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Abstract

In this paper, we consider several combinatorial problems whose enumeration leads
to the odd-indexed Fibonacci numbers, including certain types of Dyck paths, block
fountains, directed column-convex polyominoes, and set partitions with no crossings
and no nestings. Our goal is to provide bijective maps to pattern-avoiding permuta-
tions and derive generating functions that track certain positional statistics at the
permutation level.

1. Introduction

The Fibonacci sequence, defined by F1 = 1, F2 = 1, and Fn = Fn−1 + Fn−2 for

n > 2, is one of the most common sequences in mathematics. It appears directly

or indirectly (e.g., by means of the golden ratio) in various areas of mathematics as

well as other fields like computer science, physics, and biology. In this paper, we

are interested in the bisecting subsequence (F2n−1)n∈N. If we let an = F2n−1, we

then have a1 = 1, a2 = 2, and

an = 3an−1 − an−2 for n ≥ 3. (1)

This sequence, starting with 1, 2, 5, 13, 34, 89, 233, 610, 1597, 4181, 10946, 28657, . . . ,

is listed as sequence A001519 in the OEIS [9] and has many interesting combinatorial

interpretations on its own. We will focus on the following four:

▷ Dyck paths of height at most 3;

▷ Block fountains of coins;
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▷ Set partitions with no crossings and no nestings;

▷ Directed column-convex polyominoes.

Our goal here is to bijectively connect each of these combinatorial families to a

corresponding class of pattern-avoiding permutations. It is known that there are

nine symmetric classes of permutations, classically avoiding one pattern of length 3

and one of length 4, that are all enumerated by the odd-indexed Fibonacci numbers;

see Atkinson [1] or West [11].

Let us briefly review some terminology. A permutation on [n] = {1, . . . , n} is

a one-to-one function σ : [n] → [n] that can be written as σ = σ1σ2 · · ·σn, where

σi = σ(i) is the image of i under σ.1 We let Sn denote the set of permutations on

[n] and let idn = 12 · · ·n.
Let τ ∈ Sk. A permutation σ is said to contain the pattern τ if it has a subse-

quence σ(i1), . . . , σ(ik) whose elements are in the same relative order as those in τ .

For a set P of patterns, we let Sn(P ) denote the set of permutations on [n] that avoid

(do not contain) any pattern τ ∈ P . For example, the permutation σ = 34 1 2 5 6

belongs to Sn(132, 321), but it has multiple occurrences of the other patterns of

length 3. For instance, σ contains two occurrences of the pattern τ = 231, namely

(3, 4, 1) and (3, 4, 2).

A permutation σ is said to contain the vincular pattern 2143 if it contains a 2143

pattern at positions i1 < i2 < i3 < i4 with the additional condition that i2− i1 = 1.

That is, in one-line notation, the values σ(i1) and σ(i2) must be adjacent. For

example, the permutation σ = 34 1 6 2 5 contains two 2143 patterns, (3, 1, 6, 5) and

(4, 1, 6, 5), but only the latter is a vincular 2143 pattern.

For more on pattern-avoiding permutations, we refer to the book by Kitaev [5].

The results of the paper are presented in four sections. Section 2 covers the

class Sn(321, 4123) and its connection to Dyck paths of semilength n and height

at most 3. In this section, we also review some terminology and recall a useful

characterization of 321-avoiding permutations. Section 3 focuses on Sn(321, 2143)

and their connection to block n-fountains. Section 4 examines Sn(321, 3412), also

known as Boolean permutations, where using suitable arc diagrams on n nodes, we

provide a simple bijection between Boolean permutations on [n] and noncrossing,

nonnesting set partitions of [n]. Finally, Section 5 considers Sn(231, 3124) and their

connection to directed column-convex polyominoes of area n.

Each section is similarly structured. We let gn be the cardinality of the cor-

responding set of permutations of size n and show that the sequence satisfies the

recurrence relation given in Equation (1). We also consider subsets tracking either

the position of the 1 or the position of the n in each permutation and derive corre-

sponding enumerative triangles together with their bivariate generating functions.

Finally, we discuss the combinatorial family associated with the permutations and

1This way of writing permutations is referred to as one-line notation.
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provide an explicit bijection. All of our bijective maps are constructive and reveal

some information about the structure of the permutations under consideration.

2. Permutations Avoiding 321 and 4123

Before we dive into the content of this section, let us review some notation and

discuss some properties of 321-avoiding permutations. Given two permutations π

and σ of sizes m and n, respectively, their direct sum π ⊕ σ is the permutation of

size m + n consisting of π followed by a shifted copy of σ. Similarly, their skew

sum π ⊖ σ is the permutation consisting of σ preceded by a shifted copy of π. For

example, 3 1 2⊕ 2 1 = 3 1 2 5 4 and 3 1 2⊖ 2 1 = 5 3 4 2 1.

For a permutation σ, the value σ(j) is called a left-to-right maximum of σ if

σ(j) > σ(i) for every i < j. It is straightforward to verify that a 321-avoiding

permutation is uniquely determined by the positions and values of its left-to-right

maxima. Indeed, suppose

1 = i1 < i2 < · · · < ik ≤ n with k ≤ n, and 1 ≤ v1 < v2 < · · · < vk = n.

