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Abstract
Let p(n) denote the number of overpartitions of n. Many scholars have investigated
congruence properties modulo powers of 2 that hold for p(n). In this paper, we
establish two infinite families of congruences modulo 512 for p(n) by employing
some ¢-series techniques. For instance, one result proved in the present paper is
that for any a > 0 and n > 0,

p(3%t7(24n +5)) =0 (mod 512).

Finally, we conjecture that there are two infinite families of congruences modulo
high powers of 2 satisfied by p(n).

1. Introduction

A partition of a positive integer n is a weakly decreasing sequence of positive integers
whose sum equals n. To provide combinatorial proofs for some well-known g¢-series
identities, Corteel and Lovejoy [4] introduced the concept of overpartitions. An
overpartition of n is a partition of n in which the first occurrence of a number may
be overlined. Let p(n) denote the number of overpartitions of n, and we define that
p(0) = 1. From [4], the generating function for p(n) is given by

oy GG (@716
;p(n)q @0~ (@0 (1)

where we always assume that ¢ is a complex number such that |¢| < 1 and adopt
the following standard notation:

oo

(a:q)oo = [J (1 — ad®).
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In 2004, Mahlburg [12] proved that
#{0<n<X:p(n)=0 (mod 64)}

Py X =L
He further conjectured that for any positive integer k,
< X:pn) = 2k
lim #{0<n< X:p(n)=0 (mod 2)} _1q @)
X —o0 X

The above conjecture, if true, would be a powerful arithmetic density property
modulo powers of 2. Kim [10] and Xiong [14] later confirmed (2) for the cases k =7
and k = 8. Although Mahlbug’s conjecture is still open for any k > 9, it reveals
that there are numerous congruence properties modulo powers of 2 for p(n).

Many scholars have studied congruence relations modulo 2 for the function p(n).
For instance, Fortin et al. [7], and Hirschhorn et al. [8] have established the 2-,
3- and 4-dissections of the generating function of p(n), enabling the derivation of
certain congruences modulo 4 and 8. In particular, they deduced the following three
Ramanujan-like identities:

(¢%6°)%.(¢% ¢®)2,
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Zﬁ(?n +1)g" =2
n=0

> p(4n +3)g" =8
n=0
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> B8+ 7)g" = 64((6[(])33. (3)
n=0 7 4/00

Hirschhorn et al. [8] further conjectured that

0 (mod 4) if /=43 (mod 8),

pln+r)= {0 (mod 8)  if £=+1 (mod 8),

where / is an odd prime and r is a quadratic nonresidue modulo ¢. This conjecture
was subsequently proved by Kim [11].

Additionally, Kim [11] got a complete characterization of p(n) modulo 8. An-
dersen [1] considered several Hecke-type congruences modulo small powers of 2 for
p(n). Later, several authors have established Ramanujan-type congruences modulo
16, 32, and 64 for p(n); see, for example, [3, 5, 17]. Chen et al. [3] demonstrated
that p(n) satisfies congruences modulo powers of 2, while Du et al. [6] derived
several congruence families modulo small powers of 2 satisfied by p(n). Tang [13]
also deduced numerous internal congruences and congruences modulo powers of 2
for p(n). Yang et al. [16] proved several infinite families of congruences modulo 256
that hold for p(n). They derived that for any o > 0 and n > 0,

p(3*T3(24n + 5)) = p(3**"*(24n + 13)) =0 (mod 256). (4)
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Shortly thereafter, Yao [18] derived several infinite families of congruences modulo
64 and 1024 for p(n). She proved that for any a > 0 and n > 0,

p(3'%*+15(24n 4 5)) = p(3'%"1%(24n + 13)) =0 (mod 1024). (5)

Recently, Xue and Yao [15] further established many explicit congruences modulo
2048 for p(n). They proved that for any o > 0 and n > 0,

p(3%%*13(24n 4 5)) = p(3%* " (24n + 13)) =0 (mod 2048). (6)

Therefore, it is natural to ask whether there exist congruence families modulo 512
similar to (4)-(6) for p(n). The following theorem says that there is a positive
answer for this question.

Theorem 1. For any a > 0 and n > 0,
p(3%T7(24n +5)) = p(3%*T7(24n + 13)) =0 (mod 512). (7)
Motivated by (4)-(7), we pose the following conjecture.
Conjecture 1. For any m > 2, a > 0, and n > 0,

ﬁ(327na+27n_1(24n + 5)) — ﬁ(gznza+27ﬂ_1<24n + 13)) = O (mOd 2m+6) (8)

2. Proof of Theorem 1

In this section, we give a proof of Theorem 1. Before stating it, we collect the
following important lemma. For the sake of convenience, we write

E(q) = (¢:9)oo

Lemma 1. We have

E(¢*)? E(®)E(¢°)? , E(¢'®)?

Bq)  B@EG®) U E) ©)
E(®)PE@")°®  E@)®E(®)  3E(¢"®)° (10)
E(@PE@S?  E@'E@®?2 T E)?

