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Abstract

Robin conjectured that σ(n) < eγn log log n holds for all n > 7!, where σ(n) is the
sum of the divisors of n and γ denotes the Euler constant. Robin showed that the
validity of this inequality is equivalent to the Riemann Hypothesis. Here we show
that the set of n’s failing this inequality has a very small counting function: the
number of such n ≤ x is O(xε) for any ε > 0 and x > x(ε).

1. Introduction

Robin conjectured that σ(n) < eγn log log n holds for all positive integers n > 7!,

where σ(n) is the sum of divisors and γ is the Euler constant. Ramanujan [7]

proved that the Riemann Hypothesis implies the above inequality and Robin proved

that the above inequality is equivalent to the Riemann Hypothesis. No numerical

counterexample (larger than 7!) is known. Several papers looked at infinite classes

of integers n for which this could be proved to hold such as

(i) odd and greater than 9 [4];

(ii) square-free and greater than 30 [4];

(iii) a sum of two squares greater than 720 [2];

(iv) not divisible by the fifth power of a prime [4];

(v) not divisible by the seventh power of a prime [8];

(vi) not divisible by the eleventh power of a prime [3];
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(vii) not divisible by the twentieth power of a prime [6];

(viii) not divisible by the twenty-first power of a prime [1].

All sets listed at (i)–(viii) are of density smaller than 1 as subsets of integers (and

(iii) is of density 0). So, one might ask whether it can be shown that the set of n’s

failing Robin’s inequality (a finite set under the Riemann Hypothesis) is at least

of asymptotic density 0. It turns out that this has been done in [10]. No explicit

bounds for the counting function of the exceptional n were given in [10]. This is

the primary purpose of our paper. Let

NR(x) = {7! < n ≤ x : σ(n) ≥ eγn log log n}.

In this paper we give upper bounds on #NR(x). Numbers n for which σ(n) is very

large (so they might have a chance of belonging toNR in the absence of the Riemann

hypothesis) are the highly composite numbers and the colossally abundant numbers

first studied by Ramanujan [7] and later by Erdős and Nicolas [5]. Throughout the

paper, we use Landau’s symbols O and o as well as Vinogradov’s symbols ≪ and

≫ with their regular meanings. Recall that if f, g are functions of a real parameter

x then f(x) = O(g(x)), f(x) ≪ g(x) and g(x) ≫ f(x) are all equivalent to the

fact that the inequality |f(x)| < Kg(x) holds with some positive constant K for

all x > x0, whereas f(x) = o(g(x)) means that f(x)/g(x) tends to 0 as x tends to

infinity.

2. Theorems and Proofs

Theorem 1. For x ≥ 3, we have

#NR(x) = O

(
x

log log x

)
.

Proof. Recall that ∑
n≤x

σ(n)

n
=
π2

6
x+O(log x).

Let n ∈ NR(x) ∩ [x/2, x]. Then σ(n)/n ≥ eγ log log n ≥ eγ log log(x/2). We thus

get

eγ log log(x/2)# (NR(x) ∩ [x/2, x]) ≤
∑

x/2≤n≤x

σ(n)

n
≪ x,

therefore

# (NR(x) ∩ [x/2, x]) ≪ x

log log x
.

Replacing now x by x/2, then by x/4, etc. and summing up the resulting estimates

we get the desired conclusion.
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The next result presents a better upper bound on #NR(x).

Theorem 2. For x ≥ 3, we have

#NR(x) = O

(
x√
log x

)
.

Proof. Let τ(n) be the number of divisors of n. Recall that∑
n≤x

τ(n) = x log x+O(x).

Let N1(x) be the set of n ∈ [x/2, x] such that τ(n) ≥ (log x)1.5. The above estimate

gives us that

(log x)1.5#N1(x) ≤
∑

x/2≤n≤x

τ(n) = O(x log x),

which gives

#N1(x) = O

(
x√
log x

)
.

We next show that for x > x0, NR(x) ∩ [x/2, x] ⊂ N1(x). Indeed, let n ∈ [x/2, x]

not in N1(x). Then τ(n) < (log x)1.5. Next,

σ(n)

n
=

∑
d|n

1

d
=

∑
d|n

d<(log x)1.5

1

d
+

∑
d|n

d≥(log x)1.5

1

d
=: S1(n) + S2(n).

Clearly,

S2(n) ≤
τ(n)

(log x)1.5
< 1 since n ̸∈N1(x).

As for S1(n), we can extend it over all positive integers d < (log x)1.5 getting that

S1(n) ≤
∑

d<(log x)1.5

1

d
< 1 + log((log x)1.5) = 1 + 1.5 log log x.

Hence, for n̸∈N1(x), we have that

σ(n)

n
= S1(n) + S2(n) < 2 + 1.5 log log x.

The right–hand side above is smaller than 1.78 log log(x/2) < eγ log log n when

n ∈ [x/2, x] and x > 10600. This shows that

# (NR(x) ∩ [x/2, x]) ≤ #N1(x) = O

(
x√
log x

)
for x > 10600.