Let A = {ℓ1, . . . , ℓn−k} be the complement of {i1, . . . , ik} in {1, . . . , n} and let

B = {u1, . . . , un−k} be the complement of {v1, . . . , vk}, where ℓ1 < · · · < ℓn−k and

u1 < · · · < un−k. Let σ be the permutation on [n] defined by

σ(ij) = vj for j ∈ {1, . . . , k},
σ(ℓj) = uj for ℓj ∈ A, uj ∈ B, and j ∈ {1, . . . , n− k}.

By construction, σ consists of two increasing sequences and is therefore 321-avoiding.

We proceed with a simple proof of the following known statement.

Proposition 1. For n ∈ N, we have |Sn(321, 4123)| = F2n−1.

Proof. Let gn = |Sn(321, 4123)|. Clearly, g1 = 1 and g2 = 2. For n ≥ 3, every

permutation σ ∈ Sn(321, 4123) must have its largest element in one of its last three

positions.

Every σ having n at either the last or second-to-last position, can be obtained

from a unique element of Sn−1(321, 4123) by inserting n into the corresponding

position. Thus, there are gn−1 + gn−1 such permutations. However, inserting n

into the third-to-last position of a permutation of size n − 1 does not work if the

permutation ends with a descent (it would create a forbidden 321 pattern), so we

need to remove those. Now, since a permutation in Sn−1(321, 4123) ending with

a descent must have its largest element in the second-to-last position, we conclude

that there are gn−2 such permutations. Therefore, there is a total of gn−1 − gn−2

elements of Sn(321, 4123) having n in the third-to-last position.
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In conclusion, g1 = 1, g2 = 2, and gn = 3gn−1 − gn−2 for n ≥ 3. Consequently,

gn = F2n−1.

We now consider the set Sk 7→1
n (321, 4123) of permutations in Sn(321, 4123) such

that σ(k) = 1. In one-line notation this means that entry 1 is at position k. Note

that for every n > 1, the set Sn 7→1
n (321, 4123) consists of the single permutation

σ = idn−1 ⊖1.

Proposition 2. For 1 ≤ k < n, we have |Sk 7→1
n (321, 4123)| = k · |Sn−k(321, 4123)|.

The function g(x, t) =
∑
n≥1

n∑
k=1

|Sk 7→1
n (321, 4123)| tkxn satisfies

g(x, t) =
tx

1− tx
+

tx

(1− tx)2
· x− x2

1− 3x+ x2
.

Proof. Every permutation σ ∈ Sn(321, 4123) with σ(1) = 1 must be of the form

σ = 1⊕ σ′ with σ′ ∈ Sn−1(321, 4123). Thus the statement is clear for k = 1.

Suppose now that 1 is at position k with 1 < k < n. If there is an entry a > k+1

to the left of 1, then there can be at most k− 2 elements from the set {2, . . . , k+1}
to the left of 1. So, at least two elements from that set, say 2 ≤ b < c ≤ k + 1,

would have to be to the right of 1. But then (a, 1, c, b) would make a 321 pattern

and (a, 1, b, c) would make a 4123 pattern. Since all k−1 entries to the left of 1 must

form an increasing sequence, and we now have that the sequence must be made of

elements from the set {2, . . . , k + 1}, there are
(

k
k−1

)
= k ways to choose such a

sequence. The remaining n− k entries, one from {2, . . . , k + 1} and n− k − 1 from

the set {k + 2, . . . , n}, can be placed to the right of 1 in any order as long as their

reduced permutation avoids the patterns 321 and 4123. There are |Sn−k(321, 4123)|
such arrangements, and so |Sk 7→1

n (321, 4123)| = k · |Sn−k(321, 4123)|.
To derive g(x, t), we isolate the k = n case and use the above formula to get

g(x, t) =

∞∑
n=1

tnxn +

∞∑
n=2

n−1∑
k=1

kgn−kt
kxn,

where gn−k = |Sn−k(321, 4123)| = F2(n−k)−1. Then,

g(x, t) =
tx

1− tx
+

∞∑
k=1

∞∑
n=k+1

kgn−k(tx)
kxn−k

=
tx

1− tx
+ tx

∞∑
k=1

k(tx)k−1
∞∑

n=k+1

gn−kx
n−k

=
tx

1− tx
+

tx

(1− tx)2

∞∑
m=1

gmxm

=
tx

1− tx
+

tx

(1− tx)2
· x− x2

1− 3x+ x2
,
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using the fact that
∞∑

m=1
gmxm =

x− x2

1− 3x+ x2
.

A few terms of |Sk 7→1
n (321, 4123)| are listed in Table 1.

n \ k 1 2 3 4 5 6 7 8

1 1

2 1 1
3 2 2 1
4 5 4 3 1
5 13 10 6 4 1
6 34 26 15 8 5 1
7 89 68 39 20 10 6 1
8 233 178 102 52 25 12 7 1

Table 1: Triangle for |Sk 7→1
n (321, 4123)| and |Sk 7→1

n (231, 3124)|. See [9, A105292].

2.1. Dyck Paths of Height at Most 3

A Dyck path of semilength n is a lattice path from (0, 0) to (2n, 0) using up-steps

(1, 1), down-steps (1,−1), and never going below the x-axis. An up-step immedi-

ately followed by a down-step is called a peak. The height of a Dyck path D, denoted

height(D), is the height of its highest peak.

