′ = 0.486519888364266948773906811661,

with U ′ − L′ = 1.04128511551858576471× 10−10. The value

c = 0.4865198883858909971272456405868234055382 . . .

given in (18) lies between these two bounds, and they agree with it in their first

nine significant figures.

Remark 1. The values of L and U in (22) for any given N depend on partial sums

of the Dirichlet series for the sequences (gn) and (hn), representing odd integers n

which are or are not P-integers. For small N the former predominate, so that

the lower bounds L are closer to F (2) than the upper bounds U are; since both

converge monotonically to F (2), this means that U decreases faster than L increases,

especially as non-P-integers eventually start to predominate as N increases.

To illustrate this, let us denote by Lk and Uk the lower and upper bounds for F (2)

computed over the segment n ≤ N = 10k, and let Rk denote the ratio between the

values of their rate of change, that is,

Rk =
Lk − Lk−1

Uk−1 − Uk
.
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For comparison, let rk denote the ratio g(x)/h(x) of P-integers to non-P-integers

among the odd integers n ≤ x = 10k. These ratios Rk and rk are shown, for

k = 1, . . . , 9, in Table 2. It follows from Theorem 2 that Rk and rk converge to 0

as k → ∞, and Table 2 shows that they do so “in step”.

k Rk rk
1 3.5966238347 4.0000000000
2 0.9856093680 1.0833333333
3 0.6579817478 0.6722408026
4 0.5213884648 0.5060240963
5 0.4445379068 0.4245825972
6 0.3809371214 0.3703285499
7 0.3382979524 0.3309801604
8 0.3076691054 0.3016477220
9 0.2834484269 0.2785807156

Table 2: Comparison of ratios Rk and rk.

3.2. Bias

Motivated by curiosity rather than problems involving Riemann surfaces, we note

that if one defines

P+ := {q | q is prime and q ≡ 1 (mod 4)}

then, by essentially the same argument as that used in Section 2 for P, the corre-

sponding counting function g+(x) for P+-integers n ≤ x is estimated by a similar

formula

g+(x) ∼ c+x√
lnx

=

√
eγ

π
· C

+

2
· x√

lnx
as x → ∞,

where

C+ := C(4,−1) = 0.8689277682343238299091527791046529122939 . . .

according to [14, 15], so that

c+ = 0.3271293669410263824002328690283927996951 . . . .

Since c/c+ = C(4, 1)/C(4,−1) = 1.4872400265 . . ., this shows that P-integers

appear nearly 50% more frequently than P+-integers. This is despite the fact that

the numbers π±(x) of primes q ≤ x satisfying q ≡ ±1 (mod 4) satisfy

π+(x) ∼ π−(x) ∼ π(x)/2 as x → ∞
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by de la Vallée-Poussin’s quantified form of Dirichlet’s theorem on primes in an

arithmetic progression (see [4, Ch. 5, §3.2], for example). The reason for this surpris-

ingly large bias is that the smallest primes q ≡ 1 (mod 4), such as 5, 13, 17, 29, . . .,

are almost always larger than the corresponding primes congruent to −1 (mod 4),

such as 3, 7, 11, 19, . . . (see [8] for a very readable account of this and other similar

phenomena), so that P+-integers tend to be larger and hence less frequently found

than P-integers. For example, the first ten P-integers are 3, 7, 9, 11, 19, 21, 23, 27,

31, 33, while the corresponding P+-integers are 5, 13, 17, 25, 29, 37, 41, 53, 61, 65.

Table 3 gives the numbers of P- and P+-integers n ≤ x for various x. It

looks plausible that the ratios in the last column of the table tend to c/c+ =

1.4872400265 . . . .

x g(x) g+(x) g(x)/g+(x)
10 4 2 2.0000000000
102 26 15 1.7333333333
103 201 123 1.6341463414
104 1 680 1 074 1.5642458100
105 14 902 9 623 1.5485815234
106 135 124 87 882 1.5375618305
107 1 243 370 814 183 1.5271382477
108 11 587 149 7 618 317 1.5209591567
109 108 941 388 71 838 469 1.5164770284

Table 3: Numbers g(x) and g+(x) of P- and P+-integers n ≤ x.

