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Abstract

We first introduce the Mallows tree as the labeled infinite ternary tree whose vertices

are labeled by certain pairs of fractions. Then, using it, we introduce a way of

representing irrational numbers from (0, 1) \Q as infinite sequences of L’s, M’s, and

R’s, which we call the Mallows representation of the irrational numbers. We present a

number of results on the combinatorics and metric theory of Mallows representations,

including a characterization of those α ∈ (0, 1) \Q which have eventually periodic

Mallows representations.

1. Introduction

Starting with the initial sequence ⟨ 01 ,
1
1 ⟩, successively update it by inserting fractions

as follows. In the first step, between 0
1 and 1

1 , insert their mediant 0+1
1+1 to obtain

⟨ 01 ,
1
2 ,

1
1 ⟩. In the second step, between each adjacent pair of fractions from ⟨ 01 ,

1
2 ,

1
1 ⟩,

insert their mediants 0+1
1+2 and 1+1

2+1 to obtain ⟨ 01 ,
1
3 ,

1
2 ,

2
3 ,

1
1 ⟩. In the third step,

between each adjacent pair of fractions from ⟨ 01 ,
1
3 ,

1
2 ,

2
3 ,

1
1 ⟩, insert their mediants

0+1
1+3 ,

1+1
3+2 ,

1+2
2+3 , and

2+1
3+1 to obtain ⟨ 01 ,

1
4 ,

1
3 ,

2
5 ,

1
2 ,

3
5 ,

2
3 ,

3
4 ,

1
1 ⟩, and so on. The Stern–

Brocot tree [1, 8] is the labeled binary tree whose jth level (j ≥ 1) is labeled by

the fractions inserted at the jth step. (Let us mention that what is usually called

the Stern–Brocot tree is something more general, of which the above one is the left

subtree; see Remark 1.) It is known that this tree contains (as a label of some vertex)

each fraction from (0, 1) ∩ Q precisely once. Also, at each level of the tree, the

left-to-right order accords with the increasing order. For background information,

we refer the reader to [2].

Take an irrational number α ∈ (0, 1) \ Q arbitrarily. Then it should be either

smaller or larger than 1
2 . Suppose that it is smaller than 1

2 . Then it should be either

smaller or larger than the left (equivalently, smaller) child 1
3 of 1

2 . Suppose that it is
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larger than 1
3 . Then it should be either smaller or larger than the right (equivalently,

larger) child 2
5 of 1

3 . By continuing in this way, we can associate an infinite sequence

of L’s (for “left”) and R’s (for “right”) with each irrational number from (0, 1) \Q.

As this correspondence between irrational numbers and associated infinite sequences

is one-to-one, the associated infinite sequences can be used to represent irrational

numbers. Let us call the associated infinite sequence the Stern–Brocot representation

of the irrational number.

In [5], Mallows introduced a variation of the Stern–Brocot sequence by inserting

not one but two fractions in the above construction. Explicitly, in the first step,

between 0
1 and 1

1 , insert two fractions 0+1
1+1 and 0+2·1

1+2·1 to obtain ⟨ 01 ,
1
2 ,

2
3 ,

1
0 ⟩. In the

second step, between 0
1 and 1

2 (resp. 1
2 and 2

3 ,
2
3 and 1

1 ), insert
0+1
1+2 and 0+2·1

1+2·2 (resp.
2·1+2
2·2+3 and 1+2

2+3 ,
2+1
3+1 and 2+2·1

3+2·1 ) to obtain ⟨ 01 ,
1
3 ,

2
5 ,

1
2 ,

4
7 ,

3
5 ,

2
3 ,

3
4 ,

4
5 ,

1
1 ⟩, and so forth.

Let us write MTi (i ≥ 1) for the ordered set consisting of the fractions inserted

at the ith step. Then each fraction from (0, 1) ∩Q appears in one of MTi (i ≥ 1)

precisely once. Moreover, the left-to-right order accords with the increasing order

on MTi for each i ≥ 1. For proofs, see [5] or [3].

In this article, we first introduce the Mallows tree as the labeled infinite ternary

tree whose ith level (i ≥ 1), in left-to-right order, is labeled by 3i−1 pairs of fractions

from MTi. (Here, we are identifying the ordered set MTi of 2 · 3i−1 fractions

with the ordered set of 3i−1 pairs of fractions.) Then, in the same spirit as the

Stern–Brocot representation, which represents irrational numbers from (0, 1) \Q as

infinite sequences of L’s and R’s by using the Stern–Brocot tree, we introduce the

Mallows representation of irrational numbers, which represents irrational numbers

from (0, 1) \Q as infinite sequences of L’s (for “left”), M’s (for “middle”), and R’s (for

“right”) by using the Mallows tree. After establishing the link between the Mallows

representations and the Stern–Brocot representations in Section 3, we shall prove a

number of assertions in the combinatorics of Mallows representations in Section 4,

including the following ones: the Mallows representation of an α ∈ (0, 1) \ Q
is eventually periodic if and only if α is quadratic (Corollary 2); the Mallows

representation of an α ∈ (0, 1)\Q is positively Poisson stable (resp. transitive) if and

only if the continued fraction representation of α is positively Poisson stable (resp.

transitive) (Corollaries 3 and 4); the Mallows representation of an α ∈ (0, 1) \ Q
does not contain an occurrence of M if and only if for all k ≥ 1, the 2kth element of

the continued fraction representation of α is even (Proposition 9). In Section 5, we

shall substantiate various assertions in the metric theory of Mallows representations,

including the ensuing ones: for almost every α ∈ (0, 1) \ Q, any finite sequence

containing either M or both L and R appears in its Mallows representation with

frequency 0 (Theorem 6); for almost every α ∈ (0, 1) \Q, the ℓth matching fraction

of its Mallows representation is 1 for all ℓ ≥ 1 (Theorem 7); the measure of the

set of those α ∈ (0, 1) \Q whose Mallows representations contain M at position i is

bounded above by 3− 2
√
2 (Theorem 9).
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2. Preliminaries

2.1. Notation and Terminology

Let us first set up notation and terminology on sequences. The length of a finite

sequence w is written as lh(w). We shall use the symbol ⌢ to represent the

concatenation operator, e.g., ⟨1, 2⟩⌢⟨3, 4, 5⟩ = ⟨1, 2, 3, 4, 5⟩. Also, wn (resp. w∞)

stands for the concatenation of n (resp. countably many) copies of w. The set of all

length ℓ (resp. infinite) sequences over a non-empty set Σ is denoted by Σℓ (resp. Σ∞).

Given a sequence ⟨x1, x2, x3, . . .⟩, we say that xi is at position i of this sequence.

The expressions of the form ⟨xi⟩n+ℓ−1
i=n and ⟨xi⟩∞i=n are understood to mean the

finite sequence ⟨xn, xn+1, . . . , xn+ℓ−1⟩ and the infinite sequence ⟨xn, xn+1, xn+2, . . .⟩,
respectively.

Let us next fix our notation and terminology on continued fractions, most of which

are taken from [4]. We write [a0; a1, a2, . . . ] and [a0; a1, . . . , aℓ] for the following

infinite and finite continued fractions, respectively:

a0 +
1

a1 +
1

a2 + .. .

and a0 +
1

a1 +
1

. . . +
1

aℓ

.

We assume that a0 is an integer and a1, a2, . . . are positive integers. We call

a0, a1, a2, . . . elements of the continued fraction. In this article, we shall use continued

fractions to represent real numbers: For each irrational number α, there exists a

unique infinite continued fraction whose value is equal to α, which we take as the

continued fraction representation of α. For each rational number α, there exist

precisely two finite continued fractions whose values are equal to α. Since they are of

the form [a0; a1, . . . , aℓ] and [a0; a1, . . . , aℓ − 1, 1] (ℓ ≥ 0), we take the former as the

continued fraction representation of α. Henceforth, for brevity, we shall abbreviate

the continued fraction representation as the CF-representation. Also, we shall call

elements of the CF-representation of α simply elements of α.

Lastly, we shall present our notation and terminology on trees. Throughout this

article, a tree means a rooted infinite (either binary or ternary) tree. In such a tree,

the concept of level is defined inductively as follows. The root is at level 1. If a

vertex is at level ℓ, then its children are at level ℓ + 1. We also use the ensuing

concept. For any vertices v, v′ in the rooted infinite binary tree T such that v is

equal to or an ancestor of v′, the path from v to v′ is a finite sequence PathT(v, v
′)
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Figure 1: Top levels of the Stern–Brocot tree.

over the binary set {L, R} defined recursively by

PathT(v, v
′) =



⟨⟩ if v = v′,

⟨L⟩⌢PathT(v
′′, v′) if the left child v′′ of v is

equal to or an ancestor of v′,

⟨R⟩⌢PathT(v
′′, v′) if the right child v′′ of v is

equal to or an ancestor of v′.

2.2. The Stern–Brocot Tree and the Stern–Brocot Representation

Let us start with the definition of the Stern–Brocot tree.

Definition 1. Define ordered sets SBTj (j ≥ 1) of 2j−1 fractions inductively as

follows. Let SBT1 =
{

1
2

}
. Suppose that we have defined SBT1,SBT2, . . . ,SBTj ,

and let n1

m1
< n2

m2
< · · · < n2j+1

m2j+1
be the elements of

{
0
1 ,

1
1

}
∪SBT1∪SBT2∪· · ·∪SBTj .

Then SBTj+1 is the ordered set
{

n1+n2

m1+m2
, n2+n3

m2+m3
, . . . ,

n2j+n2j+1

m2j+m2j+1

}
.

The Stern–Brocot tree (SBT) is the labeled binary tree such that the labels of its

jth level (j ≥ 1), in left-to-right order, is SBTj (see Figure 1).

Since the fraction n1+n2

m1+m2
is called the mediant of n1

m1
and n2

m2
, the above way of

constructing SBTj+1 from
{

0
1 ,

1
1

}
∪ SBT1 ∪ SBT2 ∪ · · · ∪ SBTj is referred to as the

mediant construction.

Remark 1. What we have defined above is in fact different from what is usually

called the Stern–Brocot tree [1, 8]. Usually, the Stern–Brocot tree is defined first

by setting SBT1 =
{

1
1

}
and then by applying the above mediant construction to{

0
1 ,

1
0

}
∪SBT1∪SBT2∪· · ·∪SBTj . Thus, ours is the left subtree of the usual version
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of the Stern–Brocot tree. We adopted the above definition not only because we do

not use the usual version of the Stern–Brocot tree in this article but also because,

by doing so, we do not have to write the phrase “the left subtree of” repeatedly.

The ensuing properties are well-known (see [2]).

Proposition 1. (i) For each fraction n
m from (0, 1) ∩ Q, there exists precisely

one vertex which has label n
m .

(ii) On each SBTj (j ≥ 1), the left-to-right order accords with the increasing order.

(iii) The path from the root v to a vertex v′ is given by the following formula:

Path SBT(v, v
′)=


⟨L⟩a1−1⌢⟨R⟩a2⌢⟨L⟩a3⌢⟨R⟩a4⌢· · ·⌢⟨L⟩aℓ−1 if ℓ > 1 is odd,

⟨L⟩a1−1⌢⟨R⟩a2⌢⟨L⟩a3⌢⟨R⟩a4⌢· · ·⌢⟨R⟩aℓ−1 if ℓ > 1 is even,

⟨L⟩a1−2 if ℓ = 1,

where a1, a2, . . . , aℓ are the elements of the CF-representation [0; a1, a2, . . . , aℓ]

of the label of v′.

Since Part (i) of the above proposition guarantees that different vertices have

different labels in the Stern–Brocot tree, we shall hereafter freely identify a vertex

with its label without explicit mention.

Take an irrational number α ∈ (0, 1) \ Q arbitrarily. Then it should be either

smaller or larger than 1
2 . Suppose that it is smaller than 1

2 . Then it should be either

smaller or larger than the left (equivalently, by Proposition 1 (ii), smaller) child 1
3 of

1
2 . Suppose that it is larger than 1

3 . Then it should be either smaller or larger than

the right (equivalently, by Proposition 1 (ii), larger) child 2
5 of 1

3 . By continuing in

this way, we can associate an infinite sequence of L’s (for “left”) and R’s (for “right”)

with each irrational number. Let us make this idea precise (see [2]).

Definition 2. For each irrational number α ∈ (0, 1) \ Q, define a fraction fj(α)

from SBTj and SBj(α) ∈ {L, R} for j ≥ 1, inductively, as follows:

• Set f1(α) =
1
2 .

• Suppose that we have defined fj(α). Then set

SBj(α) =

{
L if α < fj(α),

R if α > fj(α).

Define fj+1(α) to be the left (resp. right) child of fj(α) in the Stern–Brocot

tree if SBj(α) = L (resp. R).

Then the Stern–Brocot representation of α ∈ (0, 1) \ Q is the infinite sequence

SB(α) := ⟨SB1(α),SB2(α),SB3(α), . . .⟩ ∈ {L, R}∞.
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Figure 2: MTi for the first few i ≥ 1.

The following can readily be observed.

Proposition 2. For any α ∈ (0, 1) \Q, we have

(i) limj→∞ fj(α) = α;

(ii) SB(α) = ⟨L⟩a1−1⌢⟨R⟩a2⌢⟨L⟩a3⌢⟨R⟩a4⌢ . . ., where [0; a1, a2, . . . ] is the CF-

representation of α.

Write SB for the set {SB(α) | α ∈ (0, 1) \Q}. Then, from the second equation of

the above proposition, the next corollary can be inferred.

Corollary 1. The following relation holds:

SB = {⟨xj⟩∞j=1 ∈ {L, R}∞ | For no j0,we have ⟨xj⟩∞j=j0 = ⟨L⟩∞ or = ⟨R⟩∞}.

2.3. The Mallows Tree and the Mallows Representation

Recall from Definition 1 that the ordered set SBTj+1 is obtained from the set{
0
1 ,

1
1

}
∪ SBT1 ∪ SBT2 ∪ · · · ∪ SBTj by inserting one fraction between each pair of

adjacent fractions. By inserting not one but two fractions, Mallows [5] introduced

ordered sets MTi (i ≥ 1) of 2 ·3i−1 fractions as follows. Let MT1 =
{

1
2 ,

2
3

}
. Suppose

that we have defined MT1,MT2, . . . ,MTi, and let n1

m1
< n2

m2
< · · · < n3i+1

m3i+1
be

the elements of
{

0
1 ,

1
1

}
∪MT1 ∪MT2 ∪ · · · ∪MTi. Then MTi+1 is the ordered set{

n′
1

m′
1
,
n′
2

m′
2
, . . . ,

n′
2·3i

m′
2·3i

}
, where

⟨ n′
2k−1

m′
2k−1

,
n′
2k

m′
2k
⟩ =

{
⟨ nk+nk+1

mk+mk+1
, nk+2nk+1

mk+2mk+1
⟩ if nk is even,

⟨ 2nk+nk+1

2mk+mk+1
, nk+nk+1

mk+mk+1
⟩ if nk is odd

for each k ∈ {1, 2, . . . , 3i} (see Figure 2).
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Figure 3: Top levels of the Mallows tree.

By identifying the ordered set MTi =
{

n1

m1
, n2

m2
, . . . ,

n2·3i−1

m2·3i−1

}
with the ordered set{

⟨ n1

m1
, n2

m2
⟩, ⟨ n3

m3
, n4

m4
⟩, . . . , ⟨ n2·3i−1−1

m2·3i−1−1
,
n2·3i−1

m2·3i−1
⟩
}
of 3i−1 pairs of fractions, we make

the following definition.

Definition 3. The Mallows tree (MT) is the labeled ternary tree such that the

labels of its ith level (i ≥ 1), in left-to-right order, is MTi (see Figure 3).