There are several bijections between Sn(321) and the set of Dyck paths of

semilength n. The one that best fits our needs is a slightly modified version of

a map given by Krattenthaler [6]; let us call it φK . Suppose σ ∈ Sn(321) has left-

to-right maxima σ(i1), . . . , σ(ik), where 1 = i1 < · · · < ik. Reading the permutation

σ from left to right, we construct the Dyck path Dσ = φK(σ) as follows. Start with

σ(i1) up-steps, followed by i2 − i1 down-steps. For each j ∈ {2, . . . , k}, we then

draw σ(ij)−σ(ij−1) up-steps, followed by ij+1−ij down-steps (with the convention

ik+1 = n+ 1). Observe that the height of the jth peak of Dσ is

σ(i1)− (i2− i1)+ (σ(i2)−σ(i1))− (i3− i2)+ · · ·+(σ(ij)−σ(ij−1)) = σ(ij)− ij +1.

In particular, we have

height(Dσ) > 3 if and only if σ(ij) > ij + 2 for some j ∈ {1, . . . , k}. (2)

For example, the permutation σ = 24 5 1 3 has left-to-right maxima 2, 4, 5 at

positions i1 = 1, i2 = 2, and i3 = 3, so it corresponds to the path shown in Figure 1.

Proposition 3. There is a bijection between Sn(321, 4123) and the set of Dyck

paths of semilength n and height at most 3.
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Figure 1: Dyck path corresponding to σ = 24 5 1 3. It has one peak of height 2 and
two peaks of height 3.

Proof. This is a direct consequence of the above bijection φK . In fact, if Dσ =

φK(σ) has height(Dσ) > 3, then by Equation (2) we have σ(ij) > ij + 2 for some

left-to-right maximum value σ(ij). Now, since σ has ij−1 entries to the left of σ(ij)

and since there are ij + 2 values smaller than σ(ij), at least three of these values

must appear in increasing order to the right of σ(ij), creating a 4123 pattern. In

conclusion, if σ is a (321, 4123)-avoiding permutation, then height(Dσ) ≤ 3.

Conversely, let D be a Dyck path and let σ = φ−1
K (D). If σ has a 4123 pattern,

then there is a left-to-right maximum σ(ij) (i.e., σ(ij) > σ(i) for every i < ij) and

there are values a < b < c < σ(ij) such that ij < σ−1(a) < σ−1(b) < σ−1(c). In

other words, we must have σ(ij) > (ij − 1) + 3 = ij + 2, which by Equation (2)

implies height(D) > 3. Therefore, if height(D) ≤ 3, then σ = φ−1
K (D) avoids the

patterns 321 and 4123.

Remark 1. At the level of Dyck paths, the first column in Table 1 gives the number

of Dyck paths of height at most 3 that start with an up-step followed by a down-

step. For k > 1, the table gives the counting of Dyck paths of height at most 3 by

the position of the first long descent (more than one consecutive down-steps).

3. Permutations Avoiding 321 and 2143

In this section, we show that the elements of the set Sn(321, 2143) are enumerated

by the odd-indexed Fibonacci numbers. We also establish a bijection to block

fountains.

Proposition 4. For n ∈ N, we have |Sn(321, 2143)| = F2n−1.

Proof. Let gn = |Sn(321, 2143)|. Clearly, g1 = 1, g2 = 2. For n ≥ 3, we decompose

Sn(321, 2143) as a disjoint union of three sets, say A1∗
n ∪A∗n

n ∪Bn, where

A1∗
n = {σ ∈ Sn(321, 2143) : σ(1) = 1},

A∗n
n = {σ ∈ Sn(321, 2143) : σ(1) ̸= 1 and σ(n) = n},
Bn = {σ ∈ Sn(321, 2143) : σ(1) ̸= 1 and σ(n) ̸= n}.
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Every element of Sn(321, 2143) that starts with 1 or ends with n is of the form

1 ⊕ σ′ or σ′ ⊕ 1, respectively, with σ′ ∈ Sn−1(321, 2143). In each case, there are

gn−1 such permutations. Moreover, every permutation in Sn(321, 2143) that starts

with 1 and ends with n is of the form 1 ⊕ σ′′ ⊕ 1 with σ′′ ∈ Sn−2(321, 2143), so

there are gn−2 of those. Therefore, |A1∗
n | = gn−1 and |A∗n

n | = gn−1 − gn−2. Finally,

there is a bijective map

φ : Bn → Sn−1(321, 2143)

defined as follows. Let σ ∈ Bn and let σ(i1), . . . , σ(im) be its left-to-right maxima

listed in increasing order. Note that i1 = 1, σ(i1) > 1, σ(im) = n, and im < n.

We let τ = φ(σ) be the unique permutation in Sn−1(321) with left-to-right maxima

τ(i1), . . . , τ(im), where τ(ij) = σ(ij)− 1 for j ∈ {1, . . . ,m}. For example,

2 5 1 6 3 4 = 25 16 3 4 7→ 14 25 3.