It follows from a theorem of Iwaniec [10] that for each integer A ̸= 0 the number

of primes p ≤ x of the form ξ2 + η2 +A with gcd(ξ, η) = 1 has order of magnitude

x/(lnx)3/2. Now, a positive integer n is properly represented by the quadratic form

ξ2 + η2, that is, with gcd(ξ, η) = 1, if and only if n is not divisible by 4 or by any

prime q ≡ −1 (mod 4), or equivalently, n = m or 2m where m is a P+-integer.

Taking A = −2 we see that there are infinitely many primes p such that p + 2 is

a P+-integer. Unfortunately, there is no quadratic form which plays a similar role

for P-integers.

4. The Twin Prime Conjecture

It is useful now to recall the heuristic arguments used by Hardy and Littlewood

to justify their work in [9] on, among various other problems, the Twin Prime

Conjecture, which asserts that there are infinitely many pairs of twin primes p, p+2.

By the Prime Number Theorem, the probability of a natural number p ≤ x
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being prime is asymptotic to 1/ lnx, so the numbers of primes and of pairs of

primes p, p′ ≤ x are asymptotically equivalent to

Li(x) :=

∫ x

2

dt

ln t
and I2(x) :=

∫ x

2

dt

(ln t)2
.

However, if p and p′ are related by an equation such as p′ = p + 2, rather than

chosen independently, the estimate I2(x) will be incorrect. Since natural numbers

are uniquely determined by their residues (mod q) for all primes q, it makes sense

to apply the restriction p′ = p + 2 through its effect on these residues. For each

prime q, we need to consider the probabilities that p and p′, chosen independently or

with p′ = p+2, being both prime, are both coprime to q (we neglect the vanishingly

small probability that either of them is equal to q). By a simple count of congruence

classes (mod q), we see that these probabilities are, respectively,(
1− 1

q

)2

and 1− ωf (q)

q
,

where ωf (q) is the number of roots of the polynomial f(t) = t(t + 2) (mod q). In

order to replace the first probability, implicit in the estimate I2(x), with the second

more correct probability, we therefore multiply I2(x) by the correction factor

C2(q) =

(
1− 1

q

)−2 (
1− ωf (q)

q

)
.

Doing this for each prime q, we multiply I2(x) by a correction term, called a Hardy–

Littlewood constant,

C(f) =
∏

q prime

C2(q) =
∏

q prime

(
1− 1

q

)−2 (
1− ωf (q)

q

)
.

Clearly ωf (2) = 1 while ωf (q) = 2 for each prime q > 2, so we have an estimate

for the number π2(x) of twin prime pairs p, p+ 2 ≤ x of the form

E2(x) = C(f)I2(x) = 2C2I2(x) = 2C2

∫ x

2

dt

(ln t)2
, (23)

where the initial factor 2 is the correction factor C2(2) corresponding to the prime

q = 2, and

C2 :=
∏
q>2

(
1− 1

q

)−2 (
1− 2

q

)
=

∏
q>2

(
1− 1

(q − 1)2

)
= 0.6601618158 . . . , (24)

with the product over all odd primes q.
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The conjecture is that

π2(x) ∼ E2(x) as x → ∞.

Although it is unproved, there is strong evidence for this conjecture. For example,

it is known that

π2(10
18) = 808 675 888 577 436,

while Maple evaluates

E2(10
18) = 808 675 901 493 606.3 . . . .

The relative error is 0.0000016%.

In 1962 Bateman and Horn [3] made a wide-ranging generalization of the Hardy–

Littlewood estimate, giving a similar conjectured estimate E(x) for the numberQ(x)

of natural numbers t ≤ x at which a given finite set of polynomials f1(t), . . . , fk(t) ∈
Z[t] simultaneously take prime values. It assumes that these polynomials satisfy the

following conditions, which are obviously necessary for there to be infinitely many

such t (Schinzel’s Hypothesis [21] asserts that they are also sufficient):

1. each fi(t) has a positive leading coefficient;

2. each fi(t) is irreducible in Z[t];

3. the product f(t) := f1(t) . . . fk(t) is not identically zero modulo any prime.