Remark 2. Define ordered sets M̂Ti (i ≥ 1) of 2 · 3i−1 fractions first by setting

M̂T1 =
{

1
1 ,

2
1

}
and then by applying the above construction to the ordered set{

0
1 ,

1
0

}
∪ M̂T1 ∪ M̂T2 ∪ · · · ∪ M̂Ti. Then it can readily be verified that MTi is the

left one-third of M̂Ti+1 for each i ≥ 1. Moreover, it can be proved that each positive

fraction appears precisely once in an M̂Ti (i ≥ 1), which can be seen as an extension

of Part (i) of the next proposition.

Let us present two known properties (see, [3, 5]).

Proposition 3. (i) Each fraction n
m from (0, 1)∩Q appears precisely once in an

MTi (i ≥ 1).

(ii) On each MTi (i ≥ 1), the left-to-right order accords with the increasing order.

Since it follows from Part (i) of the above proposition that different vertices have

different labels in the Mallows tree, as we did for the Stern–Brocot tree, we shall

hereafter freely identify a vertex with its label without explicit mention.

In [3], we explained how to obtain MTi (i ≥ 1) from the Stern–Brocot tree. For

later use, let us recall it here. On the set
{

n
m ∈ (0, 1) ∩ Q

∣∣ n is odd
}
, define two

functions φSBT and ψSBT by setting

φSBT

(
n
m

)
=

{
⟨ n′

m′ ,
n
m ⟩ if the left child n′

m′ of n
m has even numerator,

⟨ n
m ,

n′′

m′′ ⟩ if the right child n′′

m′′ of n
m has even numerator
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and

ψSBT

(
n
m

)
=



⟨ n′

m′ ,
n′′′

m′′′ ,
n′′′′

m′′′′ ⟩ if the left child n′

m′ of n
m has odd numerator

and n′′′

m′′′ and n′′′′

m′′′′ are the left and right children

of the right child of n
m , respectively;

⟨ n′′′

m′′′ ,
n′′′′

m′′′′ ,
n′′

m′′ ⟩ if the right child n′′

m′′ of n
m has odd numerator

and n′′′

m′′′ and n′′′′

m′′′′ are the left and right children

of the left child of n
m , respectively.

(The parent and child relations referred to here is, of course, the ones in the Stern–

Brocot tree.) Extend these two functions to the finite sequences of positive fractions

with odd numerators by setting

φSBT

(
⟨ n1

m1
, n2

m2
, . . . , nℓ

mℓ
⟩
)
= φSBT

(
n1

m1

)⌢
φSBT

(
n2

m2

)⌢ · · ·⌢ φSBT

(
nℓ

mℓ

)
and

ψSBT

(
⟨ n1

m1
, n2

m2
, . . . , nℓ

mℓ
⟩
)
= ψSBT

(
n1

m1

)⌢
ψSBT

(
n2

m2

)⌢ · · ·⌢ ψSBT

(
nℓ

mℓ

)
.

(That these functions are well-defined is explained in the aforementioned article.)

These functions were used in [3] to prove the following result.

Theorem 1 ([3]). The equation MTi = φSBT

(
ψi−1

SBT

(
1
2

))
holds for any i ≥ 1.

Recall that, by using the Stern–Brocot tree, each irrational number from (0, 1)\Q
can be represented as an infinite sequence over {L, R} (see Definition 2). In the

same spirit, we introduce an irrational number representation system by using the

Mallows tree.

Definition 4. For each irrational number α ∈ (0, 1) \Q, define a pair of fractions

pfi(α) from MTi and Mi(α) ∈ {L, M, R} for i ≥ 1, inductively, as follows:

• Set pf1(α) = ⟨ 12 ,
2
3 ⟩.

• Suppose that we have defined pfi(α), and write pfL
i (α) and pf

R
i (α) for the left

and right elements of it, respectively. Then set

Mi(α) =


L if α < pfL

i (α),

M if pfL
i (α) < α < pfR

i (α),

R if α > pfR
i (α).

Define pfi+1(α) to be the left (resp. middle, right) child of pfi(α) in the Mallows

tree if Mi(α) = L (resp. M, R).

Then the Mallows representation of α ∈ (0, 1) \ Q is the infinite sequence

M(α) := ⟨M1(α),M2(α),M3(α), . . .⟩ ∈ {L, M, R}∞.
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Figure 4: Illustration of the Mallows representation for an α ∈ (0, 1) \Q, which is
between 3

7 and 4
9 . We have M1(α) = L,M2(α) = R, and M3(α) = M.

See Figure 4 for the illustration of this representation. Note that in defining Mi(α),

we implicitly used the fact that pfL
i (α) < pfR

i (α), which is true by Proposition 3 (ii).

Example 1. Proposition 3 of [3] states that a fraction from (0, 1) ∩Q appears in

the left half of MTi for some i ≥ 1 if and only if it is smaller than 2−
√
2. Using

this and Proposition 3 (ii), one can show by induction that for any i ≥ 1, the

pair pfi(2 −
√
2) is the middle one in MTi and Mi(2 −

√
2) = M. Hence, we have

M(2−
√
2) = ⟨M, M, M, . . .⟩.

Write M for the set {M(α) | α ∈ (0, 1) \Q}. In the same spirit as Corollary 1,

we shall next characterize this set.

Proposition 4. The following relation holds:

M = {⟨xi⟩∞i=1 ∈ {L, M, R}∞ | For no i0,we have ⟨xi⟩∞i=i0 = ⟨L⟩∞ or = ⟨R⟩∞}.

Proof. Let us first prove that M is contained in the right-hand side of the equation.

To do so, take an α ∈ (0, 1) \Q arbitrarily. Define intervals Ii(α) (i ≥ 1) inductively

as follows:

I1(α) =


[0, 12 ] if α < 1

2 ,

[ 12 ,
2
3 ] if 1

2 < α < 2
3 ,

[ 23 , 1] if 2
3 < α < 1,

Ii+1(α) =


Ii(α) ∩ [0, pfL

i+1(α)] if α < pfL
i+1(α),

Ii(α) ∩ [pfL
i+1(α), pf

R
i+1(α)] if pfL

i+1(α) < α < pfR
i+1(α),

Ii(α) ∩ [pfR
i+1(α), 1] if α > pfR

i+1(α).
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Then it can be verified that the proper inclusions I1(α) ⊋ I2(α) ⊋ I3(α) ⊋ · · ·
hold and also that the length of the interval Ii(α) converges to 0 as i→ ∞. Since

α ∈ Ii(α) for any i ≥ 1, which can be proved by induction, we see that the intersection⋂∞
i=1 Ii(α) is equal to the singleton set {α}.
Assume for the sake of contradiction that there exists an i0 such that Mi(α) = L

(resp. R) for all i ≥ i0. Then, by the definition of Mi(α), we should have α < pfL
i (α)

(resp. α > pfR
i (α)) for all i ≥ i0. Write [ nL

mL
, nR

mR
] for Ii0+1(α). Then induction shows

that nL

mL
∈ Ii(α) (resp. nR

mR
∈ Ii(α)) for all i > i0. Consequently, nL

mL
(resp. nR

mR
)

∈
⋂∞

i=1 Ii(α) = {α}, contradicting the assumption that α is irrational.

To prove the opposite inclusion, take an arbitrary infinite sequence ⟨x1, x2, x3, . . .⟩
over {L, M, R} that does not eventually accord with ⟨L⟩∞ or ⟨R⟩∞. Set pf1 = ⟨ 12 ,

2
3 ⟩,

and define pfi+1 to be the left (resp. middle, right) child of pfi in the Mallows tree

if xi = L (resp. xi = M, R). Write pfL
i and pfR

i for the left and right elements of pfi,

respectively. Also, define intervals Ii (i ≥ 1) inductively as follows:

I1 =


[0, 12 ] if x1 = L,

[ 12 ,
2
3 ] if x1 = M,

[ 23 , 1] if x1 = R,

Ii+1 =


Ii ∩ [0, pfL

i+1] if xi+1 = L,

Ii ∩ [pfL
i+1, pf

R
i+1] if xi+1 = M,

Ii ∩ [pfR
i+1, 1] if xi+1 = R.

As before, we can show that the intersection
⋂∞

i=1 Ii is a singleton set, say {α}, for
a real number α ∈ [0, 1].

We first prove that α is not rational. To do so, assume for the sake of contradiction

that α is rational. Then, as it follows from the assumption ⟨x1, x2, x3, . . .⟩ ≠

⟨L⟩∞, ⟨R⟩∞ that α ̸= 0, 1, the rational number α should appear in MTi0 for some

i0 ≥ 1 by Proposition 3 (i). In view of the definition of MTi0+1, it is evident that

either α < pfL
i0+1 or α > pfR

i0+1 should hold. As one can inductively show (by using

the way that MTi+1 was constructed from
{

0
1 ,

1
1

}
∪MT1 ∪MT2 ∪ · · · ∪MTi and the

fact that pfi+1 is a child of pfi) that if α < pfL
i0+1 (resp. α > pfR

i0+1) then α < pfL
i+1

(resp. α > pfR
i+1) for all i ≥ i0, it follows that we should have either α < pfL

i+1 for

all i ≥ i0 or α > pfR
i+1 for all i ≥ i0. However, if α < pfL

i+1 (resp. α > pfR
i+1) for all

i ≥ i0 then, because α does not belong to [pfL
i+1, pf

R
i+1] or [pf

R
i+1, 1] (resp. [0, pf

L
i+1]

or [pfL
i+1, pf

R
i+1]), it follows from the inductive definition of Ii+1 and the relation

α ∈
⋂∞

i=1 Ii ⊂ Ii+1 that xi+1 should be L (resp. R) for all i ≥ i0, contrary to the

assumption on the infinite sequence ⟨x1, x2, x3, . . .⟩.
Having proved that the real number α is not rational, it now makes sense to talk

about the intervals Ii(α) (i ≥ 1) defined in the first paragraph of this proof. Using the

equation
⋂∞

i=1 Ii(α) = {α} =
⋂∞

i=1 Ii, one can show by simultaneous induction on i

that Ii = Ii(α), pfi = pfi(α), and xi = Mi(α) for all i ≥ 1. Therefore, the arbitrarily
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Figure 5: Diagram depicting the relation from Qj to Qj+1 with arrows labeled by
xj .

chosen infinite sequence ⟨x1, x2, x3, . . .⟩ is equal to ⟨M1(α),M2(α),M3(α), . . .⟩ =

M(α) ∈ M, completing the proof of the opposite inclusion.

3. Linking Two Representations

In this section, we shall link the Stern–Brocot and Mallows representations. Instead of

directly linking the Stern–Brocot representations SB and the Mallows representations

M, we link them via the ensuing intermediate set. Let I be the set of all infinite

sequences ⟨x1, x2, x3, . . .⟩ over the quarternary set {OL, ER, OR, EL} that satisfy x1 = OL
and do not contain an occurrence of any of the following:

⟨OL, OR⟩, ⟨OL, EL⟩, ⟨ER, EL⟩, ⟨ER, ER⟩, ⟨OR, OL⟩, ⟨OR, ER⟩,
⟨EL, EL⟩, ⟨EL, ER⟩, ⟨OL, ER⟩∞, ⟨OR, EL⟩∞, ⟨OL⟩∞, ⟨OR⟩∞.

Let us first link SB to I. For ⟨x1, x2, x3, . . .⟩ ∈ SB, define Qj(⟨x1, x2, x3, . . .⟩) ∈
{OL, ER, OR, EL} (j ≥ 1) inductively as follows:

Q1(⟨x1, x2, x3, . . .⟩) = OL,

Qj+1(⟨x1, x2, x3, . . .⟩) =


OL if (Qj(⟨x1, x2, x3, . . .⟩), xj) ∈ {(OL, L), (ER, R), (EL, R)},
ER if (Qj(⟨x1, x2, x3, . . .⟩), xj) = (OL, R),

OR if (Qj(⟨x1, x2, x3, . . .⟩), xj) ∈ {(ER, L), (OR, R), (EL, L)},
EL if (Qj(⟨x1, x2, x3, . . .⟩), xj) = (OR, L).

(The inductive definition of Qj+1(⟨x1, x2, x3, . . .⟩) is depicted in Figure 5.) Write

Q(SB(α)) for the infinite sequence ⟨Q1(SB(α)), Q2(SB(α)), Q3(SB(α)), . . .⟩ over the
quarternary set {OL, ER, OR, EL}. Then we have the following, which can be verified

readily.

Proposition 5. For any α ∈ (0, 1) \Q, the infinite sequence Q(SB(α)) belongs to

I. Moreover, Q : SB → I is bijective.
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Before presenting the next link, let us explain the reason for using the four letters

OL, ER, OR, EL.

Proposition 6. For any α ∈ (0, 1) \Q, the following two statements are true for

all j ≥ 1:

(i) The numerator of fj(α) is odd (resp. even) if and only if Qj(SB(α)) is OL or

OR (resp. ER or EL).

(ii) The fraction fj(α) is the left (resp. right) element of ⟨ nL

mL
, nR

mR
⟩ if and only if

Qj(SB(α)) is OL or EL (resp. OR or ER), where ⟨ nL

mL
, nR

mR
⟩ is the label from the

Mallows tree such that either of the two fractions is fj(α).

Proof. Take an arbitrary α ∈ (0, 1) \ Q. By induction on j, we shall prove the

correctness of the two statements for this α.

For j = 1, two statements are evidently correct. Assume that we have verified

the correctness of the two statements for some j ≥ 1. To complete the proof of

the induction step, we do case analysis according as the value of Qj+1(SB(α)) ∈
{OL, ER, OR, EL}. Before doing so, let us note that the parent and child relations used

in the remainder of this proof is the ones in the Stern–Brocot tree.

Case 1: Qj+1(SB(α)) = OL. By the definition of Q, there are the following three

possibilities: (Qj(SB(α)),SBj(α)) = (OL, L), (ER, R) or (EL, R). Let us thus divide the

argument further into these subcases. Write ⟨ nL

mL
, nR

mR
⟩ (resp. ⟨ n′

L

m′
L
,
n′
R

m′
R
⟩) for the

labels from the Mallows tree such that either of the two fractions is fj(α) (resp.

fj+1(α)).

If Qj(SB(α)) = OL and SBj(α) = L then fj+1(α) is the left child of fj(α). Also,

by the induction hypothesis, the numerator of fj(α) is odd and fj(α) =
nL

mL
. Since

φSBT

(
nL

mL

)
= ⟨ nL

mL
, nR

mR
⟩ by Theorem 1, the right child of fj(α) =

nL

mL
should have

even numerator. As precisely one child of fj(α) = nL

mL
has odd numerator by

Proposition 2 of [3], we conclude that fj+1(α) has odd numerator, which shows

that Statement (i) is true in this subcase. By the mediant construction, the right

child of fj+1(α) should have even numerator. Since φSBT(fj+1(α)) = ⟨ n′
L

m′
L
,
n′
R

m′
R
⟩ by

Theorem 1, it thus follows from the definition of φSBT that fj+1(α) is the left element
n′
L

m′
L
of the pair ⟨ n′

L

m′
L
,
n′
R

m′
R
⟩. Hence, Statement (ii) is also true in this subcase.

