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Abstract

If G is a finite connected graph, then an arithmetical structure on G is a pair of
vectors (d, r) with positive integer entries such that (diag(d)−A) ·r = 0, where A is
the adjacency matrix of G and the entries of r have no common factor other than 1.
In this paper, we generalize the result of Archer, Bishop, Diaz-Lopez, Garćıa Puente,
Glass, and Louwsma on enumerating arithmetical structures on bidents (also called
coconut tree graphs CT(p, 2)) to any coconut tree graphs CT(p, s) which consists of
a path on p > 0 vertices to which we append s > 0 leaves to the right most vertex
on the path. We also give a characterization of smooth arithmetical structures on
coconut trees when given number assignments to the leaf nodes.
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Figure 1: Examples of coconut tree graphs.

1. Introduction

An arithmetical structure on a graph is an assignment of weights to the vertices

of the graph with positive integers satisfying: the weight at a vertex divides the

sum of its neighbors’ weights (with multiplicity), and the weights do not share any

common factor other than 1. Alternatively, they can be defined as a pair of vectors

that satisfy a collection of linear equations that are equivalent to the divisibility

conditions (Definition 1). Arithmetical structures arose out of the study of the

intersection of degenerating curves in algebraic geometry [11]. Recently, they have

been studied from a combinatorial point of view [1, 3, 5, 8, 10, 12, 13] and from an

algebraic point of view [2, 6, 14].

Lorenzini established that finite simple graphs have finitely many arithmetical

structures [11, Lemma 1.6]. In light of Lorenzini’s result, it is of interest to enu-

merate arithmetical structures on families of graphs. Throughout, we let Arith(G)

denote the set of arithmetical structures on a graph G and |Arith(G)| denotes its
cardinality. In [3], Braun, Corrales, Corry, Garćıa Puente, Glass, Kaplan, Martin,

Musiker, and Valencia established that if Pn+1 is the path graph on n+ 1 vertices,

then |Arith(Pn+1)| = Cn = 1
n+1

(
2n
n

)
, the n-th Catalan number [7, A000108], and

if Cn is the cycle graph on n vertices, then |Arith(Cn)| =
(
2n−1
n−1

)
= (2n − 1)Cn−1.

Some partial enumeration results are known for bidents [1], paths with a double

edge [8], and En graphs [13]. For complete graphs, arithmetical structures are in

bijection with Egyptian fractions summing to 1 [7, A002967]. In [10], Keyes and

Reiter provide a (very large) upper bound on the number of arithmetical structures

on a graph based on the number of edges of the graph.

In this work, we enumerate arithmetical structures on the coconut tree graph

CT(p, s), which consists of a path on p > 0 vertices to which we append s > 0

leaves to the rightmost vertex on the path. Figures 1a and 1b illustrate CT(p, 2)

and CT(p, s), respectively. We refer to the vertex to which we append leaves as

the central vertex of the coconut tree. The coconut tree graph CT(p, 2) is also

referred to as a bident, and Archer et al. studied arithmetical structures on bidents

by counting a smaller subset of arithmetical structures which they called smooth

https://oeis.org/A000108
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Figure 2: A smooth arithmetical structure on CT(3, 3).

arithmetical structures [1]. In this context, an arithmetical structure is said to be

smooth if, for each noncentral vertex, the sum of the weights of its neighbors is k

times its weight for some k strictly greater than 1 (here k can vary from vertex to

vertex). This condition guarantees that the structure cannot be obtained from a

smaller structure by a process called subdivision. The technical definitions of these

terms are given in Definitions 3 and 7. Throughout, we will let SArith(G) denote

the set of smooth arithmetical structures on a graph G. See Figure 2 for an example

of a smooth arithmetical structure on CT(3, 3).

Our main result generalizes the work of Archer et al. [1], and enumerates arith-

metical structures on coconut trees CT(p, s), for all p ≥ 1 and s ≥ 2. Let

B(n, k) = n−k+1
n+1

(
n+k
n

)
be a ballot number [7, A009766], which were introduced

by Carlitz [4]. We can now state our main result, which reduces the problem of

counting arithmetical structures on coconut trees to counting smooth arithmetical

structures.