Bla) _ E@)?E@)  E(@)°E@®)  E@) Eq®) (11)
E@)? B E(¢°)7 T BB

The identity (9) is from [2, p. 49, Corollary], while (10) and (11) come from [9,
Lemmas 2.1 and 2.2].
Now, we turn to prove Theorem 1.
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Proof of Theorem 1. In what follows, all the congruences are modulo 512 unless
otherwise specified. By (3) and (9), we have

< . E(g?)" B E(¢%)E(¢°)? E(q'®)? 7
>pton+ D" = a0 = o1 e + o )

Picking out those terms in which the power of ¢ is congruent to 1 modulo 3, and
applying (10), we can see that

Zp (Bn+1 +7)q3"+1

_ E(q°)'°E(¢%) +E(°)PE(¢"®)° E(q'®)
:64(‘ BB B E@r ) (12)

then, dividing both sides of (12) by ¢ and replacing ¢ by q'/3, we have

Z p(24n + 15)¢"

n=0
(_ E()°E(*) , B(@)°E(¢°)° zE(q6)14>
E(q)*E(¢°)
(

=0 2 T EOEE? L By

o B (E@?\ . B (B@®?\ ., 2B
64( E(q6)2( E(q)> 3qE(q3)3< E(q)> 3q E(q3)7>. (13)

3n+2, lt

Next, substituting (9) into (13), and selecting those terms of the form of ¢
turns into

Z (24(3n +2) + 15)¢*"+?

_ i E@) (2 BG B@)
=04 zop (4 By~ By )

TEB@EE T EE
E(qﬁ>6<4 E(¢°)® 4E<q18>8> L E(g%)™
E(¢3)3

3 "E@ " B

:64<5 2B | B B B IGE(QS)).

E@)7 U B@EPE@T ! B E)?

After simplification, we deduce that

E(@)™  E(¢*)°E(¢%)® 2 E(q)E(¢%)'6
(5 B BB T E<q2>2E<q3>8)' (14)

> B(72n+ 63)¢" = 64
n=0

3n+1

Applying (9)-(12), picking out those terms of the form of ¢ , and substituting
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(11) into (14), upon simplification, one can arrive at

o
> p(72(3n + 1) + 63) ¢
n=0

_ E(¢°)'E(q°) L E(¢°)PE(¢'®)° E(q'®)H
:64<4"E<q3>8E<q18>2 B T B@) )

or, equivalently,

> p(216n + 135)¢"
n=0

_ E(¢*)'°E(¢®) E(*)PE(%)°® L E(®)"
:64<4E<q> B2 T BB E<q3>7)
_ E(¢®) (E(¢%) E(®)° (E@®)*\" | ,E(¢®)"
‘64(4E<q6>2< E(q>> *1ogas (i )

Following a similar strategy as above, we find that

> D(216(3n +2) + 135)¢*"+?

n=0
_ E(¢®) ([, 2E(%)" E(q'®)!
:64<4E<q6>2 <4q BF 2 By )
E(®)° (. E(¢°)® E(q"®)® E(¢°)*

HRYOIPIE <4qE(q3)4_3q E(¢°) >+ E(¢3)7 )

_ 2 E(%)" 5 E(¢°)°E(¢'%)® s E(¢®)E(q"®)!

‘64<q B T E@EPE@T T B PR >

That is,

iﬁ(648n+567)q" _ 64(E(q2)14 +4qE(qQ)6E(qG)8 g E(q)E(¢5)'° )
= B E(q)" E(q)*E(¢®)* E(¢*)*E(¢*)® )

Utilizing (9)-(12), we obtain

> p(648(3n + 1) + 567) >+

n=0
_ E(®)'°E(¢°) | 4E(¢°)3E(q'®)° E(q'®)1
:64<3QE<q3>8E<q18>2 O EErEey M B@) ) |
Hence,
= W (CE@)SE(®) | E@PE) B
2 P9Hn+1215)g :64(3 B ER B EEE E<q3>7>'

n=0
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In the same vein, we derive that

> p(1944(3n + 2) 4 1215)¢*" 2

n=0

(o O BUVEG, BB

E@)7 U BE@PE@T ! B@PEQ@)
from which we obtain that

(oo}

B _ E(q2)14 E(q2 GE(q(S)S 0 E(q)E(qb)li)
2_ P83 +5108)g =643 R Ee B

Using (9), (10), and (12), we further arrive at

E
Zp (5832(3n + 1) + 5103)¢*"*! = 64 7(?;
n=0

It follows that

Zp (17496n + 10935)g ip 8. 37n+5,37)qn:64q2w (15)
n=0 o o BE(g3)7"
Finally,
Z (17496(3n + 2) + 10935)q i 8-3%n47-3%)¢" = REC
= =0 BT

Thus, one can obtain that for any n > 0,
p(8-3%n+7-3%) =p(8n+7). (16)

Based on (16) and induction, we can deduce that for any o > 0,

= = 8a 8a\ ,n = = n E(q2)14
> (835 n 4+ 735" =) p(8n+T7)¢" =64 BT (17)
n=0
Combining (15) and (17) gives
. — 8a+7 S8a+7\ n — 2 (q6)14
> p(8-3%F T+ 535 T)g" = 64q @) (18)

n=0

Since there are no terms in which the powers of ¢ are congruent to 0 or 1 modulo
3 on the right-hand side of (18), we readily get

p(S . 3804+7(3n) + 5. 38a+7) =

p(8-3% T Bn+1)+5-3%%") =

(mod 2%),

0
0 (mod 2%).

This completes the proof. O
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3. Closing Remarks

In this paper, we establish two infinite families of congruences modulo 512 for the
overpartition function p(n) by utilizing some g-series techniques. Moreover, we
conjecture that there exist two infinite families of congruences modulo high powers
of s satisfied by p(n). Obviously, if (8) is true, then for any k > 1, the following
inequality also holds:

lim #{0<n<X:p(n)=0 (mod 2%)}

X —o00 X > 0.
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