If Qj(SB(α)) = ER (resp. EL) and SBj(α) = R then fj+1(α) is the right child of

fj(α). Also, by the induction hypothesis, the numerator of fj(α) is even and fj(α) =
nR

mR
(resp. nL

mL
). As both children of fj(α) have odd numerator by Proposition 2

of [3], Statement (i) is true in these subcases. By the mediant construction, the right

child of fj+1(α) should have even numerator. Since φSBT(fj+1(α)) = ⟨ n′
L

m′
L
,
n′
R

m′
R
⟩ by

Theorem 1, it thus follows from the definition of φSBT that fj+1(α) is the left element
n′
L

m′
L
of the pair ⟨ n′

L

m′
L
,
n′
R

m′
R
⟩. Therefore, Statement (ii) is also true in these subcases.
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Case 2: Qj+1(SB(α)) = ER. In this case, by the definition of Q, we have Qj(SB(α))

= OL and SBj(α) = R, which implies that fj+1(α) is the right child of fj(α). Also,

by the induction hypothesis, the numerator of fj(α) is odd and fj(α) =
nL

mL
. Since

φSBT(fj(α)) = ⟨ nL

mL
, nR

mR
⟩ by Theorem 1, we conclude that fj+1(α) is the right

element nR

mR
of the pair ⟨ nR

mR
, nL

mL
⟩ and has even numerator by the definition of φSBT.

Therefore, Statements (i) and (ii) are both correct in this case.

Cases 3 and 4: Qj+1(SB(α)) = OR or EL. The proofs closely parallel that for

Cases 1 and 2, respectively.

To link I to M, let us introduce one notation here. Observe that for any

⟨x1, x2, x3, . . .⟩ ∈ I, if xj is equal to OL or OR then at least one of xj+1 and xj+2 is equal

to OL or OR. Consequently, the set {j ≥ 1 | xj = OL or OR} contains infinitely many

elements. Let us write 1 = o⟨x1,x2,x3,...⟩(1) < o⟨x1,x2,x3,...⟩(2) < o⟨x1,x2,x3,...⟩(3) < · · ·
for the enumeration of the infinite set {j ≥ 1 | xj = OL or OR}. Whenever it is clear

which sequence ⟨x1, x2, x3, . . .⟩ ∈ I is referred to, we shall henceforth suppress the

explicit dependence on it in the notation of the enumeration.

The ensuing proposition follows readily from the observation made in the last

paragraph.

Proposition 7. For any ⟨x1, x2, x3, . . .⟩ ∈ I and i ≥ 1, we have o(i+ 1) > o(i) + 1

if and only if o(i+ 1) = o(i) + 2.

For ⟨x1, x2, x3, . . .⟩ ∈ I and a positive integer i, define Ti(⟨x1, x2, x3, . . .⟩) ∈
{L, M, R} as follows:

• If o(i+ 1) = o(i) + 1, then set

Ti(⟨x1, x2, x3, . . .⟩) =

{
L when xo(i) = OL,

R when xo(i) = OR.

• If o(i+ 1) > o(i) + 1 (equivalently, by Proposition 7, o(i+ 1) = o(i) + 2), then

set

Ti(⟨x1, x2, x3, . . .⟩) =


L when xo(i) = xo(i+1) = OR,

R when xo(i) = xo(i+1) = OL,

M when xo(i) ̸= xo(i+1).

Let us write T (⟨x1, x2, x3, . . .⟩) for the infinite sequence

⟨T1(⟨x1, x2, x3, . . .⟩), T2(⟨x1, x2, x3, . . .⟩), T3(⟨x1, x2, x3, . . .⟩), . . .⟩ over the ternary set

{L, M, R}. Then the following can be proved.

Proposition 8. For any ⟨x1, x2, x3, . . .⟩ ∈ I, the infinite sequence T (⟨x1, x2, x3, . . .⟩)
belongs to M. Moreover, T : I → M is bijective.

To obtain the main theorem of this section, the next property is necessary.
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Lemma 1. For any α ∈ (0, 1) \Q and i ≥ 1, we have φSBT(fo(i)(α)) = pfi(α).

Proof. Take an arbitrary α ∈ (0, 1) \Q. We shall prove by induction that the stated

equation holds for any i ≥ 1.

The correctness of the equation for i = 1 is plain. Assume that we have verified

the correctness of the equation for some i ≥ 1. Since proofs for the two cases,

Qo(i)(SB(α)) = OL and Qo(i)(SB(α)) = OR, run parallel to each other, we shall

consider the former case only. Let us further divide the argument into the following

cases.

Case 1: o(i + 1) = o(i) + 1. In this case, we have Qo(i+1)(SB(α)) = OL and

SBo(i)(α) = L. The latter implies α < fo(i)(α). Also, it follows from the induction

hypothesis and Proposition 6 that fo(i)(α) is the left element of pfi(α). These two

facts imply Mi(α) = L, which in turn shows that pfi+1(α) is the left child of pfi(α)

in the Mallows tree.

Both fo(i)(α) and fo(i+1)(α) have odd numerators by Proposition 6. Also, it

follows from the equation SBo(i)(α) = L that fo(i+1)(α) is the left child of fo(i)(α) in

the Stern–Brocot tree. It can then be inferred from Theorem 1 that φSBT(fo(i+1)(α))

is the left child of φSBT(fo(i)(α)) in the Mallows tree.

The induction hypothesis and what we have shown above combine to prove the

correctness of the equation for i+ 1 in this case.

Case 2: o(i + 1) > o(i) + 1 and Qo(i+1)(SB(α)) = OL. In this case, we have

Qo(i)+1(SB(α)) = ER, SBo(i)(α) = R, Qo(i)+2(SB(α)) = OL, and SBo(i)+1(α) = R. It

follows that α > fo(i)+1(α) > fo(i)(α). The induction hypothesis and Proposition 6

imply pfi(α) = ⟨fo(i)(α), fo(i)+1(α)⟩. These prove Mi(α) = R, which in turn proves

that pfi+1(α) is the right child of pfi(α) in the Mallows tree.

Since it follows from the equation SBo(i)+1(α) = R that fo(i)+2(α) is the right

child of fo(i)+1(α) in the Stern–Brocot tree, it can be inferred from Theorem 1 that

φSBT(fo(i)+2(α)) is the right child of φSBT(fo(i)(α)) in the Mallows tree.

By combining what we have shown above with the induction hypothesis, we get

the desired equation for i+ 1 in this case.

Case 3: o(i + 1) > o(i) + 1 and Qo(i+1)(SB(α)) = OR. In this case, we have

Qo(i)+1(SB(α)) = ER, SBo(i)(α) = R, Qo(i)+2(SB(α)) = OR, and SBo(i)+1(α) = L.

It follows that fo(i)(α) < α < fo(i)+1(α). Also, it can be seen from the induction

hypothesis and Proposition 6 that pfi(α) = ⟨fo(i)(α), fo(i)+1(α)⟩. These imply

Mi(α) = M, which in turn implies that pfi+1(α) is the middle child of pfi(α) in the

Mallows tree.

From the values of SBo(i)+1(α) and SBo(i)(α), it is immediate that in the Stern–

Brocot tree, fo(i)+2(α) is the left child of fo(i)+1(α), which is the right child of fo(i)(α).

It can then be inferred from Proposition 6 and Theorem 1 that φSBT(fo(i)+2(α)) is

the middle child of φSBT(fo(i)(α)) in the Mallows tree.

The combination of what we have shown above and the induction hypothesis



INTEGERS: 25 (2025) 15

proves the equation for i+ 1 in this case.

Having finished preparations, we can now prove that the composition of two

bijective maps Q : SB → I and T : I → M links two representations as follows.

Theorem 2. For any α ∈ (0, 1) \Q, we have T ◦Q(SB(α)) = M(α).

Proof. Take an α ∈ (0, 1)\Q arbitrarily. To prove that Ti(Q(SB(α))) = Mi(α) holds

for any i ≥ 1, we do case analysis.

Case 1: Qo(i)(SB(α)) = OL. From Proposition 6 and Lemma 1, it follows that

fo(i)(α) is the left element of pfi(α) and has odd numerator. From the definition of

φSBT and Lemma 1, it also follows that the right element pfR
i (α) of pfi(α) has even

numerator and is the right child of fo(i)(α) in the Stern–Brocot tree.

If α < pfL
i (α) = fo(i)(α) then SBo(i)(α) = L; hence, Qo(i)+1(SB(α)) = OL.

Consequently, o(i+ 1) = o(i) + 1. Thus, Ti(Q(SB(α))) = L = Mi(α).

If fo(i) = pfL
i (α) < α < pfR

i (α) (resp. α > pfR
i (α)) then SBo(i)(α) = R and

SBo(i)+1(α) = L (resp. R). Hence, Qo(i)+1(SB(α)) = ER and Qo(i)+2(SB(α)) = OR
(resp. OL). Consequently, o(i + 1) = o(i) + 2. Thus, Ti(Q(SB(α))) = M (resp. R)

= Mi(α).

Case 2: Qo(i)(SB(α)) = OR. From Proposition 6 and Lemma 1, it follows that

fo(i)(α) is the right element of pfi(α) and has odd numerator. From the definition

of φSBT and Lemma 1, it also follows that the left element pfL
i (α) of pfi(α) has even

numerator and is the left child of fo(i)(α) in the Stern–Brocot tree.

If α < pfL
i (α) (resp. pfL

i (α) < α < pfR
i (α) = fo(i)(α)) then SBo(i)(α) = L and

SBo(i)+1(α) = L (resp. R). Hence, Qo(i)+1(SB(α)) = EL and Qo(i)+2(SB(α)) = OR
(resp. OL). Consequently, o(i + 1) = o(i) + 2. Thus, Ti(Q(SB(α))) = L (resp. M)

= Mi(α).

If α > pfR
i (α) = fo(i)(α) then SBo(i)(α) = R and hence Qo(i)+1(SB(α)) = OR.

Consequently, o(i+ 1) = o(i) + 1. Thus, Ti(Q(SB(α))) = R = Mi(α).

4. Combinatorial Results

In this section, we shall present various combinatorial results on Mallows representa-

tions of irrational numbers. Specifically, in the first three subsections, we shall study

the relationship between the Mallows and Stern–Brocot representations in terms of

eventual periodicity, positive Poisson stability, and transitivity, respectively. Then,

in the fourth subsection, we characterize those irrational numbers whose Mallows

representations do not contain an occurrence of L, M, R, respectively. In the last

subsection, we study certain questions concerning the periodicity of the sequence of

parities of the numerators of f1(α), f2(α), f3(α), . . . .
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The following set of facts can readily be proved by induction but is worth stating

here explicitly because it will be used repeatedly in the ensuing subsections.

Lemma 2. Let α ∈ (0, 1) \Q and ℓ ≥ 1.

(i) For any positive integers j1 < j2, the following two statements are equivalent:

• Both of the two equations ⟨SBj(α)⟩j1+ℓ−1
j=j1

= ⟨SBj(α)⟩j2+ℓ−1
j=j2

and

Qj1(SB(α)) = Qj2(SB(α)) hold.

• The equation ⟨Qj(SB(α))⟩j1+ℓ
j=j1

= ⟨Qj(SB(α))⟩j2+ℓ
j=j2

holds.

(ii) For any positive integers i1 < i2, the following two statements are equivalent:

• Both of the two equations ⟨Ti(Q(SB(α)))⟩i1+ℓ−1
i=i1

= ⟨Ti(Q(SB(α)))⟩i2+ℓ−1
i=i2

and Qo(i1)(SB(α)) = Qo(i2)(SB(α)) hold.

• The equation ⟨Qj(SB(α))⟩o(i1+ℓ)
j=o(i1)

= ⟨Qj(SB(α))⟩o(i2)+o(i1+ℓ)−o(i1)
j=o(i2)

holds.

Moreover, if any (hence, both) of the above two statements is correct, then

o(i2 + k)− o(i2) = o(i1 + k)− o(i1) for all k ∈ {0, 1, . . . , ℓ}.

4.1. Eventual Periodicity

Theorem 3. For any α ∈ (0, 1)\Q, its Mallows representation is eventually periodic

if and only if its Stern–Brocot representation is eventually periodic.

Proof. Take an α ∈ (0, 1) \Q arbitrarily.

Assume first that M(α) is eventually periodic. Then, by Theorem 2, there

exists an i0 ≥ 1 such that ⟨Ti(Q(SB(α)))⟩∞i=i0
is periodic with period p. Clearly,

by the pigeonhole principle, there exist i1 < i2 ∈ {i0, i0 + p, i0 + 2p} such that

Qo(i1)(SB(α)) = Qo(i2)(SB(α)) ∈ {OL, OR}. Then for any ℓ ≥ 1, since we have

⟨Ti(Q(SB(α)))⟩i1+ℓ−1
i=i1

= ⟨Ti(Q(SB(α)))⟩i2+ℓ−1
i=i2

by the definition of p, an application

of Lemma 2 proves ⟨Qj(SB(α))⟩o(i1+ℓ)
j=o(i1)

= ⟨Qj(SB(α))⟩o(i2)+o(i1+ℓ)−o(i1)
j=o(i2)

, which in

turn implies ⟨SBj(α)⟩o(i1+ℓ)−1
j=o(i1)

= ⟨SBj(α)⟩o(i2)+o(i1+ℓ)−o(i1)−1
j=o(i2)

by the same lemma.

Since this holds for any ℓ ≥ 1, we conclude that ⟨SBj(α)⟩∞j=o(i1)
= ⟨SBj(α)⟩∞j=o(i2)

,

which clearly implies that SB(α) is eventually periodic.

Conversely, suppose that SB(α) is eventually periodic. Then there exists a j0 ≥ 1

such that ⟨SBj(α)⟩∞j=j0
is periodic with period p. By the pigeonhole principle, there

exist j1 < j2 ∈ {j0, j0+p, j0+2p, j0+3p, j0+4p} such thatQj1(SB(α)) = Qj2(SB(α)).

This equation and the periodicity of ⟨SBj(α)⟩∞j=j0
combine to imply, by Lemma 2,

that ⟨Qj(SB(α))⟩j1+2ℓ+1
j=j1

= ⟨Qj(SB(α))⟩j2+2ℓ+1
j=j2

holds for any ℓ ≥ 1. Let i1 be the

smallest integer satisfying o(i1) ≥ j1. Then the inequality o(i1 + ℓ) ≤ o(i1) + 2ℓ

holds for any ℓ ≥ 1, which can be verified by induction. Observe also that if

Qj1(SB(α)) /∈ {OL, OR} (equivalently, o(i1) ̸= j1) then Qj1+1(SB(α)) ∈ {OL, OR}
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(equivalently, o(i1) = j1 + 1), which can be readily seen from the definition of Q.

From these, we can derive the inequality o(i1 + ℓ) ≤ j1 + 2ℓ + 1, which, along

with the above equation, shows that ⟨Qj(SB(α))⟩o(i1+ℓ)
j=o(i1)

= ⟨Qj(SB(α))⟩j2+o(i1+ℓ)−j1
j=j2+o(i1)−j1

.

As the integer j2 + o(i1) − j1 can be written as o(i2) for some i2 > i1 because

Qj2+o(i1)−j1(SB(α)) = Qo(i1)(SB(α)) ∈ {OL, OR}, we can apply Lemma 2 to obtain

⟨Ti(Q(SB(α)))⟩i1+ℓ−1
i=i1

= ⟨Ti(Q(SB(α)))⟩i2+ℓ−1
i=i2

. Since this equation holds for any

ℓ ≥ 1, we conclude ⟨Ti(Q(SB(α)))⟩∞i=i1
= ⟨Ti(Q(SB(α)))⟩∞i=i2

, from which it can

readily be seen that ⟨Ti(Q(SB(α)))⟩∞i=1 is eventually periodic. An application of

Theorem 2 then finishes the proof.

From Proposition 2, it can readily be inferred that SB(α) is eventually periodic if

and only if the elements of α are eventually periodic. Also, it is known [4] that the

elements of α are eventually periodic if and only if α is quadratic. From these and

the above theorem, we can deduce the following corollary.

Corollary 2. For any α ∈ (0, 1) \ Q, its Mallows representation is eventually

periodic if and only if it is quadratic.