Suppose τ contains a leftmost 2143 pattern, say (b, a, d, c) with a < b < c < d. Then

b and d are left-to-right maxima of τ , entries b and a are adjacent, and d− 1 must

be to the right of d. Therefore, σ must have b+1 and d+1 as left-to-right maxima

at the same positions of b and d in τ , and d cannot be a left-to-right maximum of

σ because d − 1 is not one for τ . This means that σ−1(d) > σ−1(d + 1). Thus,

if a′ is the element adjacent to the right of b + 1 in σ, then (b + 1, a′, d + 1, d)

is a 2143 pattern. In other words, if σ avoids 2143, so does φ(σ). This map is

clearly bijective, which implies |Bn| = gn−1. In conclusion, g1 = 1, g2 = 2, and

gn = 3gn−1 − gn−2 for n ≥ 3. Consequently, gn = F2n−1.

For the application discussed at the end of this section, it is meaningful to

count the elements of Sn(321, 2143) by the position of their largest entry. Let

Sk 7→n
n (321, 2143) be the set of permutations in Sn(321, 2143) such that σ(k) = n.

Proposition 5. Let an,k = |Sk 7→n
n (321, 2143)|. We have

an,1 = 1 for n ≥ 1,

an,n = F2n−3 for n > 1,

an,k = an−1,k−1 + an−1,k for 1 < k < n.

The generating function g(x, t) =
∑
n≥1

n∑
k=1

an,k t
kxn satisfies

g(x, t) =
tx(1− tx)(1− 2tx)

(1− x− tx)(1− 3tx+ t2x2)
.

Proof. The set S1 7→n
n (321, 2143) consists of the permutation 1⊖ idn−1, so an,1 = 1.

As discussed in the proof of Proposition 4, every element σ ∈ Sn(321, 2143) can be

uniquely obtained from an element σ′ ∈ Sn−1(321, 2143) as a direct sum, 1 ⊕ σ′
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or σ′ ⊕ 1, or by using the inverse map φ−1. In particular, every permutation in

Sn7→n
n (321, 2143) is of the form σ′ ⊕ 1, thus an,n = |Sn−1(321, 2143)| = F2n−3.

Now, for 1 < k < n, every σ ∈ Sk 7→n
n (321, 2143) is either of the form σ = 1⊕ σ′

with σ′ ∈ Sk−17→n−1
n−1 (321, 2143) or σ = φ−1(σ′) with σ′ ∈ Sk 7→n−1

n−1 (321, 2143).

Note that φ and φ−1 preserve the position of the largest element. In conclusion,

an,k = an−1,k−1 + an−1,k.

The claimed expression for g(x, t) follows from routine algebraic manipulations,

together with the generating function for the odd-indexed Fibonacci numbers.

n \ k 1 2 3 4 5 6 7 8

1 1

2 1 1
3 1 2 2
4 1 3 4 5
5 1 4 7 9 13
6 1 5 11 16 22 34
7 1 6 16 27 38 56 89
8 1 7 22 43 65 94 145 233

Table 2: Triangle for |Sk 7→n
n (321, 2143)|. Reverse of A121460 in [9].

3.1. Block Fountains of Coins

A block n-fountain of coins is an arrangement of coins in rows such that the bottom

row consists of n coins forming a contiguous block, and each higher row consists of

a single contiguous block of coins where each coin touches exactly two coins from

the row beneath it; see Figure 2.

Block 6-fountain Not a block fountain

Figure 2: Examples.

As shown in Wilf [12, Section 2.1, Example 7], there are F2n−1 block n-fountains.

A coin in a block fountain is called a peak if it does not touch any coin in a higher

row. A block n-fountain with maximum number of coins will be called a triangular

n-stack. Note that a triangular stack has only one peak.
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Proposition 6. There is a bijection between the set of block n-fountains and the

set of (321, 2143)-avoiding permutations of size n.

Proof. We will provide an algorithm to go from block fountains to permutations,

illustrating the steps with an example. Given a block n-fountain, proceed as follows:

(i) Going from left to right, label the coins on the bottom row with the elements

of [n] in increasing order.

(ii) Identify the peaks of the fountain. For every peak not at the bottom, draw

diagonals (of slope ±
√
3) from the center of the peak to the two coins on the

bottom row along those diagonals. An example is shown in Figure 3.

1 2 3 4 5 6

Figure 3: Labeled block 6-fountain

(iii) If a bottom coin i is a peak, we let σ(i) = i. Otherwise, if a peak at a higher

row has diagonals pointing to the bottom coins i and j with i < j, we let

σ(i) = j.

(iv) If the fountain has k peaks, the previous steps give positions 1 = i1 < · · · < ik
and corresponding values σ(i1) < · · · < σ(ik) = n. We let σ be the unique

permutation in Sn(321) having left-to-right maxima σ(i1), . . . , σ(ik).

For the example in Figure 3, we get the permutation 2 4 5 1 3 6.

Suppose σ contains a 2143 pattern at positions (i, i+ 1, j, k) with i+ 1 < j < k.