The Bateman–Horn Conjecture (BHC) asserts that

Q(x) ∼ E(x) := C

∫ x

a

dt

ln f1(t) . . . ln fk(t)
as x → ∞, (25)

where C is the Hardy–Littlewood constant

C = C(f1, . . . , fk) =
∏

q prime

(
1− 1

q

)−k (
1− ωf (q)

q

)
, (26)

ωf (q) is the number of roots of f (mod q), and the lower limit a in the integral in

(25) is chosen so that the integral avoids singularities where ln fi(t) = 0 for some i.

If conditions (1) to (3) are satisfied then the infinite product in (26) converges to a

limit C > 0 [1, §5], while the definite integral in (25) diverges to +∞ with x, so if the

BHC is true then Q(x) → +∞ and Schinzel’s Hypothesis, that the polynomials fi
simultaneously take prime values for infinitely many t ∈ N, is verified.

This includes the cases of the twin primes and the Sophie Germain primes con-

jectures, where f1(t) = t and f2(t) = t + 2 or 2t + 1, respectively. The BHC has

been proved only in the case of a single polynomial of degree 1: this is the quan-

tified version, due to de la Vallée Poussin, of Dirichlet’s Theorem on primes in an



INTEGERS: 25 (2025) 15

arithmetic progression at+ b. Nevertheless, the estimates produced by the BHC, in

a wide range of applications, agree remarkably well with observed counts obtained

by primality-testing. As an example, with f1(t) = 4t+1 and f2(t) = 4t+3, Table 4

shows the BHC estimates E+
2 (x) for the numbers π+

2 (x) of twin primes p, p+2 ≤ x

with p ≡ 1 (mod 4), those yielding BCC primes p.

x π+
2 (x) E+

2 (x) error
10 1 1.148985018 14.8985%
102 4 5.498634634 37.4659%
103 19 21.62864106 13.8350%
104 105 105.8363607 0.79653%
105 604 623.0852586 3.15981%
106 4 046 4 122.745734 1.89683%
107 29 482 29 375.63915 −0.3608%
108 220 419 220 182.6280 −0.1072%
109 1 712 731 1 712 652.809 −0.0046%
1010 13 706 592 13 705 706.99 −0.0065%

Table 4: Numbers of pairs of twin primes p, p+ 2 ≤ x with p ≡ 1 (mod 4).

5. In the Footsteps of Hardy and Littlewood

We will now adapt the heuristic arguments used by Hardy and Littlewood, and

later by Bateman and Horn, to the slightly different context of our BCC primes

problem.

Using the Prime Number Theorem and Theorem 2 to give the distributions of

prime numbers p and of P-integers n, we first consider

I(x) :=

∫ x

2

c dt

(ln t)3/2

as an estimate for the number a(x) of BCC primes p ≤ x, where c is as in (18). Of

course, this treats p and n as independent random variables, and takes no account

of the fact that n = p+2. In following the example of Hardy and Littlewood, with

a similar heuristic justification, we now apply correction factors only for primes

q ̸∈ P, that is, q = 2 or q ≡ 1 (mod 4), since it is for such q that we need to replace

the probability that independent variables p and n are both coprime to q with the

corresponding probability for p and p+2. We therefore multiply this estimate I(x)
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by 2C+
2 where

C+
2 :=

∏
q≡1(4)

(
1− 1

q

)−2 (
1− 2

q

)
=

∏
q≡1(4)

(
1− 1

(q − 1)2

)
, (27)

with the extra factor 2 corresponding to the prime q = 2.

This leads to the following conjecture.