Theorem 1. If p ≥ 1, s ≥ 2, then the number of arithmetical structures for the

coconut tree CT(p, s) is given by

|Arith(CT(p, s))| =
s∑

j=0

(
s

j

)
A(p+ s− j, s− j), (1)

where

A(x, 0) = Cx−1 for x ≥ 1,

A(x, 1) = Cx−1 − Cx−2 for x ≥ 2, and

A(x, y) =

x∑
i=y+1

B(x− y − 1, x− i)|SArith(CT(i− y, y))| for x ≥ 3, y ≥ 2.

This paper is organized as follows. In Section 2, we give the necessary back-

ground on arithmetical structures on graphs, including the definition of smooth

arithmetical structures. In Section 3, we describe the smoothing and subdividing

operations needed in order to count arithmetical structures on coconut tree graphs.

In Section 4, we prove Theorem 1 counting arithmetical structures on coconut trees

https://oeis.org/A009766
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by extending the definition of smooth arithmetical structures to coconut trees with

s ≥ 2. We end with Section 5 by presenting a few directions for further study.

Remark 1. We point the interested reader to GitHub [9] which contains code

whose inputs are a specific graph G and a maximum value m, and whose output is

the set of arithmetical structures on G with values less than or equal to m.

2. Background on Smooth Arithmetical Structures

In this section, we provide the necessary definitions and notation to make our ap-

proach precise. Throughout our work G = (V,E) is a simple connected finite graph

with vertex set V and edge set E. The vertices u and v are adjacent if there exists

an edge between them. We denote the set of vertices of G by V = {v1, v2, . . . , vn}
and the adjacency matrix A = (ai,j) of G is the square matrix of dimension |V |×|V |
defined by

ai,j =

{
1 if vi and vj are adjacent

0 otherwise.

Observe that A is symmetric.

Definition 1. Let G be a graph. An arithmetical structure on G is defined as a

pair of vectors (d, r) ∈ N|V | × N|V | that satisfy

(diag(d)−A) · r = 0, (2)

the entries of r have no common factor other than 1, and where diag(d) is the

diagonal matrix with entries given by the vector d and A is the adjacency matrix

of G.

Equivalently, an arithmetical structure on G can be defined as an assignment of

numbers to the vertices of G such that:

1. The assigned number of a vertex divides the sum of its neighbors’ assigned

numbers.

2. The greatest common divisor of all the assigned numbers is 1.

Throughout, we refer to most arithmetical structures by their r = (r1, r2, . . . , rn)

vector as it represents the assignment of values to the vertices of the graph G.

Equation (2) means that the entries of the vector d measure by what factor the

assigned number of each vertex divides the sum of its neighbors. Hence, r completely

determines d. Conversely, if d satisfies Equation (2) for some vector r with positive

coefficients, Lorenzini [11, Proposition 1.1] showed that the matrix (diag(d) − A)

has rank |V | − 1, hence its kernel is one-dimensional and there is a unique vector r
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such that (d, r) is an arithmetical structure (since the entries of r must be positive

and have 1 as their only common factor). We do remark that just having a d vector

that satisfies Equation (2) does not automatically imply that there is a vector in

the kernel of (diag(d)−A) with strictly positive coefficients [5, Remark 3.11].

We now formally define coconut tree graphs.

Definition 2. A coconut tree CT(p, s) for p > 0 and s > 0 is a path graph Pp with

s leaf vertices at one of the ends. Note that CT(p, 1) = Pp+1 and CT(p, 0) = Pp.

Given a coconut tree graph CT(p, s), we label the path portion of the graph by

v1 to vp, and denote the leaf vertices as vℓ1 , . . . , vℓs , such that vp is adjacent to all

of the leaf vertices. This is illustrated in Figure 3. For vectors r and d, we write

r = (r1, . . . , rp, rℓ1 , . . . , rℓs) and d = (d1, . . . , dp, dℓ1 , . . . , dℓs), where each subscript

i corresponds to the vertex vi. Note that this differs slightly from the notation used

in Archer et al. in [1].

...

· · ·

vℓ1

vℓ2

vℓs

v1 v2 v3 vp

Figure 3: The coconut tree CT(p, s).

Definition 3. An arithmetical structure (d, r) on CT(p, s) is smooth if

d1, . . . , dp−1, dℓ1 , . . . , dℓs ≥ 2.

The set of smooth arithmetical structures on CT(p, s) is denoted SArith(CT(p, s)).