This means that σ(i) and σ(j) are left-to-right maxima, and σ(i + 1) < σ(i) <

σ(k) < σ(j). In particular, j − i ≥ 2 and σ(j) − σ(i) ≥ 2. Without loss of

generality, assume j − i = 2 and σ(j)− σ(i) = 2. In this case, part of the fountain

must have two peaks and be of the form shown in Figure 4, which is not a block

fountain because the coins at the top row are not contiguous. More generally, if

j − i > 2, the gap between the peaks would be longer, and if σ(j) − σ(i) > 2, the

peak along diagonal j would just be higher.

In conclusion, all permutations constructed as above avoid both 321 and 2143.

The inverse map is obtained by reversing the algorithm. Given σ ∈ Sn(321, 2143),

let i1, . . . , ik be the locations of its left-to-right maxima, listed in increasing order.

Note that for every j ∈ {1, . . . , k}, we must have σ(ij) ≥ ij . We start our fountain

construction by placing a block of n coins as base, labeling them with the elements
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i σ(i)j σ(j)

. . . . . .

Figure 4: Not a block fountain.

of [n] in increasing order. Then, for every j, we place the needed coins to make a

triangular (σ(ij)− ij + 1)-stack whose base are the coins labeled ij through σ(ij).

As we did above, one can argue that any gap of coins in a row of the fountain

would imply a 2143 pattern in σ. In other words, the fountain resulting from our

construction must be a block n-fountain.

4. Boolean Permutations

Boolean permutations are those that avoid the patterns 321 and 3412. They are

known to be enumerated by the odd-indexed Fibonacci numbers; see Tenner [8].

Proposition 7. For n ∈ N, we have |Sn(321, 3412)| = F2n−1.

Proof. Let gn = |Sn(321, 3412)|. As stated before, it is clear that g1 = 1 and

g2 = 2. Now, for n ≥ 3 and σ ∈ Sn(321, 3412), we consider the disjoint cases

σ(1) = 1, σ(2) = 1, or σ(j) = 1 for some j > 2. Every σ with σ(1) = 1 or σ(2) = 1

can be uniquely obtained from a σ′ ∈ Sn−1(321, 3412) by increasing all the entries

of σ′ by one and inserting the 1 either at position 1 or position 2, respectively. Thus

there are 2gn−1 such permutations.

If σ has the 1 at position j > 2, then σ(1) = 2; otherwise entry 2 would create

either a 321 pattern (if it is to the left of 1, but not at position 1) or a 3412 pattern

(if it is to the right of 1). Such a permutation can be uniquely obtained by inserting

the 2 at position 1 into a permutation from Sn−1(321, 3412) that does not start

with 1. There are gn−1 − gn−2 permutations of this type.

In conclusion, g1 = 1, g2 = 2, and gn = 3gn−1 − gn−2 for n ≥ 3. Consequently,

gn = F2n−1.

Similar to Section 3, we consider the set Sk 7→1
n (321, 3412) of permutations in

Sn(321, 3412) having the 1 in position k, i.e., σ(k) = 1.

Proposition 8. For n > 1, we have

|S17→1
n (321, 3412)| = |S27→1

n (321, 3412)| = F2n−3,
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and for 3 ≤ k ≤ n, we have |Sk 7→1
n (321, 3412)| = |Sk−17→1

n−1 (321, 3412)|. Moreover,

the function g(x, t) =
∑
n≥1

n∑
k=1

|Sk 7→1
n (321, 3412)| tkxn satisfies

g(x, t) =
tx− 2tx2 + t2x3

(1− tx)(1− 3x+ x2)
.

Proof. This follows from the discussion in the proof of the previous proposition.

First of all, every σ ∈ Sn(321, 3412) with σ(1) = 1 or σ(2) = 1 can be uniquely

obtained from a permutation in Sn−1(321, 3412) by inserting the 1 at the corre-

sponding position. This leads to the claimed formula for k = 1 and k = 2. For

k ≥ 3, every element of Sk 7→1
n (321, 3412) can be uniquely obtained by inserting 2 at

position 1 into an element of Sk−17→1
n−1 (321, 3412). This proves the claimed formula

for k ≥ 3.

As in previous propositions, the claimed rational expression for g(x, t) follows

from straightforward algebraic manipulations.

n \ k 1 2 3 4 5 6 7 8

1 1

2 1 1
3 2 2 1
4 5 5 2 1
5 13 13 5 2 1
6 34 34 13 5 2 1
7 89 89 34 13 5 2 1
8 233 233 89 34 13 5 2 1

Table 3: Triangle for |Sk 7→1
n (321, 3412)|.

4.1. Noncrossing, Nonnesting Set Partitions

We finish this section with a discussion on noncrossing, nonnesting set partitions,

and their representation via arc diagrams. Our goal is to provide a simple bijection

between these objects and the set of (321, 3412)-avoiding permutations.

A partition of the set [n] = {1, . . . , n} is a set of disjoint nonempty sets (called

blocks) whose union is [n]. Every partition π of [n] can be represented by an arc

diagram obtained by drawing an arc between each pair of integers that appear

consecutively in the same block of π. An example is shown in Figure 5.