Conjecture 2. The function a(x) which counts BCC primes p ≤ x satisfies

a(x) ∼ 2C+
2 I(x) = c′

∫ x

2

dt

(ln t)3/2
as x → ∞, (28)

where

c′ = 2C+
2 c =

∏
q≡1 (4)

(
1− 1

(q − 1)2

)
·
√

eγ

π
· C(4, 1). (29)

6. Computations

The various estimates we have discussed can be tested computationally by using

Maple. The definite integrals, such as those appearing in (23) and (28), are eval-

uated accurately and rapidly, even for large values of x, by numerical integration.

The Hardy–Littlewood constants, such as C2 in (24) and C+
2 in (27), are defined

as infinite products which converge slowly; good approximations can be found by

taking partial products over large initial segments of the relevant primes, but on

a laptop these calculations can take a matter of hours. (An alternative method

of approximating these constants is discussed at the end of this section.) Having

evaluated the various estimates, one can compare them with the actual numbers of

terms being counted by using the primality test within Maple.

Using Maple to evaluate (27) for primes q ≤ 1010, we found that

C+
2 ≈ 0.923061132219503810946175811877 . . . ;

the computation took 7 hours and 53 minutes with an Intel i7 processor. The values

of
√

eγ/π and C(4, 1) given in Section 2 allow us to deduce that

c′ ≈ 0.8981751984 . . . (30)

To test the value for c′ in (30) let us define C(x) by

a(x) = C(x)

∫ x

2

(ln t)−3/2dt,
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so we expect that C(x) → c′ as x → ∞. Using Maple to evaluate a(x) and∫ x

2
(ln t)−3/2dt, we found the values of C(x) shown in Tables 5 and 6. We note that,

after some initial instability due to the relatively small numbers of BCC primes ap-

pearing, the values of C(x) decrease almost monotonically towards c′ from x = 107

to x = 35 · 109.

x a(x) C(x)
101 2 0.4688555840
102 12 0.7153107401
103 65 0.8472363117
104 388 0.8706477077
105 2 708 0.9004062930
106 19 969 0.9024565742
107 155 369 0.9040719795
108 1 250 182 0.9023589943
109 10 345 920 0.9011815839
1010 87 545 946 0.9010054301

Table 5: Values of the coefficients C(x) for x = 10k, k = 1, . . . , 10.

Beyond this point, in view of the modest computing facilities available, we con-

sidered segments [x, y] ⊂ R of length y − x = 108 or 107, starting at values x =

1015, 1020, . . . , 1050. The results are shown in Table 7, where a(x, y) = a(y)− a(x)

is the number of BCC primes p ∈ [x, y], and C(x, y) is defined by the equation

a(x, y) = C(x, y) ·
∫ y

x

dt

(ln t)3/2
.

Initially we see a further monotonic decrease towards c′, but then C(x, y) < c′

when x = 1030 and y = 1030 + 108. We are not very concerned about this: for

instance, Littlewood [16] famously showed that the error Li(x)− π(x) in the Prime

Number Theorem changes sign infinitely many times (see also [19] for a similar

phenomenon related to Mertens’s Third Theorem), so why not here? The instability

in the last four rows is perhaps due to the relatively small numbers of BCC primes

appearing in these shorter intervals: for instance, compare the values of a(x, y) with

that of a(x) for the equivalent interval [0, 107].

Here we emphasize an important distinction. The estimate g(x) ∼ cx/(lnx)1/2

in Theorem 2, including the evaluation of c in (18), is proved, as a consequence of

Raikov’s Theorem. The estimate a(x) ∼ c′
∫ x

2
(ln t)−3/2dt in Conjecture 2, including

the formula for c′ given there, is just a conjecture, and we do not expect to see a

proof for it soon. Nevertheless, we feel that the computational data presented in

this section give plausible evidence for the validity of this estimate, and hence for