4.2. Positive Poisson Stability

Let f : X → X be a continuous map on a metric space X. We say that a point of X

is positively Poisson stable [6] if its positive orbit and its ω-limit set intersect. Thus,

in the shift dynamical system over a non-empty set Σ, a point ⟨x1, x2, x3, . . .⟩ ∈ Σ∞

is positively Poisson stable if and only if there exists an n0 ≥ 1 such that for each

ℓ ≥ 1, one can find a positive integer p(ℓ) satisfying ⟨xn⟩n0+ℓ−1
n=n0

= ⟨xn⟩n0+p(ℓ)+ℓ−1
n=n0+p(ℓ)

(equivalently, there exists an n0 ≥ 1 and a function p : Z>0 → Z>0 such that this

equation holds for any ℓ ≥ 1).

By viewing the Mallows and Stern–Brocot representations as points of the shift

dynamical systems over {L, M, R}∞ and {L, R}∞, respectively, let us study the rela-

tionship between their positive Poisson stability.

Theorem 4. For any α ∈ (0, 1) \Q, its Mallows representation is positively Poisson

stable if and only if its Stern–Brocot representation is positively Poisson stable.

Proof. Take an α ∈ (0, 1) \Q arbitrarily.

To prove the “only if” part of the statement, suppose that M(α) is positively

Poisson stable. Then, by Theorem 2, there exists an i0 ≥ 1 and a function

p : Z>0 → Z>0 such that the equation

⟨Ti(Q(SB(α)))⟩i0+ℓ−1
i=i0

= ⟨Ti(Q(SB(α)))⟩i0+p(ℓ)+ℓ−1
i=i0+p(ℓ) (1)

holds for any ℓ ≥ 1.

We first claim that there exists an i1 ≥ i0 such that for each ℓ ≥ 1, one can

find an i2 > i1 satisfying both ⟨Ti(Q(SB(α)))⟩i1+ℓ−1
i=i1

= ⟨Ti(Q(SB(α)))⟩i2+ℓ−1
i=i2

and
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Qo(i1)(SB(α)) = Qo(i2)(SB(α)). If i0 stands as i1, then there is nothing to do. If

on the other hand i0 does not stand as i1, then there exists an ℓ′ ≥ 1 such that

for each i′ > i0, we have either ⟨Ti(Q(SB(α)))⟩i0+ℓ′−1
i=i0

̸= ⟨Ti(Q(SB(α)))⟩i
′+ℓ′−1
i=i′

or Qo(i0)(SB(α)) ̸= Qo(i′)(SB(α)). By substituting i0 + p(ℓ′) into i′, we get

Qo(i0)(SB(α)) ̸= Qo(i0+p(ℓ′))(SB(α)). We shall show that i0 + p(ℓ′) stands as i1.

To do so, take an ℓ ≥ 1 arbitrarily. By substituting p(ℓ′) + max{ℓ, ℓ′} into ℓ in

Equation (1) and then by taking the length max{ℓ, ℓ′} closing subsequences, we

obtain

⟨Ti(Q(SB(α)))⟩i0+p(ℓ′)+max{ℓ,ℓ′}−1
i=i0+p(ℓ′) = ⟨Ti(Q(SB(α)))⟩i2+max{ℓ,ℓ′}−1

i=i2
, (2)

where i2 := i0+p(p(ℓ
′)+max{ℓ, ℓ′})+p(ℓ′). From this equation and Equation (1) with

ℓ′ substituted for ℓ, we can deduce ⟨Ti(Q(SB(α)))⟩i0+ℓ′−1
i=i0

= ⟨Ti(Q(SB(α)))⟩i2+ℓ′−1
i=i2

.

This equation and the definition of ℓ′ combine to guarantee Qo(i0)(SB(α)) ̸=
Qo(i2)(SB(α)). Since we also have Qo(i0)(SB(α)) ̸= Qo(i0+p(ℓ′))(SB(α)) as has been

mentioned already, we conclude that Qo(i0+p(ℓ′))(SB(α)) = Qo(i2)(SB(α)). Equa-

tion (2) and this equation show that i0 + p(ℓ′) has the desired property of i1.

Using the established claim, we shall prove the positive Poisson stability of SB(α)

as follows. Take an i1 as in the established claim. Then, by Lemma 2, for each ℓ ≥ 1,

one can find an i2 > i1 satisfying ⟨Qj(SB(α))⟩o(i1+ℓ)
j=o(i1)

= ⟨Qj(SB(α))⟩o(i2)+o(i1+ℓ)−o(i1)
j=o(i2)

.

By applying the same lemma to this equation, we get the equation ⟨SBj(α)⟩o(i1+ℓ)−1
j=o(i1)

= ⟨SBj(α)⟩o(i2)+o(i1+ℓ)−o(i1)−1
j=o(i2)

between two length o(i1 + ℓ)− o(i1) (≥ ℓ) sequences.

As ℓ was chosen arbitrarily, this argument implies that SB(α) is positively Poisson

stable.

Having proved the “only if” part of the statement, we then substantiate the

“if” part. To do so, suppose that SB(α) is positively Poisson stable. Then there

exists a j0 ≥ 1 and a function p : Z>0 → Z>0 such that the equation ⟨SBj(α)⟩j0+ℓ−1
j=j0

= ⟨SBj(α)⟩j0+p(ℓ)+ℓ−1
j=j0+p(ℓ) holds for any ℓ ≥ 1.

Let us first substantiate the claim that there exists a j1 ≥ j0 such that for each

ℓ ≥ 1, one can find a j2 > j1 satisfying both ⟨SBj(α)⟩j1+ℓ−1
j=j1

= ⟨SBj(α)⟩j2+ℓ−1
j=j2

and Qj1(SB(α)) = Qj2(SB(α)). If j0 already stands as j1, then there is nothing

to do. If on the other hand j0 does not stand as j1, then there exists an ℓ(1) ≥ 1

such that for any j′ > j0, we have either ⟨SBj(α)⟩j0+ℓ(1)−1
j=j0

̸= ⟨SBj(α)⟩j
′+ℓ(1)−1

j=j′ or

Qj0(SB(α)) ̸= Qj′(SB(α)). If j(1) := j0 + p(ℓ(1)) stands as j1, then there is nothing

to do. If on the other hand j(1) does not stand as j1, then there exists an ℓ(2) ≥ 1

such that for any j′ > j(1), we have either ⟨SBj(α)⟩j(1)+ℓ(2)−1
j=j(1) ̸= ⟨SBj(α)⟩j

′+ℓ(2)−1
j=j′

or Qj(1)(SB(α)) ̸= Qj′(SB(α)). If j(2) := j(1) + p(j(1) + max{ℓ(1), ℓ(2)} − j0)

stands as j1, then there is nothing to do. If on the other hand j(2) does not

stand as j1, then there exists an ℓ(3) ≥ 1 such that for any j′ > j(2), we have

either ⟨SBj(α)⟩j(2)+ℓ(3)−1
j=j(2) ̸= ⟨SBj(α)⟩j

′+ℓ(3)−1
j=j′ or Qj(2)(SB(α)) ̸= Qj′(SB(α)). Set

j(3) := j(2)+p(j(2)+max{ℓ(1), ℓ(2), ℓ(3)}−j0). Then, it follows from the definition
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of the function p : Z>0 → Z>0 that the equation

⟨SBj(α)⟩j(m)+max{ℓ(n)|1≤n≤m+1}−1
j=j(m) = ⟨SBj(α)⟩j(m+1)+max{ℓ(n)|1≤n≤m+1}−1

j=j(m+1)

holds for each m ∈ {0, 1, 2}, where we set j(0) := j0 for notational convenience.

Combining these equations, we obtain

⟨SBj(α)⟩j(m1)+ℓ(m1+1)−1
j=j(m1)

= ⟨SBj(α)⟩j(m2)+ℓ(m1+1)−1
j=j(m2)

(3)

for any 0 ≤ m1 < m2 ≤ 3. The definitions of ℓ(1), ℓ(2), ℓ(3), and Equation (3),

imply that four elements Qj(0)(SB(α)), Qj(1)(SB(α)), Qj(2)(SB(α)), Qj(3)(SB(α)) of

{OL, ER, OR, EL} are pairwise distinct. We shall show that j(3) stands as j1. To do so,

take an ℓ arbitrarily. Then, by the definition of the function p : Z>0 → Z>0, we have

⟨SBj(α)⟩j(3)+max{ℓ,ℓ(1),ℓ(2),ℓ(3)}−1
j(3) = ⟨SBj(α)⟩j2+max{ℓ,ℓ(1),ℓ(2),ℓ(3)}−1

j=j2
, (4)

where j2 := j(3) + p(j(3) + max{ℓ, ℓ(1), ℓ(2), ℓ(3)} − j(0)). From Equations (3)

and (4), we deduce that ⟨SBj(α)⟩j(m)+ℓ(m+1)−1
j=j(m) = ⟨SBj(α)⟩j2+ℓ(m+1)−1

j=j2
for each

m ∈ {0, 1, 2}, which, along with the definitions of ℓ(1), ℓ(2), ℓ(3), implies that

Qj2(SB(α)) is distinct from Qj(0)(SB(α)), Qj(1)(SB(α)), Qj(2)(SB(α)). Because four

elements Qj(0)(SB(α)), Qj(1)(SB(α)), Qj(2)(SB(α)), Qj(3)(SB(α)) of {OL, ER, OR, EL}
are pairwise distinct (as we mentioned already), it follows that Qj(3)(SB(α)) =

Qj2(SB(α)). From Equation (4) and this equation, we conclude that j(3) indeed

stands as j1.

Using the substantiated claim, we shall establish positive Poisson stability of M(α)

as follows. Let j1 be as in the substantiated claim, and let i1 be the smallest integer

satisfying o(i1) ≥ j1. Take an ℓ ≥ 1 arbitrarily. Then there exists a j2 > j1 such

that ⟨SBj(α)⟩o(i1+ℓ)−1
j=j1

= ⟨SBj(α)⟩j2+o(i1+ℓ)−j1−1
j=j2

and Qj1(SB(α)) = Qj2(SB(α)).

By applying Lemma 2, we obtain

⟨Qj(SB(α))⟩o(i1+ℓ)
j=j1

= ⟨Qj(SB(α))⟩j2+o(i1+ℓ)−j1
j=j2

. (5)

It follows in particular that Qj2+o(i1)−j1(SB(α)) = Qo(i1)(SB(α)) ∈ {OL, OR}, which
implies that j2 + o(i1) − j1 is of the form o(i2) for some i2 > i1. Being the

length o(i1 + ℓ)− o(i1) + 1 closing subsequences of the left- and right-hand sides of

Equation (5), two sequences ⟨Qj(SB(α))⟩o(i1+ℓ)
j=o(i1)

and ⟨Qj(SB(α))⟩o(i2)+o(i1+ℓ)−o(i1)
j=o(i2)

are identical, from which we obtain ⟨Ti(Q(SB(α)))⟩i1+ℓ−1
i=i1

= ⟨Ti(Q(SB(α)))⟩i2+ℓ−1
i=i2

by Lemma 2. As ℓ ≥ 1 was chosen arbitrarily, we conclude that T (Q(SB(α))) is

positively Poisson stable. An application of Theorem 2 finishes the proof.

One corollary is in order before going to the next subsection.

Corollary 3. For any α ∈ (0, 1)\Q, its Mallows representation is positively Poisson

stable if and only if its CF-representation is positively Poisson stable.
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Here, we are identifying an infinite continued fraction [0; a1, a2, . . . ] with a point

⟨a1, a2, a3, . . .⟩ of the shift dynamical system over Z>0.

Proof. Suppose first that M(α) is positively Poisson stable. Then SB(α) is positively

Poisson stable by the above theorem. From this and Proposition 2, positive Poisson

stability of the CF-representation of α can readily be inferred.

Conversely, suppose that the CF-representation [0; a1, a2, . . . ] of α is positively

Poisson stable. Hence, there exists a k0 ≥ 2 and a function p : Z>0 → Z>0 such that

the equation ⟨ak⟩k0+ℓ−1
k=k0

= ⟨ak⟩k0+p(ℓ)+ℓ−1
k=k0+p(ℓ) holds for any ℓ ≥ 1. Define a function

p′ : Z>0 → Z>0 by

p′(ℓ) =


p(ℓ) if p(ℓ) is even,

p(p(ℓ) + ℓ) if p(ℓ) is odd and p(p(ℓ) + ℓ) is even,

p(p(ℓ) + ℓ) + p(ℓ) if both p(ℓ) and p(p(ℓ) + ℓ) are odd.

Then it can readily be seen that p′(ℓ) is even for any ℓ ≥ 1.

We claim that the equation ⟨ak⟩k0+ℓ−1
k=k0

= ⟨ak⟩k0+p′(ℓ)+ℓ−1
k=k0+p′(ℓ) holds for any ℓ ≥ 1. To

substantiate this claim, take an ℓ ≥ 1 arbitrarily. By the definition of the function

p : Z>0 → Z>0, we have

⟨ak⟩k0+ℓ−1
k=k0

= ⟨ak⟩k0+p(ℓ)+ℓ−1
k=k0+p(ℓ) and ⟨ak⟩k0+p(ℓ)+ℓ−1

k=k0
= ⟨ak⟩k0+p(p(ℓ)+ℓ)+p(ℓ)+ℓ−1

k=k0+p(p(ℓ)+ℓ) . (6)

Hence, if either p(ℓ) or p(p(ℓ) + ℓ) is even, then the claimed equation is correct. If

both p(ℓ) and p(p(ℓ) + ℓ) are odd then, as the length ℓ closing subsequence of the

left- (and hence, right-) hand side of the right equation of (6) is equal to ⟨ak⟩k0+ℓ−1
k=k0

by the left equation of (6), it follows that the claimed equation is correct also in this

case.

Having substantiated the claim, we can prove the positive Poisson stability of

M(α) as follows. Take an arbitrary ℓ ≥ 1. Then, because p′(ℓ) is even, it can be

inferred from Proposition 2 and the substantiated claim that

⟨SBj(α)⟩
∑k0+ℓ−1

k=1 ak

j=
∑k0−1

k=1 ak

= ⟨SBj(α)⟩
∑k0+p′(ℓ)+ℓ−1

k=1 ak

j=
∑k0+p′(ℓ)−1

k=1 ak

.

Since the length of the above sequences is ak0
+ ak0+1 + · · ·+ ak0+ℓ−1 + 1 (≥ ℓ) and

since ℓ was chosen arbitrarily, we conclude that SB(α) is positively Poisson stable.

Thus, by the above theorem, M(α) is positively Poisson stable.

4.3. Transitivity

Let f : X → X be a continuous map on a metric space X. We say that a point of

X is transitive if its orbit is dense in X. Thus, in the shift dynamical system over

a non-empty set Σ, a point ⟨x1, x2, x3, . . .⟩ ∈ Σ∞ is transitive if and only if every

non-empty finite sequence over Σ appears in it.
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In this subsection, by viewing the Mallows and Stern–Brocot representations as

points of the shift dynamical systems over {L, M, R}∞ and {L, R}∞, respectively, we

shall study the relationship between their transitivity. In doing so, we need the

ensuing finite version Q̇ of Q. For an X ∈ {OL, ER, OR, EL} and a finite sequence

⟨x1, x2, . . . , xℓ⟩ (ℓ ≥ 1) over {L, R}, define Q̇X
j (⟨x1, x2, . . . , xℓ⟩) (j ∈ {1, 2, . . . , ℓ+1})

inductively as follows:

Q̇X
1 (⟨x1, x2, . . . , xℓ⟩) = X,

Q̇X
j+1(⟨x1, x2, . . . , xℓ⟩) =


OL if (Q̇X

j (⟨x1, x2, . . . , xℓ⟩), xj) ∈ {(OL, L), (ER, R), (EL, R)},
ER if (Q̇X

j (⟨x1, x2, . . . , xℓ⟩), xj) = (OL, R),

OR if (Q̇X
j (⟨x1, x2, . . . , xℓ⟩), xj) ∈ {(ER, L), (OR, R), (EL, L)},

EL if (Q̇X
j (⟨x1, x2, . . . , xℓ⟩), xj) = (OR, L).