Two arcs (i1, j1) and (i2, j2) make a crossing if i1 < i2 < j1 < j2, and they

make a nesting if i1 < i2 < j2 < j1. A noncrossing/nonnesting partition is a
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1 2 3 4 5 6 7 8

Figure 5: Representation of π = {{1, 3}, {2, 4, 8}, {5, 7}, {6}}.

partition with no crossings/nestings. Moreover, a partition of [n] is said to be in-

decomposable if no subset of its blocks is a partition of [k] with k < n. In other

words, an indecomposable partition is one whose corresponding arc diagram cannot

be separated into two disjoint arc diagrams with consecutive nodes. The partition

{{1, 3}, {2, 4, 8}, {5, 7}, {6}}, shown above, is an example of an indecomposable par-

tition with one crossing and one nesting.

We let Pncn(n) be the set of partitions of [n] that are both noncrossing and

nonnesting, and let Pi
ncn(n) be the subset of such partitions that are indecom-

posable. Note that every partition in Pi
ncn(n) consists of a block of size j for

some j ≥ 2, containing 1 and n, together with n − j singletons. It is known that

|Pncn(n)| = F2n−1; see Marberg [7, Example 4.2].

Proposition 9. There is a bijection between the set of indecomposable, noncrossing,

nonnesting set partitions of [n] and the set of (321, 3412)-avoiding indecomposable

permutations on [n].2

Proof. First, we map {1} 7→ 1 and {1, 2} 7→ 21. Let n ≥ 3 and π ∈ Pi
ncn(n), say

π = {{u0, . . . , uj}, {s1}, . . . , {sk}}

with j+1+k = n, u0 = 1, uj = n, u0 < u1 < · · · < uj , and 2 ≤ s1 < · · · < sk ≤ n−1.

We let σπ be the unique element of Sn(321) with left-to-right maxima u1, . . . , uj at

positions 1, u1, . . . , uj−1, respectively. In other words, if we let s0 = 1, then

σπ(1) = u1, σπ(n) = sk,

σπ(ui−1) = ui for i ∈ {2, . . . , j},
σπ(si) = si−1 for i ∈ {1, . . . , k}.

For example, the partition {{1, 2, 4, 5, 8}, {3}, {6}, {7}} ∈ Pi
ncn(8) corresponds to

the permutation 2 4 1 5 8 3 6 7. This map can be visualized as follows:

1 2 3 4 5 6 7 8

2 4 5 8

1 3 6 7

; 2 4 1 5 8 3 6 7.

The elements of Pi
ncn(5) are listed in Table 4 together with their corresponding

permutations.

2A permutation is called indecomposable if it is not a direct sum of two nonempty permutations.
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Observe that for every π ∈ Pi
ncn(n), the permutation σπ consists of a single cycle,

σπ = (1 u1 · · · uj sk · · · s1), and is therefore indecomposable.

If σπ were to contain a 3412 pattern, then the 3 and 4 will have to be left-to-right

maxima (otherwise σπ would have a 321 pattern). Let ui−1 and ui be nodes in the

arc diagram of π connected by a single arc:

ui−1 ui

ui ui+1. . .

By our construction of σπ (in one-line notation), there are ui−1−1 values to the left

of and smaller than ui, and ui−ui−1−1 values of σπ strictly between the entries ui

and ui+1 (all smaller than ui). Thus, there are (ui−1− 1)+ (ui−ui−1− 1) = ui− 2

numbers smaller than ui to the left of ui+1. Therefore, there can be at most one

element smaller than ui to the right of ui+1, which means that a 3412 pattern is

not possible.

In conclusion, σπ is an indecomposable element of Sn(321, 3412).

This map is clearly invertible. Given an indecomposable σ ∈ Sn(321, 3412) with

left-to-right maxima u1, . . . , uj , listed in increasing order, we must have u1 > 1,

σ−1(u1) = 1, uj = n, and σ−1(uj) < n. We then construct an arc diagram with n

nodes, labeled 1 through n from left to right, by connecting the first and last nodes

with consecutive arcs passing through the nodes labeled 1, u1, . . . , uj . The resulting

diagram gives the indecomposable, noncrossing, nonnesting partition of [n],

πσ = {{1, u1, . . . , uj}, {s1}, . . . , {sn−j−1}},

where s1, . . . , sn−j−1 are the labels of the n−j−1 isolated nodes of the diagram.

Corollary 1. There is a bijection between the set of noncrossing, nonnesting set

partitions of [n] and the set of (321, 3412)-avoiding permutations on [n].

This follows by applying the map from Proposition 9 to each indecomposable

component. If π has a decomposition π1|π2| · · · |πk, then we let

σπ = σπ1
⊕ σπ2

⊕ · · · ⊕ σπk
.

For example, for π = {{1, 2, 4}, {3}, {5}, {6, 8}, {7}}, we have π = π1|π2|π3 with

π1 = {{1, 2, 4}, {3}}, π2 = {1}, and π3 = {{1, 3}, {2}}.

Then σπ1
= 24 1 3, σπ2

= 1, σπ3
= 31 2, and σπ = 24 1 3⊕ 1⊕ 3 1 2 = 2 4 1 3 5 8 6 7.