the infinitude of BCC primes.
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x a(x) C(x)
11 · 109 95 675 252 0.9010083668
12 · 109 103 758 501 0.9010266288
13 · 109 111 794 166 0.9010090565
14 · 109 119 795 477 0.9010345605
15 · 109 127 757 388 0.9010373485
16 · 109 135 683 004 0.9010241227
17 · 109 143 578 133 0.9010192899
18 · 109 151 444 525 0.9010197264
19 · 109 159 283 669 0.9010228308
20 · 109 167 092 278 0.9010018195
21 · 109 174 878 590 0.9009949342
22 · 109 182 641 563 0.9009888293
23 · 109 190 382 424 0.9009836658
24 · 109 198 100 186 0.9009699991
25 · 109 205 796 174 0.9009503295
26 · 109 213 474 480 0.9009388161
27 · 109 221 136 287 0.9009360946
28 · 109 228 778 913 0.9009277506
29 · 109 236 403 538 0.9009161678
30 · 109 244 014 302 0.9009145456
31 · 109 251 607 900 0.9009079931
32 · 109 259 184 139 0.9008943241
33 · 109 266 743 992 0.9008756612
34 · 109 274 293 778 0.9008715586
35 · 109 281 827 468 0.9008601041

Table 6: Values of the coefficients C(x) for x = m · 109, m = 11, . . . , 35.

x y − x a(x, y) C(x, y)
1015 108 442 649 0.8985037831
1020 108 287 429 0.8982538979
1025 108 205 949 0.8994835673
1030 108 156 398 0.8979178604
1035 107 12 389 0.8963174519
1040 107 10 299 0.9103503807
1045 107 8 554 0.9022181293
1050 107 7 507 0.9273527313

Table 7: Estimation over segments [x, y].



INTEGERS: 25 (2025) 19

An anonymous referee has suggested an alternative method of approximating the

infinite product (27) by taking logarithms, splitting the resulting infinite series into

those terms involving primes q ≤ x and the rest, and then applying Equation (4.14)

in [20] to the latter. Using this method with x = 1010, and working to 40 decimal

places, we obtained upper and lower bounds

U = 0.9230611322237775452345671972710771393934,

L = 0.9230611322152300766578062881426292862307

for C+
2 , which confirm the first ten decimal places of the value obtained above. This

computation took 12 hours and 13 minutes.

7. A Similar Problem

In the construction of Riemann surfaces used by Bujalance, Cirre, and Conder in [5]

and considered here, it is important for group-theoretic reasons that the prime p

and the P-integer n should differ by 2. However, it is clear that in the arguments we

have used one could generalize this relationship, and still obtain similar estimates

for the distribution of such primes. For instance, one could replace the difference 2

here with any non-zero even integer. We now give a less trivial example, also arising

from [5].

Having obtained an Accola–Maclachlan-type lower boundM(g) ≥ 4(g−1) for the

largest possible order M(g) of the automorphism group of a pseudo-real Riemann

surface of odd genus g ≥ 3, the authors of [5] have presented a set G of genera g

for which this bound is sharp. Note that the sharpness of the corresponding bound

M(g) ≥ 2g for even genera g ≥ 2 is left as an open problem. For this they give

a similar construction (see the remark following their Theorem 5.2) of a family of

pseudo-real Riemann surfaces of genus g = 2p + 1 where p is what we will call a

BCC2 prime, defined as follows.

Definition 2. A BCC2 prime is a prime number p such that

p ≡ 3 (mod 8), p ≡ 2 or 5 (mod 9) and p ̸≡ 5 (mod 7), (31)

and

n := p+ 1 is not divisible by 11, 23, 47 or by

any prime q ≡ 1 (mod 3) or q ≡ 1 (mod 4). (32)

This raises the following problem, which appears to be even more challenging

than Problem 1.

Problem 2. Are there infinitely many BCC2 primes?
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These primes are much rarer than the BCC primes considered earlier: for example,

compare Table 8, which shows the first sixteen of them, with the corresponding list

of BCC primes in (1).

p factors of n = p+ 1 = 12m m (mod 7) r = m (mod 84)
11 22 · 3
1283 22 · 3 · 107 2 23
1571 22 · 3 · 131 5 47
2003 22 · 3 · 167 6 83
3011 22 · 3 · 251 6 83
7043 22 · 3 · 587 6 83
7907 22 · 3 · 659 1 71
8627 22 · 3 · 719 5 47
9923 22 · 3 · 827 1 71
10 067 22 · 3 · 839 6 83
15 107 22 · 3 · 1259 6 83
15 683 22 · 3 · 1307 6 83
17 123 22 · 3 · 1427 6 83
17 987 22 · 3 · 1499 1 71
18 131 22 · 3 · 1511 6 83
19 427 22 · 3 · 1619 2 23

Table 8: The first sixteen BCC2 primes p.