We set Q̇X(⟨x1, x2, . . . , xℓ⟩) := ⟨Q̇X
j (⟨x1, x2, . . . , xℓ⟩)⟩ℓ+1

j=1. The following finite ver-

sion Ṫ of T is also necessary. Let ⟨x1, x2, . . . , xℓ⟩ (ℓ ≥ 1) be a sequence over

{OL, ER, OR, EL} such that the set {j ∈ {1, 2, . . . , ℓ} | xj = OL or xj = OR} contains at

least two, say n, elements. Then define Ṫi(⟨x1, x2, . . . , xℓ⟩) (i ∈ {1, 2, . . . , n− 1}) as
in the definition of Ti with o(·) replaced by ȯ(·), where ȯ(1) < ȯ(2) < · · · < ȯ(n)

is the enumeration of the set {j ∈ {1, 2, . . . , ℓ} | xj = OL or xj = OR}, and set

Ṫ (⟨x1, x2, . . . , xℓ⟩) := ⟨Ṫi(⟨x1, x2, . . . , xℓ⟩)⟩n−1
i=1 .

The following property can readily be proved by induction.

Lemma 3. Let X be either OL or OR, and let ⟨x1, x2, . . . , xℓ⟩ (ℓ ≥ 1) be a finite

sequence over {L, R} such that the last letter of Q̇X(⟨x1, x2, . . . , xℓ⟩) is either OL
or OR. Then for any α ∈ (0, 1) \ Q and i0 ≥ 1, the sequence ⟨Ti(Q(SB(α)))⟩∞i=i0

starts with Ṫ (Q̇X(⟨x1, x2, . . . , xℓ⟩)) and Qo(i0)(SB(α)) = X if and only if we have

⟨Qj(SB(α))⟩o(i0)+ℓ
j=o(i0)

= Q̇X(⟨x1, x2, . . . , xℓ⟩).

Having finished preparations, we can go to the main result of this subsection.

Theorem 5. For any α ∈ (0, 1) \Q, its Mallows representation is transitive if and

only if its Stern–Brocot representation is transitive.

Proof. Take an α ∈ (0, 1) \Q arbitrarily.

To prove the “only if” part of the statement, suppose that M(α) is transitive.

Take a non-empty finite sequence w over {L, R} arbitrarily. Then construct finite

sequences w′, w′′ over {L, R} so that the following conditions are satisfied:

(i) the last letter of Q̇OL(w⌢w′) is either OL or OR;

(ii) the last letter of Q̇OR(w′′) is OL;

(iii) Ṫ (Q̇OR(w′′)) starts with Ṫ (Q̇OL(w⌢w′)).
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By the transitivity of M(α) and Theorem 2, there exists an i0 ≥ 1 such that

the infinite sequence ⟨Ti(Q(SB(α)))⟩∞i=i0
starts with Ṫ (Q̇OR(w′′))⌢Ṫ (Q̇OL(w⌢w′)).

Let us note here that the sequence Ṫ (Q̇OR(w′′))⌢Ṫ (Q̇OL(w⌢w′)) is identical to

Ṫ (Q̇OR(w′′⌢w⌢w′)), which can be seen from the definitions of Q̇OL , Q̇OR , Ṫ , and

Condition (ii).

If Qo(i0)(SB(α)) = OL then, because the infinite sequence ⟨Ti(Q(SB(α)))⟩∞i=i0

starts with Ṫ (Q̇OL(w⌢w′)) by the definition of i0 and Condition (iii), one can apply

Lemma 3 to obtain ⟨Qj(SB(α))⟩o(i0)+lh(w)
j=o(i0)

= Q̇OL(w), from which it can readily be

inferred that ⟨SBj(α)⟩o(i0)+lh(w)−1
j=o(i0)

= w.

If Qo(i0)(SB(α)) = OR then, because the infinite sequence ⟨Ti(Q(SB(α)))⟩∞i=i0

starts with Ṫ (Q̇OR(w′′⌢w⌢w′)) by the definition of i0 and the equation Ṫ (Q̇OR(w′′))
⌢Ṫ (Q̇OL(w⌢w′)) = Ṫ (Q̇OR(w′′⌢w⌢w′)), one can apply Lemma 3 to see that

⟨Qj(SB(α))⟩o(i0)+lh(w′′)+lh(w)
j=o(i0)

= Q̇OR(w′′⌢w), from which it can readily be inferred

that ⟨SBj(α)⟩o(i0)+lh(w′′)+lh(w)−1
j=o(i0)+lh(w′′) = w.

Having proved the “only if” part of the statement, we then substantiate the “if”

part. To do so, suppose that SB(α) is transitive. Take a non-empty finite sequence

w over {L, M, R} arbitrarily. Then construct a finite sequence u over {L, R} such that

the last letter of Q̇OL(u) is either OL or OR and the sequence Ṫ (Q̇OL(u)) starts with w.

Set

υ(OL) = ⟨L, L, L⟩, υ(ER) = ⟨L, L, R⟩, υ(OR) = ⟨L, R, L⟩, υ(EL) = ⟨R, L, L⟩,

and consider the sequence u⌢u′⌢u⌢u′′⌢u⌢u′′′⌢u, where

u′ = υ(Q̇OR
lh(u)(u)),

u′′ = υ(Q̇EL
2 lh(u)+3(u

⌢u′⌢u)),

u′′′ = υ(Q̇ER
3 lh(u)+6(u

⌢u′⌢u⌢u′′⌢u)).

By the transitivity of SB(α), there exists a positive integer j0 such that ⟨SBj(α)⟩∞j=j0

starts with u⌢u′⌢u⌢u′′⌢u⌢u′′′⌢u.

If Qj0(SB(α)) = OL then j0 = o(i0) for some i0 ≥ 1. As ⟨Qj(SB(α))⟩o(i0)+lh(u)
j=o(i0)

= Q̇OL(u), Lemma 3 then implies that the infinite sequence ⟨Ti(Q(SB(α)))⟩∞i=i0
starts

with Ṫ (Q̇OL(u)) and hence with w.

If Qj0(SB(α)) = OR then ⟨Qj(SB(α))⟩j0+2 lh(u)+3
j=j0

= Q̇OR(u⌢u′⌢u). By the def-

inition of u′, we have Q̇OR
lh(u)+3(u

⌢u′⌢u) = OL, which implies that the length

lh(u) + 1 closing subsequence of Q̇OR(u⌢u′⌢u) is equal to Q̇OL(u). Therefore, we

have ⟨Qj(SB(α))⟩j0+2 lh(u)+3
j=j0+lh(u)+3 = Q̇OL(u). Since Qj0+lh(u)+3(SB(α)) = OL, the integer

j0 + lh(u) + 3 is of the form o(i0) for some i0 ≥ 1. An application of Lemma 3

then implies that the infinite sequence ⟨Ti(Q(SB(α)))⟩∞i=i0
starts with Ṫ (Q̇OL(u))

and hence with w.
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If Qj0(SB(α)) = EL (resp. ER) then, by arguing as above, we can show that the

length lh(u) + 1 closing subsequence of Q̇EL(u⌢u′⌢u⌢u′′⌢u) (resp.

Q̇ER(u⌢u′⌢u⌢u′′⌢u⌢u′′′⌢u)) is equal to Q̇OL(u). Thus, the sequence

⟨Qj(SB(α))⟩j0+3 lh(u)+6
j=j0+2 lh(u)+6 (resp. ⟨Qj(SB(α))⟩j0+4 lh(u)+9

j=j0+3 lh(u)+9) is equal to Q̇
OL(u). Since

Qj0+2 lh(u)+6(SB(α)) (resp. Qj0+3 lh(w)+9(SB(α))) = OL, the integer j0 + 2 lh(u) + 6

(resp. j0 + 3 lh(u) + 9) is of the form o(i0) for some i0 ≥ 1. Then, by Lemma 3, the

infinite sequence ⟨Ti(Q(SB(α)))⟩∞i=i0
starts with Ṫ (Q̇OL(u)) and hence with w.

Before going to the next subsection, let us present one corollary. In the following,

as we did in Corollary 3, we identify an infinite continued fraction [0; a1, a2, . . . ]

with a point ⟨a1, a2, a3, . . .⟩ of the shift dynamical system over Z>0.

Corollary 4. For any α ∈ (0, 1) \Q, its Mallows representation is transitive if and

only if its CF-representation is transitive.

Proof. The proof for the “only if” part of the statement being analogous to that in

Corollary 3, we shall prove the “if” part of the statement only. Suppose that the CF-

representation [0; a1, a2, . . . ] of α is transitive. Take a non-empty finite sequence w

over {L, R} arbitrarily, and write ⟨L⟩⌢w⌢⟨L⟩ as ⟨L⟩e1⌢⟨R⟩e2⌢⟨L⟩e3⌢⟨R⟩e4⌢· · ·⌢⟨L⟩e2ℓ−1

for an ℓ ≥ 1 and positive integers e1, e2, . . . , e2ℓ−1. By the transitivity of the CF-

representation of α, there exists a k0 ≥ 2 such that ⟨ak⟩k0+4ℓ−3
k=k0

= ⟨e1, e2, . . . , e2ℓ−1⟩2.
If k0 is odd, then it follows from the equation ⟨ak⟩k0+2ℓ−2

k=k0
= ⟨e1, e2, . . . , e2ℓ−1⟩ and

Proposition 2 that ⟨SBj(α)⟩
−1+

∑k0+2ℓ−2

k=1 ak

j=
∑k0−1

k=1 ak

= ⟨L⟩⌢w⌢⟨L⟩. If k0 is odd, then it

follows from the equation ⟨ak⟩k0+4ℓ−3
k=k0+2ℓ−1 = ⟨e1, e2, . . . , e2ℓ−1⟩ and Proposition 2 that

⟨SBj(α)⟩
−1+

∑k0+4ℓ−3

k=1 ak

j=
∑k0+2ℓ−2

k=1 ak

= ⟨L⟩⌢w⌢⟨L⟩. In either case, therefore, SB(α) contains

an occurrence of the arbitrarily taken sequence w. Since this implies that SB(α)

is transitive, an application of the above theorem proves that M(α) is transitive,

completing the proof of the “if” part of the statement.

4.4. Not Containing a Particular Letter

In this subsection, we shall characterize those α ∈ (0, 1) \Q whose Mallows represen-

tations do not contain an occurrence of a particular letter. To do so, let us introduce

one notation here. For any α ∈ (0, 1) \ Q which satisfies the condition that both

OL and OR appear infinitely many times in Q(SB(α)), we write e1, e2, e3, . . . for the

positive integers satisfying

⟨Qo(1)(SB(α)),Qo(2)(SB(α)),Qo(3)(SB(α)), . . .⟩=⟨OL⟩e1⌢⟨OR⟩e2⌢⟨OL⟩e3⌢⟨OR⟩e4⌢· · · .
(7)

Here, the explicit dependence on α is suppressed in the notation because, whenever

we use this notation later, it will be clear which α is referred to.
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Proposition 9. For any α = [0; a1, a2, . . . ] ∈ (0, 1) \Q, its Mallows representation

does not contain an occurrence of M if and only if a2k is even for all k ≥ 1.

Proof. From the definition of T , it can be inferred that for any α ∈ (0, 1) \ Q,

its Mallows representation does not contain an occurrence of M if and only if

⟨Qo(1)(SB(α)), Qo(2)(SB(α)), Qo(3)(SB(α)), . . .⟩ = ⟨OL⟩∞. Suppose that an

α ∈ (0, 1)\Q satisfies the latter condition. Then it is immediate from the definition of

Q that for any i ≥ 1, if o(i+1) = o(i)+1 then SBo(i)(α) = L. Also, if o(i+1) > o(i)+1

then o(i+ 1) = o(i) + 2 by Proposition 7 and SBo(i)(α) = SBo(i)+1(α) = R. Being

not eventually constant, SB(α) should thus be of the form

⟨L⟩e
′
1⌢⟨R, R⟩⌢⟨L⟩e

′
2⌢⟨R, R⟩⌢⟨L⟩e

′
3⌢⟨R, R⟩⌢ · · ·

for non-negative integers e′1, e
′
2, e

′
3, . . ., infinitely many of which are positive. Con-

versely, a calculation shows that if the Stern–Brocot representation of an α ∈ (0, 1)\Q
is of the above form then ⟨Qo(1)(SB(α)), Qo(2)(SB(α)), Qo(3)(SB(α)), . . .⟩ = ⟨OL⟩∞.

Since the above form can equivalently be written as

⟨L⟩e
′′
1 ⌢⟨R⟩2e

′′
2 ⌢⟨L⟩e

′′
3 ⌢⟨R⟩2e

′′
4 ⌢⟨L⟩e

′′
5 ⌢⟨R⟩2e

′′
6 ⌢ · · ·

for a non-negative integer e′′1 and positive integers e′′2 , e
′′
3 , e

′′
4 , . . ., an application of

Proposition 2 finishes the proof.

Remark 3. Even if only one k does not satisfy a2k ∈ 2Z>0, the Mallows repre-

sentation can contain infinitely many occurrences of M. For example, the Mallows

representation of 2−
√
2 = [0; 1, 1, 2, 2, 2, 2, . . . ] is ⟨M⟩∞ by Example 1.

Proposition 10. For any α = [0; a1, a2, . . . ] ∈ (0, 1) \Q, its Mallows representation

does not contain an occurrence of R if and only if

⟨a1, a2, a3, . . .⟩ = ⟨e′1, 1, 2e′2⟩⌢w⌢
1 ⟨2e′3⟩⌢w⌢

2 ⟨2e′4⟩⌢w⌢
3 · · · ,

where e′1, e
′
2, e

′
3, . . . are positive integers and wk (k ≥ 1) is either equal to ⟨2⟩ or of

the form ⟨1, e′′k , 1⟩ for some e′′k ≥ 1.

Proof. Let α = [0; a1, a2, . . . ] ∈ (0, 1) \Q.

Suppose that M(α) does not contain an occurrence of R. Then, because SB(α) is

not eventually constant, if Qo(i)(SB(α)) = OL then there should be an i′ > i such

that Qo(i′)(SB(α)) = OR. Likewise, if Qo(i)(SB(α)) = OR then there should be an

i′ > i such that Qo(i′)(SB(α)) = OL. It follows that both OL and OR appear infinitely

many times in Q(SB(α)). Let e1, e2, e3, . . . be positive integers as in Equation (7).

Then, it follows from the assumption on M(α) = T (Q(SB(α))) that SB(α) should

be the ensuing one:

⟨L⟩e1−1⌢⟨R⟩⌢⟨L⟩2e2⌢⟨R⟩⌢⟨L⟩e3−1⌢⟨R⟩⌢⟨L⟩2e4⌢⟨R⟩⌢⟨L⟩e5−1⌢⟨R⟩⌢⟨L⟩2e6⌢⟨R⟩⌢· · · .
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We then have ⟨a1, a2, a3, . . .⟩ = ⟨e1, 1, 2e2⟩⌢w⌢
1 ⟨2e4⟩⌢w⌢

2 ⟨2e6⟩⌢w⌢
3 · · · by Propo-

sition 2, where wk is equal to ⟨2⟩ or ⟨1, e2k+1 − 1, 1⟩ according as e2k+1 = 1 or

e2k+1 > 1.