1 2 3 4 5 6 7 8

2 4 8

1 3 6 7

; 2 4 1 3 5 8 6 7.
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π Diagram σπ

{{1, 2, 3, 4, 5}}
1 2 3 4 5

2 3 4 5

1

2 3 4 5 1

{{1, 2, 3, 5}, {4}}
1 2 3 4 5

2 3 5

1 4

2 3 5 1 4

{{1, 2, 4, 5}, {3}}
1 2 3 4 5

2 4 5

1 3

2 4 1 5 3

{{1, 3, 4, 5}, {2}}
1 2 3 4 5

3 4 5

1 2

3 1 4 5 2

{{1, 2, 5}, {3}, {4}}
1 2 3 4 5

2 5

1 3 4

2 5 1 3 4

{{1, 3, 5}, {2}, {4}}
1 2 3 4 5

3 5

1 2 4

3 1 5 2 4

{{1, 4, 5}, {2}, {3}}
1 2 3 4 5

4 5

1 2 3

4 1 2 5 3

{{1, 5}, {2}, {3}, {4}}
1 2 3 4 5

5

1 2 3 4

5 1 2 3 4

Table 4: Bijection between Pi
ncn(5) and indecomposable elements of S5(321, 3412).

Remark 2. If π is a partition of [n] with blocks B1, . . . , Bj , we let

m(π) = min{max(B1), . . . ,max(Bj)}.

The kth column of Table 3 gives the number of partitions π ∈ Pncn(n) such that

m(π) = k.

5. Permutations Avoiding 231 and 3124

As in previous sections, we start with a simple proof of the known fact that the

elements of Sn(231, 3124) are counted by the odd-indexed Fibonacci numbers.

Proposition 10. For n ∈ N, we have |Sn(231, 3124)| = F2n−1.

Proof. Let gn = |Sn(231, 3124)|. For n ≥ 3 and σ ∈ Sn(231, 3124), we consider the

disjoint cases σ(1) = 1, σ(1) = n, or 1 < σ(1) < n. The first two types are of the
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form 1⊕ σ′ and 1⊖ σ′, respectively, for some σ′ ∈ Sn−1(231, 3124). Thus there are

gn−1 permutations of each type for a combined total of 2gn−1.

Let An = {τ ∈ Sn(231, 3124) : 1 < τ(1) < n} and let σ ∈ An. If σ(1) < σ(2),

then (σ(1), σ(2), 1) would form a forbidden 231 pattern, and thus σ(1)− σ(2) > 0.

Now, if σ(1) − σ(2) > 1, then there would exist a ∈ [n] with σ(1) > a > σ(2). In

that case, either (σ(1), n, a) would form a 231 pattern or (σ(1), σ(2), a, n) would

form a 3124 pattern. Since both patterns are avoided by σ, we conclude that

σ(2) = σ(1)− 1.

This means that every permutation σ ∈ An can be uniquely obtained from a

permutation σ′ ∈ Sn−1(231, 3124) with σ′(1) < n − 1 (there are gn−1 − gn−2 of

those) by 21-inflating its first entry. More precisely, for every σ′ as above, we let

σ ∈ Sn(231, 3124) be defined by σ(1) = σ′(1) + 1, and for j ∈ {2, . . . , n}, we let

σ(j) =

{
σ′(j − 1) if σ′(j − 1) ≤ σ′(1),

σ′(j − 1) + 1 if σ′(j − 1) > σ′(1).

For example, the three permutations in S4(231, 3124) not starting with 1 or 4 cor-

respond to the three elements of S3(231, 3124) not starting with 3:

1 2 3 ; 2 1 3 4, 1 3 2 ; 2 1 4 3, 2 1 3 ; 3 2 1 4.

In conclusion, gn = 3gn−1 − gn−2 for n ≥ 3. Since g1 = 1 and g2 = 2, we have

gn = F2n−1.

We now consider the subset Sk 7→1
n (231, 3124) ⊂ Sn(231, 3124) of permutations

having the 1 in position k. Observe that the set Sn 7→1
n (231, 3124) only contains the

decreasing permutation σ = n (n− 1) · · · 1.

Proposition 11. For 1 ≤ k < n, we have |Sk 7→1
n (231, 3124)| = k ·|Sn−k(231, 3124)|.

As in Proposition 2, the function g(x, t) =
∑
n≥1

n∑
k=1

|Sk 7→1
n (231, 3124)| tkxn satisfies

g(x, t) =
tx

1− tx
+

tx

(1− tx)2
· x− x2

1− 3x+ x2
.

Proof. Every σ ∈ Sn(231, 3124) that starts with 1 can be written as σ = 1⊕σ′, where

σ′ is an element of Sn−1(231, 3124). Thus |S1 7→1
n (231, 3124)| = |Sn−1(231, 3124)|,

as claimed.

Suppose that σ is such that σ(k) = 1 for 1 < k < n. With the same argument

used in the proof of Proposition 10, we deduce that, if 1 < σ(1) < n, then σ must

start with the elements of [k] in decreasing order. This means, σ = δk ⊕ σ′′, where

δk is the decreasing permutation on [k] and σ′′ ∈ Sn−k(231, 3124).
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On the other hand, if σ(k) = 1 for 1 < k < n and σ(1) = n, then the first

k entries of σ must consist of two decreasing sequences of consecutive numbers.