Replacing now x by x/2, then by x/4, etc. and summing up the resulting inequalities

we get the desired conclusion.
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Remark 1. The exponent 1/2 on the logarithm in the upper bound for #NR(x)

can be improved to eγ − 1− ε for any ε > 0 and x > x(ε).

While the previous two theorems give some answer to the motivating question

of our note, namely finding explicit upper bounds for the counting function of the

numbers failing Robin’s inequality, they are a bit disappointing in that they do not

seem to be related in any way to the Riemann Hypothesis, which in general appears

when working with estimates concerning π(x), θ(x) or ψ(x). Our last result points

out this connection.

Theorem 3. The estimate

#NR(x) = O(xε)

holds for any ε > 0 and x > x(ε).

Proof. As usual, we take n ∈ NR(x) ∩ [x/2, x]. Then

σ(n)

n
≥ eγ log log n ≥ eγ log log(x/2) = eγ log log x

(
1 +O

(
1

log x

))
. (1)

We have

σ(n)

n
≤ n

ϕ(n)
=

∏
p|n

(
1− 1

p

)−1

=
∏

p≤log x

(
1− 1

p

)−1 ∏
p≤log x

p∤n

(
1− 1

p

) ∏
p>log x

p|n

(
1− 1

p

)−1

=: P1(x)
−1P2(n, x)P3(n, x)

−1. (2)

We take logarithms in (1) and use (2) to get

logP1(x)
−1 + logP2(n, x) + logP3(n, x)

−1 ≥ log(eγ log log x) +O

(
1

log x

)
. (3)

By a result of Vinogradov [9]

∏
p≤log x

(
1− 1

p

)
=

e−γ

log log x

(
1 +O(exp(−a(log log x)3/5(log log log x)−1/5))

)
for some constant a > 0. Hence,

logP1(x)
−1 = log(eγ log log x) +O(exp(−a(log log x)3/5(log log log x)−1/5)). (4)
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Further, ω(n) < 2 log n/ log log n for large x. Since the interval (log x, 4 log x) con-

tains (3 + o(1)) log x/ log log x primes as x→ ∞, it follows that

logP3(n, x)
−1 = O

 ∑
p>log x

p|n

1

p

 = O

 ∑
log x<p<4 log x

1

p


= O(log log(4x)− log log x+ exp(−a(log log x)3/5(log log log x)−1/5)

= O

(
log

(
1 +

log 4

log x

)
+ exp(−a(log log x)3/5(log log log x)−1/5)

)
= O

(
1

log x
+ exp(−a(log log x)3/5(log log log x)−1/5)

)
= O

(
exp(−a(log log x)3/5(log log log x)−1/5)

)
. (5)

Putting (4) and (5) into (3), we get that

− logP2(n, x) ≤ O

(
1

log x

)
+O(exp(−a(log log x)3/5(log log log x)−1/5))

= O
(
exp(−a(log log x)3/5(log log log x)−1/5)

)
. (6)

However,

− logP2(n, x) ≫
∑

p≤log x
p∤n

1

p
.

Let m be the number of primes involved in P2(n, x). We then get that the right–

hand side above is at least m/ log x, which together with (6) gives

m≪ log x

exp(a(log log x)3/5(log log log x)−1/5)
≪ log x

exp((log log x)1/2)
. (7)

The number of ways of choosing m primes among the first π(log x) is(
π(log x)

m

)
≪ π(log x)m

m!
≪ emm1/2

(
π(log x)

m

)m

= xo(1)O

(
exp((log log x)1/2)

log log x

)O

(
log x

exp((log log x)1/2)

)

= xo(1) exp

(
O

(
log x(log log x)1/2

exp((log log x)1/2)

))
= xo(1).

In the above, we used the Stirling formula to approximate the factorial. So, there

are xo(1) subsets of primes P ⊂ [1, log x] which can be the sets of missing primes
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out of n up to log x. For each one of these,∏
p∈P

p ≤ (log x)m = exp

(
O

(
log x log log x

exp((log log x)1/2)

))
= xo(1).

Thus, letting QP be such that

QP :=
∏

p≤log x
p ̸∈P

p,

we have that QP | n. By the Prime Number Theorem,

QP =

∏
p∈P

p

−1 ∏
p≤log x

p = xo(1) exp

 ∑
p≤log x

log p


= xo(1) exp(log x+O(exp(−a(log log x)3/5(log log log x)−1/5)))

= x1+o(1).

Since QP | n, it follows that n = QPn1. Since n ≤ x and QP = x1+o(1), it follows

that n1 = xo(1). To recap, if n ∈ NR(x)∩ [x/2, x] then there is a positive integer m

satisfying (7) and a set of primes P ⊂ [1, log x] of cardinality exactly m such that n

is divisible by QP , the product of all primes p ≤ log x, not in P . The number m and

set P can be chosen in xo(1) ways. Once P is chosen, QP is uniquely determined of

size x1+o(1), so n = QPn1, where n1 can be chosen in xo(1) ways as well. Putting

all together, we get at most xo(1) choices for n. Now we replace x by x/2, then x/4,

etc. and sum the resulting estimates.
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