Conversely, suppose that the elements of α are as stated. Then

SB(α) = ⟨L⟩e
′
1−1⌢⟨R⟩⌢⟨L⟩2e

′
2⌢u⌢1 ⟨L⟩2e

′
3⌢u⌢2 ⟨R⟩2e

′
4⌢u⌢3 · · ·

by Proposition 2, where uj = ⟨R⟩2 or ⟨R⟩⌢⟨L⟩e
′′
j ⌢⟨R⟩. A calculation then reveals

that M(α) = T (Q(SB(α))) does not contain an occurrence of R.

Proposition 11. For any α = [0; a1, a2, . . . ] ∈ (0, 1) \Q, its Mallows representation

does not contain an occurrence of L if and only if

⟨a1, a2, a3, . . .⟩ = ⟨1, 2e′1 − 1⟩⌢w⌢
1 ⟨2e′2⟩⌢w⌢

2 ⟨2e′3⟩⌢w⌢
3 · · · ,

where e′1, e
′
2, e

′
3, . . . are positive integers and wk (k ≥ 1) is either equal to ⟨2⟩ or of

the form ⟨1, e′′k , 1⟩ for some e′′k ≥ 1.

Proof. Arguing as in the proof of the foregoing proposition, we can show that for

any α ∈ (0, 1) \Q, if M(α) does not contain an occurrence of L then both OL and OR
appear infinitely many times in Q(SB(α)).

Let α = [0; a1, a2, . . . ] ∈ (0, 1) \Q. If M(α) = T (Q(SB(α))) does not contain an

occurrence of L, then it can be verified that SB(α) is equal to

⟨R⟩2e1−1⌢⟨L⟩⌢⟨R⟩e2−1⌢⟨L⟩⌢⟨R⟩2e3⌢⟨L⟩⌢⟨R⟩e4−1⌢⟨L⟩⌢⟨R⟩2e5⌢⟨L⟩⌢⟨R⟩e6−1⌢⟨L⟩⌢· · · ,

where positive integers e1, e2, e3, . . . are as in Equation (7). Along with Proposition 2,

this implies ⟨a1, a2, a3, . . .⟩ = ⟨1, 2e1 − 1⟩⌢w⌢
1 ⟨2e3⟩⌢w⌢

2 ⟨2e5⟩⌢w⌢
3 · · ·, where wk is

equal to ⟨2⟩ or ⟨1, e2k − 1, 1⟩ according as e2k = 1 or e2k > 1.

Conversely, suppose that the elements of α are as stated. Then

SB(α) = ⟨R⟩2e
′
1−1⌢u⌢1 ⟨R⟩2e

′
2⌢u⌢2 ⟨R⟩2e

′
3⌢u⌢3 · · ·

by Proposition 2, where uj = ⟨L⟩2 or ⟨L⟩⌢⟨R⟩e
′′
j ⌢⟨L⟩. A calculation then reveals

that M(α) = T (Q(SB(α))) does not contain an occurrence of L.

4.5. Parities of Numerators

In this subsection, we are concerned with periodicity of the sequence of parities

of the numerators of f1(α), f2(α), f3(α), . . . . Among various questions concerning

periodicity, what we shall study is the characterization (in terms of Mallows repre-

sentations) of those α ∈ (0, 1) \Q for which the above parity sequence is eventually

periodic with a certain period. To do so, we need the following lemma, which can

readily be inferred from the definition of T .
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Lemma 4. Let α ∈ (0, 1) \ Q be such that both OL and OR appear infinitely many

times in Q(SB(α)), and define positive integers e1, e2, e3, . . . by Equation (7). Then

for any i ≥ 1, we have Ti(Q(SB(α))) = M if and only if i = e1 + e2 + · · ·+ ek for

some k ≥ 1.

Let us first study those α ∈ (0, 1) \Q for which the parity sequence is eventually

periodic with period 1 (in other words, eventually constant).

Proposition 12. Let α ∈ (0, 1)\Q. Then the sequence of parities of the numerators

of f1(α), f2(α), f3(α), . . . is not eventually constant.

Proof. In view of Proposition 6, it is sufficient to show that there is no j ≥ 1 such

that ⟨Qj(SB(α)), Qj+1(SB(α)), Qj+2(SB(α)), . . .⟩ consists of OL’s and OR’s only (resp.

EL’s and ER’s only).

Take a j ≥ 1 arbitrarily. If Qj(SB(α)) = EL or Qj(SB(α)) = ER (equivalently,

by Proposition 6, the numerator of fj(α) is even), it is immediate from the def-

inition of Q that Qj+1(SB(α)) is neither EL nor ER. If Qj(SB(α)) = OL (resp.

OR), then the only way that we have Qj+1(SB(α)) ∈ {OL, OR} is that SBj(α) = L

(resp. R). And in that case, we have Qj+1(SB(α)) = Qj(SB(α)). A similar ar-

gument shows that if Qj+2(SB(α)) ∈ {OL, OR} then we have SBj+1(α) = L (resp.

R) and Qj+2(SB(α)) = Qj+1(SB(α)). Continuing in this way, we can prove that

Qj(SB(α)), Qj+1(SB(α)), . . . , Qj+ℓ(SB(α)) ∈ {OL, OR} implies SBj(α) = SBj+1(α) =

· · · = SBj+ℓ−1(α) for any ℓ ≥ 1. Since SB(α) is not eventually constant, this guar-

antees that Qj+ℓ′(SB(α)) /∈ {OL, OR} for some ℓ′.

We then characterize those α ∈ (0, 1)\Q for which the parity sequence is eventually

periodic with period 2 (in other words, eventually alternating).

Proposition 13. For any α ∈ (0, 1)\Q, the following two statements are equivalent:

(i) The sequence of parities of the numerators of f1(α), f2(α), f3(α), . . . is eventu-

ally alternating.

(ii) M appears infinitely many times in M(α), and there exists a k ≥ 1 such that

⟨Mi(α)⟩∞i=m(2k) = ⟨M⟩⌢⟨R⟩e
′
1⌢⟨M⟩⌢⟨L⟩e

′
2⌢⟨M⟩⌢⟨R⟩e

′
3⌢⟨M⟩⌢⟨L⟩e

′
4⌢ · · · ,

where e′1, e
′
2, e

′
3, . . . are non-negative integers and m(1) < m(2) < m(3) < · · ·

is the enumeration of the infinite set {i ≥ 1 | Mi(α) = M}.

Proof. Take an α ∈ (0, 1) \Q arbitrarily.

To show that Statement (i) implies Statement (ii), assume that α is as in

Statement (i). Observe that for any j0 ≥ 1, if ⟨Qj(SB(α))⟩∞j=j0
starts with the

length ℓ + 1 alternating sequence of OL’s and ER’s (resp. OR’s and EL’s), then

SBj0(α) = SBj0+1(α) = · · · = SBj0+ℓ−1(α) = R (resp. L). The sequence SB(α)
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being not eventually constant, it follows from this and Proposition 6 that both OL
and OR appear infinitely many times in M(α). Let e1, e2, e3, . . . be as in Equation (7).

Then it can be inferred from the assumption and Proposition 6 that there exists a

k ≥ 1 such that

⟨Qj(SB(α))⟩∞j=o(e1+e2+···+e2k)
=⟨OR, EL⟩⌢⟨OL, ER⟩e2k+1⌢⟨OR, EL⟩e2k+2⌢⟨OL, ER⟩e2k+3⌢· · · .

A calculation then shows that ⟨Ti(Q(SB(α)))⟩∞i=e1+e2+···+e2k
= ⟨M⟩⌢⟨R⟩e2k+1−1⌢

⟨M⟩⌢⟨L⟩e2k+2−1⌢⟨M⟩⌢⟨R⟩e2k+3−1⌢ · · ·. Since e1+e2+ · · ·+e2k = m(2k) by Lemma 4,

we conclude that Statement (ii) is true.

Having proved one implication, it remains to show that Statement (ii) implies

Statement (i). If α is as in Statement (ii) then it can be seen from the definition of T

that both OL and OR appear infinitely many times in Q(SB(α)). Let e1, e2, e3, . . . be

as in Equation (7). Then, by Lemma 4, we have m(2k) = e1 + e2 + · · ·+ e2k, which,

together with Equation (7), implies Qo(m(2k))(SB(α)) = OR. From this equation and

the equation from Statement (ii), it can be inferred that

⟨Qj(SB(α))⟩∞j=o(m(2k)) = ⟨OR, EL⟩⌢⟨OL, ER⟩e
′
1+1⌢⟨OR, EL⟩e

′
2+1⌢⟨OL, ER⟩e

′
3+1⌢ · · · .

This and Proposition 6 combine to show that the parities of numerators of

fo(m(2k))(α), fo(m(2k))+1(α), fo(m(2k))+2(α), . . . are alternating.

Lastly, we characterize those α ∈ (0, 1) \ Q for which the parity sequence is

eventually periodic with period 3.

Proposition 14. For any α ∈ (0, 1)\Q, the following two statements are equivalent:

(i) The sequence of parities of the numerators of f1(α), f2(α), f3(α), . . . is eventu-

ally periodic with period 3.

(ii) At least one of the ensuing two statements is satisfied:

• M(α) eventually accords with ⟨L, R⟩∞.

• M appears infinitely many times in M(α) and, if we remove all occurrences

of M from M(α), then the resulting sequence eventually accords with ⟨L, R⟩∞.

Moreover, there exists a k ≥ 1 such that for all k′ ≥ k, the 2k′th (resp.

(2k′ + 1)st) occurrence of M is preceded by R (resp. L) and is succeeded by

L (resp. R).

Proof. Take an arbitrary α ∈ (0, 1) \Q.

We first prove that Statement (i) implies Statement (ii). In the Stern–Brocot tree,

if a fraction has even numerator then both of its children have odd numerator [3,

Proposition 2]. Consequently, if α is as in Statement (i), then there exists a j0 ≥ 1
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such that the numerators of fj0(α), fj0+1(α), fj0+2(α), . . . are odd, odd, even, odd,

odd, even, . . . . There are then the following three cases:

Case 1: OR appears only finitely many times in ⟨Qj(SB(α))⟩∞j=j0
. Let i0 be such

that OR does not appear in ⟨Qj(SB(α))⟩∞j=o(i0)
. Then, from the definition of Q and

Proposition 6, it can be shown that ⟨Qj(SB(α))⟩∞j=o(i0)
is equal to either ⟨OL, OL, ER⟩∞

or ⟨OL, ER, OL⟩∞. A calculation then shows that, in the former (resp. latter) case,

⟨Ti(Q(SB(α)))⟩∞i=i0
= ⟨L, R⟩∞ (resp. ⟨R⟩⌢⟨L, R⟩∞). An application of Theorem 2

proves that, in either case, the former condition of Statement (ii) is satisfied.

Case 2: OL appears only finitely many times in ⟨Qj(SB(α))⟩∞j=j0
. By the same

kind of reasoning to the above case, one can show that the former condition of

Statement (ii) is satisfied.

Case 3: Both OR and OL appear infinitely many times in ⟨Qj(SB(α))⟩∞j=j0
. Assume

without loss of generality that Qj0(SB(α)) = OL. Then, from the definition of Q and

the assumption on the numerators of fj0(α), fj0+1(α), fj0+2(α), . . ., it follows that

we have

⟨Qj(SB(α))⟩∞j=j0 = ⟨OL, OL, ER⟩e
′
1⌢⟨OR, OR, EL⟩e

′
2⌢⟨OL, OL, ER⟩e

′
3⌢⟨OR, OR, EL⟩e

′
4⌢ · · ·

(8)

for some positive integers e′1, e
′
2, e

′
3, . . . . Then

⟨Ti(Q(SB(α)))⟩∞i=i0 = ⟨L, R⟩e
′
1−1⌢⟨L, M⟩⌢⟨R, L⟩e

′
2−1⌢⟨R, M⟩

⌢⟨L, R⟩e
′
3−1⌢⟨L, M⟩⌢⟨R, L⟩e

′
4−1⌢⟨R, M⟩⌢ · · · ,

where i0 ≥ 1 is such that o(i0) = j0. Since Qo(i0+2e′1−1)(SB(α)) = OL by Equa-

tion (8) and since Qo(e1+e2+···+e2k)(SB(α)) = OR for any k ≥ 1, where posi-

tive integers e1, e2, e3, . . . are as in Equation (7), it follows from the equation

Ti0+2e′1−1(Q(SB(α))) = M and Lemma 4 that i0 + 2e′1 − 1 is of the form e1 +

e2 + · · · + e2k+1 for some k ≥ 0. Thus, by the same lemma, the first occurrence

Ti0+2e′1−1(Q(SB(α))) of M in ⟨Ti(Q(SB(α)))⟩∞i=i0
is the (2k + 1)st one. That the

latter condition of Statement (ii) is satisfied can now be verified readily.

Having proved that Statement (i) implies Statement (ii), we now prove the

converse implication. If ⟨Mi(α)⟩∞i=i0
= ⟨Ti(Q(SB(α)))⟩∞i=i0

is identical to ⟨L, R⟩∞
and if Qo(i0)(SB(α)) = OL (resp. OR), then we have ⟨Qj(SB(α))⟩∞j=o(i0)

= ⟨OL, OL, ER⟩∞
(resp. ⟨OR, EL, OR⟩∞). An application of Proposition 6 then proves that the sequence

of parities of the numerators of fo(i0)(α), fo(i0)+1(α), fo(i0)+2(α), . . . is periodic with

period 3.

If M(α) satisfies the latter condition of Statement (ii), then it can be seen from

the definition of T that both OL and OR appear infinitely many times in Q(SB(α)).

Let e1, e2, e3, . . . be as in Equation (7). Then, for a sufficiently large positive integer

m, we should have

⟨Mi(α)⟩∞i=i0=⟨R, M⟩⌢⟨L, R⟩e
′
1⌢⟨L, M⟩⌢⟨R, L⟩e

′
2⌢⟨R, M⟩⌢⟨L, R⟩e

′
3⌢⟨L, M⟩⌢⟨R, L⟩e

′
4⌢⟨R, M⟩⌢· · ·
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for some non-negative integers e′1, e
′
2, e

′
3, . . ., where i0 = −1 + e1 + e2 + · · ·+ e2mk.

Since Qo(i0+1)(SB(α)) = Qo(e1+e2+···+e2mk)(SB(α)) = OR by Equation (7), it follows

from the above equation and Theorem 2 that

⟨Qj(SB(α))⟩∞j=o(i0+1) = ⟨OR, EL, OL⟩⌢⟨OL, ER, OL⟩e
′
1⌢⟨OL, ER, OR⟩⌢⟨OR, EL, OR⟩e

′
2

⌢⟨OR, EL, OL⟩⌢⟨OL, ER, OL⟩e
′
3⌢⟨OL, ER, OR⟩⌢ · · · .

An application of Proposition 6 then proves that the sequence of numerators of

fo(i0+1)(α), fo(i0+1)+1(α), fo(i0+1)+2(α), . . . is periodic with period 3.

5. Metric Theoretic Results

In this section, we shall present various metric theoretic results on Mallows repre-

sentations. The first one below is about three combinatorial properties studied in

the preceding section.

Proposition 15. (i) Almost no α ∈ (0, 1)\Q has an eventually periodic Mallows

representation.

(ii) Almost every α ∈ (0, 1) \Q has a positively Poisson stable Mallows representa-

tion.

(iii) Almost every α ∈ (0, 1) \Q has a transitive Mallows representation.

Proof. Since there are only countably many quadratic irrationals, Part (i) is an

immediate consequence of Corollary 2.