First let us restate the definition of BCC2 primes in terms of n. The congruences

(mod 8) and (mod 9) in condition (31) are equivalent to n = p + 1 ≡ 4 (mod 8)

and n ≡ 3 or 6 (mod 9), that is, n = 12m for some m coprime to 12; when this is

satisfied the condition p ̸≡ 5 (mod 7) in (31) is equivalent to m ̸≡ 4 (mod 7). Thus

condition (31) is equivalent to

n = 12m where (12,m) = 1 and m ̸≡ 4 (mod 7). (33)

Similarly, when this is satisfied, condition (32) is equivalent to

each prime q dividing m satisfies 47 < q ≡ −1 (mod 12). (34)

Thus conditions (31) and (32), taken together, are equivalent to (33) and (34), also

taken together. Recall that in addition we require n − 1 (= p) to be prime (and

greater than 7), which implies that m ̸≡ 3 (mod 7) since otherwise we would have

12m − 1 ≡ 36 − 1 ≡ 0 (mod 7), while conditions (33) and (34) imply that m ̸≡ 4

and m ̸≡ 0 (mod 7), so we have

m ≡ 1, 2, 5 or 6 (mod 7). (35)
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In Table 8, apart from p = 11, all entries have the property that n = 12m for

some prime m. Indeed, the first exception to this is p = 41 771, with n = 12 · 592.
Moreover, among the 172 515 BCC2 primes p ≤ 109, there are only 41 711 for which

m is not prime. Motivated by this, instead of attempting to estimate the distribution

of the whole set of BCC2 primes, as we did in the case of the BCC primes, we will

apply the Bateman–Horn Conjecture (see Section 4) to give strong evidence that

there are infinitely many of them for which m is prime. This is analogous to the

argument at the end of Section 4, where we considered those BCC primes p which

are members of twin primes p, p+ 2.

Let us therefore assume that n = 12m for some prime m > 47 such that m ≡ −1

(mod 12) and m ≡ 1, 2, 5 or 6 (mod 7), or equivalently m ≡ r (mod 84) where

r = 71, 23, 47 or 83 by the Chinese Remainder Theorem. Clearly, any such choice

of m satisfies conditions (33), (34) and (35). For each such r, we are therefore

looking for integers t ≥ 0 such that the polynomials

f1(t) = 84t+ r

and

f2(t) = 12f1(t)− 1 = 1008t+ 12r − 1

both take prime values, namely m and p. These two polynomials are irreducible,

with positive leading coefficients, and their product f is not identically zero modulo

any prime, so we have four instances of the Bateman–Horn Conjecture, one for

each value of r. In each case the BHC gives an asymptotic estimate Er(x) for the

number Qr(x) of integers t ≤ x such that f1(t) and f2(t) are both prime. We have

ωf (q) = 0 for the primes q = 2, 3 and 7, and ωf (q) = 2 for all other primes, so the

Hardy–Littlewood constant C = C(f1, f2), which is independent of r, is positive.

In fact, comparing the infinite products for C and for Ctwins := 2C2 (see Section 4),

which differ at only these three primes, shows that

C =
42

5
· Ctwins =

42

5
· 1.3203236316 . . . = 11.0907185062 . . . .

It follows that Er(x) → +∞ as x → ∞, giving evidence that for each r there are

infinitely many prime values m and p for f1 and f2, and thus infinitely many BCC2

primes p.