Indeed, if there were two gaps in the values of σ to the left of 1, there would exist

entries a, b appearing to the right of 1 such that n > a > σ(i) > b > σ(i + 1) for

some i ∈ {2, . . . , k − 1}. Now, if a is to the left of b, then (σ(i), a, b) would form

a 231 pattern, and if a is to the right of b, then (σ(i), 1, b, a) would form a 3124

pattern. In other words, in this case, σ has exactly one gap in its first descending

run. Hence σ = δj ⊖ (δk−j ⊕ σ′′) for some j ∈ {1, . . . , k − 1}, where δj and δk−j

are the decreasing permutations on [j] and [k − j], and σ′′ ∈ Sn−k(231, 3124). See

Figure 6 for an illustration.

n

1

δj

δk−j

σ′′

Figure 6: Typical σ ∈ Sn(231, 3124) with σ(k) = 1 and σ(1) = n.

In conclusion, for 1 < k < n, every σ′′ ∈ Sn−k(231, 3124) leads to k different

permutations in Sk 7→1
n (231, 3124). This finishes the proof.

Remark 3. Let δ0 be the empty permutation. In the previous proof, we have shown

that every σ ∈ Sn(231, 3124) with σ(k1) = 1 is of the form σ = δj1 ⊖ (δk1−j1 ⊕ σk1
)

for some j1 ∈ {0, 1, . . . , k1 − 1} and σk1
∈ Sn−k1

(231, 3124). The argument can

certainly be iterated. If σk1
has the 1 at position k2, then σk1

= δj2 ⊖ (δk2−j2 ⊕σk2
)

for some j2 ∈ {0, 1, . . . , k2 − 1} and σk2
∈ Sn−k1−k2

(231, 3124), and therefore

σ = δj1 ⊖ (δk1−j1 ⊕ (δj2 ⊖ (δk2−j2 ⊕ σk2
))).

If σ has d+1 descending runs, then the above process can be iterated d times until

σkd
is the decreasing permutation on [n− k1 − · · · − kd]. In particular, this implies

that all the descending runs of σ consist of one or two sequences of consecutive

numbers.

5.1. Directed Column-Convex Polyominoes

We finish this section with a direct bijection between Sn(231, 3124) and the set of

directed column-convex (DCC) polyominoes of area n. A directed polyomino is one

that can be built by starting with a single cell and adding new cells on the right or
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on the top of an existing cell. A polyomino is called column-convex if every column

consists of contiguous cells. The area of a polyomino is the number of its cells. An

example of a DCC polyomino is shown in Figure 7.

Figure 7: Directed column-convex polyomino of area 9.

It is known (see e.g., Delest and Delucq [3], Barcucci et. al. [2]) that the number

of DCC polyominoes of area n is the Fibonacci number F2n−1.

Proposition 12. There is a bijection between the set of directed column-convex

polyominoes of area n and the set of (231, 3124)-avoiding permutations of size n.

Proof. Let P be a DCC polyomino with k columns and n cells. We will construct

a corresponding permutation σP in Sn(231, 3124), having k descending runs. The

steps of our algorithm are illustrated in Figure 8 using the polyomino from Figure 7.

(i) First, going through the columns of P from left to right, mark the cell that

aligns with the bottom cell of the adjacent column to its right.

(ii) Going through the columns from left to right, use the elements of [n] in con-

secutive order (starting with 1) to label the cells of each column from the top

down to the cell that was marked in the previous step.

(iii) Finally, going through the columns of P from right to left, continue labeling

the remaining cells in consecutive order from top to bottom. When all cells are

filled with the elements of [n], we build the permutation σP from left to right

by reading the numbers in each column from bottom to top as its descending

runs.

More examples are shown in Figure 9. By construction, the resulting permutation

has the nesting properties discussed in Remark 3. So, σP ∈ Sn(231, 3124).

The above algorithm is reversible. Let σ ∈ Sn(231, 3124) with σ = w1w2 · · ·wk,

where w1, . . . , wk are its descending runs. As discussed before, every wj is of the

form wj = uj vj , where uj and vj are words consisting of decreasing consecutive

numbers (allowing uj to be the empty word). For every j ∈ {1, . . . , k}, we let Cj

be the polyomino consisting of |wj | = |uj | + |vj | cells in a single column. We now

construct a corresponding polyomino Pσ with n cells by connecting C1, . . . , Ck as
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Step (i)

1

2

3 4

Step (ii)

1

2

3 4

5

6

7

8

9

; 9 8 1 7 3 2 4 6 5

Step (iii)

Figure 8: Example of bijection from Proposition 12.

follows. Once column Cj is placed, column Cj+1 will be attached to its right in

such a way that the base cell of Cj+1 is adjacent to the |vj |-th cell from the top of

Cj . Clearly, Pσ is a DCC polyomino of area n.

Remark 4. In the above bijection, the elements of Sk 7→1
n (231, 3124) correspond to

DCC polyominoes of area n whose first column has exactly k cells.

Remark 5. Another class of combinatorial objects counted by the odd-indexed

Fibonacci numbers are the nondecreasing Dyck paths. These are Dyck paths for

which the sequence of the altitudes of the valleys is nondecreasing. A bijection

between DCC polyominoes and nondecreasing Dyck paths can be found in Deutsch

and Prodinger [4, Section 3]. Moreover, as discussed in Vella [10], the standard

bijection3 from 132-avoiding permutations to Dyck paths gives a bijection from

(132, 3241)-avoiding permutations to nondecreasing Dyck paths.
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