Part (ii) being a consequence of Part (iii) (because transitivity implies positive

Poisson stability), we then prove the third part. To do so, observe that, for each

non-empty finite sequence w over Z>0, the set {α = [0; a1, a2, . . . ] ∈ (0, 1) \ Q |
infinitely many k satisfy ⟨ak, ak+1, . . . , ak+lh(w)−1⟩ = w} has full measure, which

follows directly from Birkhoff’s ergodic theorem. Since there are only countably

many finite sequences over Z>0, the set {α ∈ (0, 1) \ Q | the CF-representation

of α is transitive} =
⋂

w{α = [0; a1, a2, . . . ] ∈ (0, 1) \ Q | infinitely many k satisfy

⟨ak, ak+1, . . . , ak+lh(w)−1⟩ = w} has full measure too. An application of Corollary 4

then finishes the proof.

Before proving new results, let us present some immediate corollaries. The first

one is concerned with the complexity of Mallows representations. Recall that the

factor complexity of an infinite sequence is a function ρ : Z>0 → Z>0 such that ρ(n)

is the total number of length n subsequences of the given infinite sequence. Since

every length n subsequence over {L, M, R} appears as a subsequence in M(α) if M(α)

is transitive, Part (iii) of the above proposition implies the following corollary.
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Corollary 5. For almost every α ∈ (0, 1) \Q, the factor complexity of its Mallows

representation is ρ(n) = 3n.

We say that an infinite sequence contains relatively dense occurrences of a finite

sequence w if there exists an ℓ > 0 such that in every length ℓ interval of the given

infinite sequence, one can find an occurrence of w.

Corollary 6. For almost every α ∈ (0, 1) \Q, its Mallows representation does not

contain relatively dense occurrences of some finite sequence over {L, M, R}.

Proof. If M(α) is transitive then for any ℓ > 0, both ⟨L⟩ℓ and ⟨R⟩ℓ appear as

subsequences of M(α), which implies that M(α) cannot contain relatively dense

occurrences of any finite sequence over {L, M, R}. This fact and Part (iii) of the above

proposition prove the assertion.

From Proposition 15 (iii), we know that for almost every α ∈ (0, 1)\Q, its Mallows

representation contains infinitely many occurrences of w for each non-empty finite

sequence w over {L, M, R}. However, we do not know the frequency that w appears

in M(α). Let us thus study this point.

Theorem 6. Let w be a finite sequence over {L, M, R} that contains either M or both

L and R. Then, we have limn→∞
|{i≤n | ⟨Mi(α),Mi+1(α), ... ,Mi+lh(w)−1(α)⟩=w}|

n = 0 for

almost every α ∈ (0, 1) \Q.

Proof. Take an arbitrary finite sequence w over {L, M, R}, and assume that the letter

at position i0 in w is M. It is evident from the definition of T that for any i ≥ 1,

we have Ti(Q(SB(α))) = M if and only if Qo(i)(SB(α)) ̸= Qo(i+1)(SB(α)). Also, if

Qo(i)(SB(α)) ̸= Qo(i+1)(SB(α)) then SBo(i)(α) ̸= SBo(i)+1(α). Moreover, we have

o(i) ≤ 2i for any i ≥ 1, which can be verified by induction. Using these facts,

Theorem 2, and Proposition 2, we obtain

|{i ≤ n | ⟨Mi(α),Mi+1(α), . . . ,Mi+lh(w)−1(α)⟩ = w}|
n

≤ |{i ≤ n | Mi+i0−1(α) = M}|
n

=
|{i ≤ n | Qo(i+i0−1)(SB(α)) ̸= Qo(i+i0)(SB(α))}|

n

≤
|{i ≤ n | SBo(i+i0−1)(α) ̸= SBo(i+i0−1)+1(α)}|

n

≤ |{j ≤ 2(n+ i0 − 1) | SBj(α) ̸= SBj+1(α)}|
n

=
2(n+ i0 − 1)

n
· |{j ≤ 2(n+ i0 − 1) | SBj(α) ̸= SBj+1(α)}|

2(n+ i0 − 1)
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≤ 2(n+ i0 − 1)

n
· m(n) + 1

m(n)
· m(n)∑m(n)

k=1 ak

for any α = [0; a1, a2, . . . ] ∈ (0, 1)\Q and a large n, where m(n) is the largest integer

m ≥ 1 satisfying the inequality
∑m

k=1 ak ≤ 2(n+ i0 − 1). Since limm

∑m
k=1 ak

m = ∞
for almost every α = [0; a1, a2, . . . ] ∈ (0, 1) \ Q, which is known in ergodic theory

and since m(n) → ∞ as n→ ∞, the above inequality proves the asserted equation

for this w.

We then take up those finite sequences w that contain both L and R. If w contains

the letter M then the correctness of the asserted equation follows from the above

argument. If w does not contain the letter M, then there exists an i0 such that

the letters at positions i0 and i0 + 1 of w are different. A calculation shows

that if ⟨Ti+i0−1(Q(SB(α))), Ti+i0(Q(SB(α)))⟩ = ⟨L, R⟩ and if Qo(i+i0−1)(SB(α))

= OL (resp. OR), then ⟨SBo(i+i0−1)(α),SBo(i+i0−1)+1(α),SBo(i+i0−1)+2(α)⟩ = ⟨L, R, R⟩
(resp. ⟨L, L, R⟩). Also, if ⟨Ti+i0−1(Q(SB(α))), Ti+i0(Q(SB(α)))⟩ = ⟨R, L⟩ and if

Qo(i+i0−1)(SB(α)) = OL (resp. OR), then ⟨SBo(i+i0−1)(α),SBo(i+i0−1)+1(α),

SBo(i+i0−1)+2(α)⟩ = ⟨R, R, L⟩ (resp. ⟨R, L, L⟩). Together with Theorem 2, these

imply the following:

|{i ≤ n | ⟨Mi(α),Mi+1(α), . . . ,Mi+lh(w)−1(α)⟩ = w}|
n

≤ |{i ≤ n | ⟨Mi+i0−1(α),Mi+i0(α)⟩ = ⟨L, R⟩ or ⟨R, L⟩}|
n

≤

∣∣∣∣{ i ≤ n
∣∣∣∣ ⟨SBo(i+i0−1)(α),SBo(i+i0−1)+1(α),SBo(i+i0−1)+2(α)⟩

∈ {⟨L, R, R⟩, ⟨L, L, R⟩, ⟨R, R, L⟩, ⟨R, L, L⟩}

}∣∣∣∣
n

≤ |{j ≤ 2(n+ i0 − 1) | SBj(α) ̸= SBj+1(α) or SBj+1(α) ̸= SBj+2(α)}|
n

≤ 2|{j ≤ 2(n+ i0 − 1) | SBj(α) ̸= SBj+1(α)}|+ 1

n
.

Since the last line is, up to a convergent term 1
n , twice the fifth line of the inequality

in the preceding case, an argument similar to the foregoing completes the proof.

We next study matching fractions [7] of Mallows representations. For an infinite

sequence ⟨x1, x2, x3, . . .⟩, its ℓth matching fraction, ℓ ≥ 1, is defined as the limit

limn→∞
|{i≤n | xi = xi+ℓ}|

n (if it exists).

Theorem 7. For almost every α ∈ (0, 1) \ Q, the ℓth matching fraction of M(α)

is 1 for all ℓ ≥ 1.

Proof. It is sufficient to show that for each ℓ ≥ 1, the ℓth matching fraction of

M(α) is 1 for almost every α ∈ (0, 1) \ Q. To do so, take an ℓ ≥ 1 and an

α = [0; a1, a2, . . . ] ∈ (0, 1) \Q arbitrarily. In this proof, we shall use the following
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notation. For each positive integer m ≥ 1, we write im for the integer i satisfying

the inequality o(i) ≤
∑m

k=1 ak < o(i+ 1). Also, we let mn denote the largest integer

m satisfying im ≤ n.

It can readily be seen that if i1 > 1 then a1 ≥ 2. In that case, the length

a1 − 1 (hence, non-empty) sequence ⟨SBj(α)⟩a1−1
j=1 is a constant sequence of L’s

by Proposition 2. This and the definition of Q imply that ⟨Qj(SB(α))⟩a1
j=1 is a

constant sequence of OL’s, which, along with the definition of T , in turn implies that

⟨Ti(Q(SB(α)))⟩i1−1
i=1 is a constant sequence. From this, the validity, when i1 > 1, of

the inequality

|{i ∈ {1, 2, . . . , i1} | Ti(Q(SB(α))) = Ti+ℓ(Q(SB(α)))}| ≥ i1 − ℓ− 1 (9)

follows at once. Let us note that this inequality is plainly valid even when i1 = 1.

Similarly, for each m ≥ 2, the length am sequence ⟨SBj(α)⟩
−1+

∑m
k=1 ak

j=
∑m−1

k=1 ak
is a

constant sequence by Proposition 2. It follows that if im > im−1 + 1 then the

length o(im) − o(im−1 + 1) (hence, non-empty) subsequence ⟨SBj(α)⟩o(im)−1
j=o(im−1+1)

is also a constant sequence, which, together with the definition of Q, implies that

⟨Qj(SB(α))⟩o(im)
j=o(im−1+1) is a constant sequence of OL’s (resp. alternating sequence

of OR’s and EL’s, alternating sequence of OL’s and ER’s, constant sequence of OR’s)

when (SBo(im−1+1)(α), Qo(im−1+1)(SB(α))) = (L, OL) (resp. (L, OR), (R, OL), (R, OR)). A

calculation then reveals that the sequence ⟨Ti(Q(SB(α)))⟩im−1
i=im−1+1 is, in either case,

a constant sequence, which in turn proves the validity, when im > im−1 + 1, of the

inequality

|{i ∈ {im−1 + 1, im−1 + 2, . . . , im} | Ti(Q(SB(α))) = Ti+ℓ(Q(SB(α)))}|
≥ im − im−1 − ℓ− 1. (10)

Plainly, this inequality is valid even when im = im−1 + 1.

Take a large n. If imn
= n then

|{i ≤ n | Mi(α) = Mi+ℓ(α)}|
n

=
1

n

(
|{i ∈ {1, 2, . . . , i1} | Ti(Q(SB(α))) = Ti+ℓ(Q(SB(α)))}|

+

mn∑
m=2

|{i ∈ {im−1 + 1, im−1 + 2, . . . , im}|Ti(Q(SB(α))) = Ti+ℓ(Q(SB(α)))}|

)

≥ 1

n

(
i1 − ℓ− 1 +

mn∑
m=2

(
im − im−1 − ℓ− 1

))

=
1

n

(
n− (ℓ+ 1)mn

)
= 1− (ℓ+ 1)

mn

n
(11)
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by Theorem 2 and Inequalities (9) and (10).

If imn < n then, as an argument similar to the one above shows that if imn+1 >

imn + 1 then ⟨Ti(Q(SB(α)))⟩ni=imn+1 is a constant sequence, the inequality

|{i ∈ {imn + 1, imn + 2, . . . , n} | Ti(Q(SB(α))) = Ti+ℓ(Q(SB(α)))}|
≥ n− imn

− ℓ (12)

holds. From Theorem 2 and Inequalities (9), (10), and (12), we get

|{i ≤ n | Mi(α) = Mi+ℓ(α)}|
n

=
1

n

(
|{i ∈ {1, 2, . . . , i1} | Ti(Q(SB(α))) = Ti+ℓ(Q(SB(α)))}|

+

mn∑
m=2

|{i ∈ {im−1 + 1, im−1 + 2, . . . , im}|Ti(Q(SB(α))) = Ti+ℓ(Q(SB(α)))}|

+ |{i ∈ {imn
+ 1, imn

+ 2, . . . , n} | Ti(Q(SB(α))) = Ti+ℓ(Q(SB(α)))}|

)

≥ 1

n

(
i1 − ℓ− 1 +

mn∑
m=2

(
im − im−1 − ℓ− 1

)
+ n− imn

− ℓ

)

=
1

n

(
n− (ℓ+ 1)mn − ℓ

)
= 1− ℓ

n
− (ℓ+ 1)

mn

n
. (13)

In view of Inequalities (11) and (13), to prove limn→∞
|{i≤n |Mi(α)=Mi+ℓ(α)}|

n = 1,

it is sufficient to show that mn

n → 0 as n → ∞. To do so, observe that if o(n+ 1)

were smaller than or equal to
∑mn

k=1 ak then imn
should be at least n+ 1, contrary

to the definition of mn. Hence, o(n+1) >
∑mn

k=1 ak. As we have 2(n+1) ≥ o(n+1),

which can be verified by induction, it follows that 2(n+ 1) >
∑mn

k=1 ak, and hence
mn

n = n+1
n · mn

n+1 < 2(n+1)
n · mn∑mn

k=1 ak
. Since mn → ∞ as n → ∞ and since

limm

∑m
k=1 ak

m = ∞ for almost every α = [0; a1, a2, . . . ] ∈ (0, 1) \Q, which is known

in ergodic theory, it follows that mn

n → 0 as n→ ∞ for almost every α ∈ (0, 1) \Q,

completing the proof.

Recall from Proposition 15 that for each non-empty finite sequence w over {L, M, R},
the measure of the set of those α ∈ (0, 1) \Q whose Mallows representations contain

w as a subsequence is 1. Then, what is the measure of the set of those α ∈ (0, 1) \Q
whose Mallows representations contain w as the initial subsequence (in other words,
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whose Mallows representations start with w)? In the following theorem, by letting

w range over {L, M, R}ℓ for a fixed ℓ, we study the maximum and minimum of the

measure.

Theorem 8. Let ℓ be a positive integer. Then

(i) max
w∈{L,M,R}ℓ

µ({α ∈ (0, 1) \Q | M(α) starts with w}) = 1

ℓ+ 1
,

(ii) min
w∈{L,M,R}ℓ

µ({α ∈ (0, 1) \Q | M(α) starts with w})

=
4
√
2

(1 +
√
2)2ℓ+2 − (1−

√
2)2ℓ+2

.

Here and throughout, µ stands for Lebesgue measure.

Proof. In this proof, we shall utilize the following set of notation. For a non-

negative integer i ≥ 1, we write
n(i,1)

m(i,1)
<

n(i,2)

m(i,2)
< · · · < n(i,3i+1)

m(i,3i+1)
for the elements

of
{

0
1 ,

1
1

}
∪MT1 ∪MT2 ∪ · · · ∪MTi. Also, we let lm(i, k) and sm(i, k) (i ≥ 1, k ∈

{2, 3, . . . , 3i + 1}) denote the larger and smaller of m(i,k−1) and m(i,k), respectively.

Let ν : {L, M, R} → {0, 1, 2} be a function defined by ν(L) = 0, ν(M) = 1, and ν(R) = 2,

and extend it to a function ν̂ over
⋃∞

i=1{L, M, R}i by setting ν̂(⟨x1, x2, . . . , xi⟩) =

1+ 3i−1ν(x1) + 3i−2ν(x2) + · · ·+30ν(xi). Then it can be readily seen that, when re-

stricted to {L, M, R}i, the function ν̂ is a bijection between {L, M, R}i and {1, 2, . . . , 3i}.
Also, it can be proved by induction on i ≥ 1 that for any α ∈ (0, 1) \ Q and

w ∈ {L, M, R}i, the Mallows representation of α starts with w if and only if α belongs

to the open interval
( n(i,ν̂(w))

m(i,ν̂(w))
,
n(i,ν̂(w)+1)

m(i,ν̂(w)+1)

)
.