To test this approach we found that of the 172 515 BCC2 primes p ≤ 109, the

number with m prime, as we have been assuming, is Q = 130 804. The four BHC

estimates

Er(x) = C ·
∫ x

2

dt

ln f1(t) ln f2(t)

were computed by taking x = 992 062; beyond this point the primes p = 1008t +

12r−1 begin to be greater than 109. The four values obtained were almost identical,
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ranging from 32 709.13 to 32 709.29. Their sum gave an estimate of E = 130 836.81

for Q, with an error of 0.025%.

After we submitted this paper, another similar problem, arising from automor-

phism groups of maps, came to our attention. This asks for the distribution of those

n ∈ N for which some x ∈ Z satisfies x2 + x + 1 ≡ 0 (mod n). It follows from the

Chinese Remainder Theorem that the set S of such n is P∗ ∪̇ 3P∗, where P is now

the set of primes q ≡ 1 (mod 3). Arguments similar to those used in Section 2 show

that the number ḡ(x) of P-integers n ≤ x satisfies ḡ(x) ∼ c̄/
√
lnx where

c̄ =
2

3

√
eγ

π
C(3,−1) = 0.3012165545 . . . .

The number of n ≤ x in S is ḡ(x) + ḡ(x/3) ∼ 4ḡ(x)/3.
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Appendix

Here we briefly summarize the construction of the pseudo-real Riemann surfaces

in [5] which give rise to Problems 1 and 2. In the first case, for any even g ≥ 2 let Γ

be an NEC group with signature (1;−; [2, 2, g]; {−}). This means that Γ acts as a

group of isometries of the hyperbolic plane H, with canonical generators d (a glide

reflection) and x1, x2, x3 (elliptic elements), and defining relations

x2
1 = x2

2 = xg
3 = d2x1x2x3 = 1,

so that the quotient-surface H/Γ is the real projective plane with three cone-points

of orders 2, 2 and g.

Now let θ : Γ → C2g = ⟨u | u2g = 1⟩ be the surface-kernel epimorphism defined

by

d 7→ u, x1 7→ ug, x2 7→ ug, x3 7→ u−2,

and let K = ker θ. Then K is contained in the orientation-preserving subgroup

Γ+ of index 2 in Γ, so S := H/K is a compact Riemann surface, of genus g by
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the Riemann–Hurwitz formula. There is a natural action of Γ/K and hence of C2g

on S, with the elements of the subgroup ⟨u2⟩ ∼= Cg and its complement acting

as conformal and anticonformal automorphisms of S, and with S/C2g
∼= H/Γ; the

canonical double cover S/Cg
∼= H/Γ+ of this orbifold is the Riemann sphere with

four cone-points of order 2 and two of order g.

The generator u of C2g acts as an anticonformal automorphism of S of order 2g,

whereas the only involution in G (namely ug) acts conformally. One can choose

the cone-points so that Γ is a maximal NEC group, in which case S has no further

automorphisms (conformal or anticonformal), and is therefore pseudo-real. A de-

tailed argument in [5, Theorem 4.8] shows that, provided g satisfies various other

conditions (namely those defining the set A, together with g > 30), no pseudo-real

surface of genus g can have an abelian group of conformal automorphisms with

more than g elements, so that M+
ab(g) = g. For example, since p+ 2 has no prime

factors q ≡ 1 (mod 4), AutCp+2 (of order φ(p + 2)) has no elements of order 4, a

fact used in subcase (2c) of the proof of Theorem 4.8 to eliminate Cg+1 = Cp+2.

The construction of the surfaces S giving rise to Problem 2 is similar, except

that in this case Γ has signature (1;−; [2, 2, 2]; {−}), S has genus g = 2p+1 with a

full automorphism group

⟨u, v | u2 = v4p = 1, vu = v2p−1⟩ ∼= C4p ⋊ C2

of order 8p = 4(g − 1), and θ is given by

d 7→ uv, x1 7→ u, x2 7→ u, x3 7→ v2p.

It is shown in [5, Theorem 5.3] that if p is a prime satisfying the conditions stated in

Section 7 then no pseudo-real surface of genus g has a larger automorphism group,

so that M(g) = 4(g − 1).