Take a positive integer ℓ arbitrarily. By using Theorem 1, we can inductively prove

that any adjacent fractions from
{

0
1 ,

1
1

}
∪MT1 ∪MT2 ∪ · · · ∪MTℓ is also adjacent in{

0
1 ,

1
1

}
∪SBT1∪SBT2∪· · ·∪SBTℓ′ for some ℓ′ ≥ ℓ. It can also be proved inductively

that if nL

mL
< nR

mR
are adjacent fractions from

{
0
1 ,

1
1

}
∪ SBT1 ∪ SBT2 ∪ · · · ∪ SBTℓ′

then nLmR − nRmL = −1 and either mL or mR is at least ℓ′ + 1. Therefore,

max
w∈{L,M,R}ℓ

µ({α ∈ (0, 1) \Q | M(α) starts with w})

= max
w∈{L,M,R}ℓ

∣∣∣∣ n(ℓ,ν̂(w)+1)

m(ℓ,ν̂(w)+1)
−
n(ℓ,ν̂(w))

m(ℓ,ν̂(w))

∣∣∣∣
= max

w∈{L,M,R}ℓ

1

m(ℓ,ν̂(w)+1)m(ℓ,ν̂(w))

= max
k∈{1,2,...,3ℓ}

1

m(ℓ, k+1)m(ℓ, k)

≤ 1

ℓ+ 1
.
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Since
n(ℓ,1)

m(ℓ,1)
= 0

1 and
n(ℓ,2)

m(ℓ,2)
= 1

ℓ+1 , the last equality is indeed attained. Hence, the

proof of Equation (i) is complete.

To prove Equation (ii), we first validate the claim that for any ℓ ≥ 1, the following

statement is true: for any i ≥ 1 and k ∈ {1, 2, . . . , 3i−1}, we have

lm(i+ ℓ, 3ℓ+1(k − 1) + 3ℓ+1+3
2 )

=
(1 +

√
2)ℓ + (1−

√
2)ℓ

2
lm(i, 3k) +

(1 +
√
2)ℓ − (1−

√
2)ℓ√

2
sm(i, 3k) and

sm(i+ ℓ, 3ℓ+1(k − 1) + 3ℓ+1+3
2 )

=
(1 +

√
2)ℓ − (1−

√
2)ℓ

2
√
2

lm(i, 3k) +
(1 +

√
2)ℓ + (1−

√
2)ℓ

2
sm(i, 3k).

The proof is by induction on ℓ. To validate the claim for ℓ = 1, take an

i ≥ 1 and a k ∈ {1, 2, . . . , 3i−1} arbitrarily. If n(i,3k−1) is odd (resp. even) then

it is immediate from the definition of MTi+1 that m(i+1,9k−4) = 2m(i,3k−1) +

m(i,3k) ≥ m(i,3k−1) +m(i,3k) = m(i+1,9k−3) (resp. m(i+1,9k−4) = m(i,3k−1) +m(i,3k)

≤ m(i,3k−1) + 2m(i,3k) = m(i+1,9k−3)). Also, it can be inferred from Theorem 1 and

the mediant construction of the Stern–Brocot tree that m(i,3k−1) ≤ m(i,3k) (resp.

m(i,3k−1) ≥ m(i,3k)). Using these, one can verify the correctness of the claim for

ℓ = 1 by hand. To prove the induction step, assume that we have verified the

correctness of the claim for some ℓ ≥ 1, and again take arbitrary integers i ≥ 1

and k ∈ {1, 2, . . . , 3i−1}. Then, by the already verified base case and the induction

hypothesis (more precisely, by combining the resulting equations obtained by substi-

tuting 1, i, k and ℓ, i+ 1, 3k − 1 into ℓ, i, k in the statement, respectively), one can

verify the correctness of the claim for ℓ+ 1.

We next substantiate the claim that for any ℓ ≥ 1, the ensuing statement is true:

for any i ≥ 1 and k′ ∈ {1, 2, . . . , 3i−1}, we have

max
k∈{1,2,...,3ℓ}

lm(i+ ℓ, 3ℓ+1(k′ − 1) + 3k) = lm(i+ ℓ, 3ℓ+1(k′ − 1) + 3ℓ+1+3
2 )

and

max
k∈{1,2,...,3ℓ}

sm(i+ ℓ, 3ℓ+1(k′ − 1) + 3k) = sm(i+ ℓ, 3ℓ+1(k′ − 1) + 3ℓ+1+3
2 ).

The proof is by induction on ℓ. To show the correctness of the claim for ℓ = 1, take

integers i ≥ 1 and k′ ∈ {1, 2, . . . , 3i−1} arbitrarily, and suppose that n(i,3k′−2) is odd.

(The proof for the case n(i,3k′−2) being even is analogous and hence is not presented

here.) A calculation shows that

m(i+1,9k′−7) = 4m(i,3k′−2) +m(i,3k′+1), m(i+1,9k′−6) = 3m(i,3k′−2) +m(i,3k′+1),

m(i+1,9k′−4) = 3m(i,3k′−2) + 2m(i,3k′+1), m(i+1,9k′−3) = 4m(i,3k′−2) + 3m(i,3k′+1),
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m(i+1,9k′−1) = 2m(i,3k′−2) + 3m(i,3k′+1), m(i+1,9k′) = m(i,3k′−2) + 2m(i,3k′+1),
(14)

from which the correctness of the claim for ℓ = 1 can readily be seen. Assume

then that we have verified the correctness of the claim for some ℓ ≥ 1, and take

integers i ≥ 1 and k′ ∈ {1, 2, . . . , 3i−1} arbitrarily. As before, we suppose that

n(i,3k′−2) is odd. Then, by the validated first claim and the induction hypothesis

(with ℓ, i+ 1, 3k′ − j (j ∈ {0, 1, 2}) substituted for ℓ, i, k′, respectively), we obtain

max
k∈{1,2,...,3ℓ+1}

lm(i+ ℓ+ 1, 3ℓ+2(k′ − 1) + 3k)

= max
j′∈{0,1,2}

max
k∈{1,2,...,3ℓ}

lm(i+ ℓ+ 1, 3ℓ+2(k′ − 1) + 3ℓ+1j′ + 3k)

= max
j∈{0,1,2}

lm(i+ 1 + ℓ, 3ℓ+1(3k′ − j − 1) + 3ℓ+1+3
2 )

= max
j∈{0,1,2}

(
(1 +

√
2)ℓ + (1−

√
2)ℓ

2
lm(i+ 1, 9k′ − 3j)

+
(1 +

√
2)ℓ − (1−

√
2)ℓ√

2
sm(i+ 1, 9k′ − 3j)

)
=

(1 +
√
2)ℓ + (1−

√
2)ℓ

2
lm(i+ 1, 9k′ − 3)

+
(1 +

√
2)ℓ − (1−

√
2)ℓ√

2
sm(i+ 1, 9k′ − 3)

= lm(i+ 1 + ℓ, 3ℓ+1(3k′ − 2) + 3ℓ+1+3
2 )

= lm(i+ ℓ+ 1, 3ℓ+2(k′ − 1) + 3ℓ+2+3
2 ).

(The validity of the fourth equality sign can readily be seen from Equation (14).)

The second equation of the claim for ℓ+ 1 can be proved in much the same way.

If ℓ ≥ 2, then it is evident from the definition of MTℓ that for any

k ∈ {1, 2, . . . , 3ℓ−1}, we have m(ℓ,3k−2) = m(ℓ−1,k), m(ℓ,3k+1) = m(ℓ−1,k+1), and

⟨m(ℓ,3k−1),m(ℓ,3k)⟩ equals to either ⟨m(ℓ−1,k) +m(ℓ−1,k+1),m(ℓ−1,k) + 2m(ℓ−1,k+1)⟩
or ⟨2m(ℓ−1,k)+m(ℓ−1,k+1),m(ℓ−1,k)+m(ℓ−1,k+1)⟩. In both cases, neither lm(ℓ, 3k−1)

nor lm(ℓ, 3k + 1) (resp. neither sm(ℓ, 3k − 1) nor sm(ℓ, 3k + 1)) exceeds lm(ℓ, 3k)

(resp. sm(ℓ, 3k)). These facts and the substantiated second claim (with ℓ − 1, 1, 1

substituted for ℓ, i, k′, respectively) imply

max
k′∈{1,2,...,3ℓ}

lm(ℓ, k′ + 1)

= max
k∈{1,2,...,3ℓ−1}

max{lm(ℓ, 3k − 1), lm(ℓ, 3k), lm(ℓ, 3k + 1)}

= max
k∈{1,2,...,3ℓ−1}

lm(ℓ, 3k)

= lm(ℓ, 3
ℓ+3
2 ). (15)
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Likewise, one can show that

max
k′∈{1,2,...,3ℓ}

sm(ℓ, k′ + 1) = sm(ℓ, 3
ℓ+3
2 ). (16)

Note that Equations (15) and (16) are both valid even when ℓ = 1.

Using Equations (15) and (16) and the validated first claim, we can complete the

proof of Equation (ii) as follows:

min
w∈{L,M,R}ℓ

µ({α ∈ (0, 1) \Q | M(α) starts with w})

= min
w∈{L,M,R}ℓ

∣∣∣∣ n(ℓ,ν̂(w)+1)

m(ℓ,ν̂(w)+1)
−
n(ℓ,ν̂(w))

m(ℓ,ν̂(w)

∣∣∣∣
= min

w∈{L,M,R}ℓ

1

m(ℓ,ν̂(w)+1)m(ℓ,ν̂(w))

= min
k′∈{1,2,...,3ℓ}

1

m(ℓ, k′+1)m(ℓ, k′)

= min
k′∈{1,2,...,3ℓ}

1

lm(ℓ, k′ + 1) sm(ℓ, k′ + 1)

=
1

lm(ℓ, 3
ℓ+3
2 ) sm(ℓ, 3

ℓ+3
2 )

=
4
√
2(

(1 +
√
2)ℓ+1 + (1−

√
2)ℓ+1

)(
(1 +

√
2)ℓ+1 − (1−

√
2)ℓ+1

)
=

4
√
2

(1 +
√
2)2ℓ+2 − (1−

√
2)2ℓ+2

.

An implication of Equation (i) of this theorem is that for any integer n ≥ 1 and

irrational numbers α, α′ ∈ (0, 1) \ Q, if d(M(α),M(α′)) ≤ 2−n then |α − α′| < 1
n ,

where d is a metric on M defined by

d(⟨xi⟩∞i=1, ⟨x′i⟩∞i=1) =

{
2−min{i≥1 | xi ̸=x′

i} if ⟨xi⟩∞i=1 ̸= ⟨x′i⟩∞i=1,

0 if ⟨xi⟩∞i=1 = ⟨x′i⟩∞i=1.

This fact in turn implies that the map M ∋ M(α) 7→ α ∈ (0, 1) \ Q is not

only continuous but even uniformly continuous. On the other hand, the inverse

(0, 1) \ Q ∋ α 7→ M(α) ∈ M of the above map is continuous but not uniformly

continuous, which can be seen from the fact that, for any arbitrarily close pair α, α′

of positive irrational numbers satisfying α < 1
2 < α′, we have M1(α) ̸= M1(α

′) (see

Figure 4), and hence d(M(α),M(α′)) = 1
2 .

From Proposition 15, it follows that the set of those α ∈ (0, 1) \Q whose Mallows

representations satisfy Mi(α) = M for some i has full measure. Then what is the

measure if we fix i? Concerning this question, we have the ensuing result.
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Theorem 9. The inequality µ({α ∈ (0, 1) \Q | Mi(α) = M}) < 3− 2
√
2 holds for

any i ≥ 1.

Proof. In this proof, we shall use the notation used in the proof of the last theorem.

Since we have µ({α ∈ (0, 1) \Q | M1(α) = M}) = 1
6 < 3− 2

√
2, the inequality for

i = 1 is correct. To complete the proof, take an arbitrary positive integer i ≥ 2.

Then

{α ∈ (0, 1) \Q | Mi(α) = M}

=
⋃

w∈{L,M,R}i−1

{α ∈ (0, 1) \Q | M(α) starts with w⌢⟨M⟩}

=
⋃

w∈{L,M,R}i−1

( n(i,ν̂(w⌢⟨M⟩))

m(i,ν̂(w⌢⟨M⟩))
,
n(i,ν̂(w⌢⟨M⟩)+1)

m(i,ν̂(w⌢⟨M⟩)+1)

)

=

3i−1⋃
k=1

( n(i,3k−1)

m(i,3k−1)
,
n(i,3k)

m(i,3k)

)
.

It can be inferred from the definition of MTi that the interval
(

n(i,3k−1)

m(i,3k−1)
,
n(i,3k)

m(i,3k)

)
is equal to

(
n(i−1,k)+n(i−1,k+1)

m(i−1,k)+m(i−1,k+1)
,

n(i−1,k)+2n(i−1,k+1)

m(i−1,k)+2m(i−1,k+1)

)
if n(i−1,k) is even and to(

2n(i−1,k)+n(i−1,k+1)

2m(i−1,k)+m(i−1,k+1)
,

n(i−1,k)+n(i−1,k+1)

m(i−1,k)+m(i−1,k+1)

)
if n(i−1,k) is odd. Also, as has been men-

tioned already in the proof of the last theorem, we have n(i′,k)m(i′,k+1)−n(i′,k+1)m(i′,k)

= −1 for any i′ ≥ 1 and k ∈ {1, 2, . . . , 3i′}. Hence,

µ
(( n(i,3k−1)

m(i,3k−1)
,
n(i,3k)

m(i,3k)

))
=

1

(m(i−1,k) +m(i−1,k+1))(m(i−1,k) + 2m(i−1,k+1))

=
1

m(i−1,k)m(i−1,k+1)
· 1

3 +
m(i−1,k)

m(i−1,k+1)
+ 2

m(i−1,k+1)

m(i−1,k)

≤ 1

m(i−1,k)m(i−1,k+1)
· 1

minx>0 3 +
1
x + 2x

=
3− 2

√
2

m(i−1,k)m(i−1,k+1)

if n(i−1,k) is even and

µ
(( n(i,3k−1)

m(i,3k−1)
,
n(i,3k)

m(i,3k)

))
=

1

(2m(i−1,k) +m(i−1,k+1))(m(i−1,k) +m(i−1,k+1))

=
1

m(i−1,k)m(i−1,k+1)
· 1

3 + 2
m(i−1,k)

m(i−1,k+1)
+

m(i−1,k+1)

m(i−1,k)

≤ 1

m(i−1,k)m(i−1,k+1)
· 1

minx>0 3 +
2
x + x
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=
3− 2

√
2

m(i−1,k)m(i−1,k+1)

if n(i−1,k) is odd. In either case, because the minimum of 3+ 1
x +2x (resp. 3+ 2

x +x)

is attained at x = 1√
2
(resp.

√
2) and because

m(i−1,k)

m(i−1,k+1)
is a rational number, the

above equality is not attained. Therefore,

µ({α ∈ (0, 1) \Q | Mi(α) = M})

= µ
(3i−1⋃
k=1

( n(i,3k−1)

m(i,3k−1)
,
n(i,3k)

m(i,3k)

))
=

3i−1∑
k=1

µ
(( n(i,3k−1)

m(i,3k−1)
,
n(i,3k)

m(i,3k)

))
<

3i−1∑
k=1

3− 2
√
2

m(i−1,k)m(i−1,k+1)

= (3− 2
√
2)

3i−1∑
k=1

µ
(( n(i−1,k)

m(i−1,k)
,
n(i−1,k+1)

m(i−1,k+1)

))
= (3− 2

√
2)µ
(3i−1⋃
k=1

( n(i−1,k)

m(i−1,k)
,
n(i−1,k+1)

m(i−1,k+1)

))
= (3− 2

√
2)µ
(
(0, 1) \

{ n(i−1,1)

m(i−1,1)
,
n(i−1,2)

m(i−1,2)
, . . . ,

n(i−1,3i+1)

m(i−1,3i+1)

})
= 3− 2

√
2.
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