Note that the above definition does not place any restrictions on dp. In the case

of CT(p, 2), Archer et al. [1] proved that dp must be 1 for smooth arithmetical

structures. For s ≥ 3, this result no longer holds. For example, consider the

smooth arithmetical structure on CT(3, 3) presented in Figure 2. Observe that

r = (r1, r2, r3, rℓ1 , rℓ2 , rℓ3) = (2, 4, 6, 3, 3, 2) and d = (2, 2, 2, 2, 2, 3).

Lemma 1. Let (d, r) be an arithmetical structure on CT(p, s). The following con-

ditions are equivalent:

1. di ≥ 2 for 1 ≤ i ≤ p− 1;

2. 0 < r2 − r1 ≤ · · · ≤ rp−1 − rp−2 ≤ rp − rp−1;
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3. r1 < r2 < · · · < rp.

Proof. The proof is identical to Lemma 2.1 of [1] as the proof does not refer to any

leaf vertices.

Lemma 2. An arithmetical structure (d, r) on CT(p, s) is smooth if and only if

rℓj < rp for all 1 ≤ j ≤ s and r1 < r2 < · · · < rp.

Proof. (⇒) Let (d, r) be a smooth structure on CT(p, s). By the definition of

smoothness, di ≥ 2 for all 1 ≤ i ≤ p − 1 and dℓj ≥ 2 for all 1 ≤ j ≤ s. Since

dℓjrℓj = rp, the condition dℓj ≥ 2 implies rℓj < rp for 1 ≤ j ≤ s, and by Lemma 1

item (3), r1 < r2 < · · · < rp.

(⇐) Let (d, r) be an arithmetical structure on CT(p, s), such that rℓj < rp for

all 1 ≤ j ≤ s, and r1 < r2 < · · · < rp. By the divisibility condition, dℓjrℓj = rp for

1 ≤ j ≤ s, and since rℓj < rp, this gives dℓj ≥ 2. By Lemma 1, r1 < r2 < · · · < rp
is equivalent to di ≥ 2 for 1 ≤ i ≤ p− 1. Therefore, di ≥ 2 for all 1 ≤ i ≤ p− 1 and

dℓj ≥ 2 for all 1 ≤ j ≤ s. Hence, (d, r) is a smooth structure.

Lemma 3. Let (d, r) be a smooth arithmetical structure on CT(p, s) with r =

(r1, . . . , rp, rℓ1 , . . . , rℓs), then gcd(rℓ1 , . . . , rℓs) = 1.

Proof. Denote g = gcd(rℓ1 , . . . , rℓs). Since rℓj | rp for all 1 ≤ j ≤ s, this implies

g | rp. Since rp−1 = dprp −
∑s

j=1 rℓj , we have g | rp−1. Consider the previous

argument as the base case for induction. By induction, assume that g | rj for all

i ≤ j ≤ p. Now we want to show that g | ri−1. Note that di = (ri+1 + ri−1)/ri
which simplifies to ri−1 = diri−ri+1 (where we take rp+1 to be 0). By the induction

hypothesis g | ri+1 and g | ri, which implies that g | ri−1. Thus, g | ri for all

1 ≤ i ≤ p. Thus, g divides every label on the graph CT(p, s), implying that

g = 1.

3. Smoothing and Subdivision

In this section, we present two operations that have proven useful in the enumeration

of arithmetical structures on paths and cycles [3], bidents [1], En-graphs [13], as

well as other works involving arithmetical structures [5, 6, 8, 10, 14].

3.1. Smoothing Arithmetical Structures on Coconut Trees

The process we describe for smoothing arithmetical structures on CT(p, s) is similar

to what was done in [1] for smoothing arithmetical structures on CT(p, 2). Before

stating the next definition we remark that in graph theory the use of the phrase

“smoothing a vertex” refers to the replacement of a degree two vertex by an edge
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Figure 4: Smoothing the r-structure (1, 3, 2, 3, 4, 2, 2, 1) on CT(5, 3) at v2 (which
we highlight as a dashed vertex) to get r′-structure (1, 2, 3, 4, 2, 2, 1) on CT(4, 3).

connecting the two neighbors. We use the same naming convention for this oper-

ation, but stress that it does not necessarily imply “smoothness” in the sense of

arithmetical structures, as divisibility conditions are generally not satisfied if you

smooth at a vertex v with dv ̸= 1.

Definition 4. Let p, s ∈ N. For 2 ≤ i ≤ p−1, a smoothing at the vertex vi of degree

2 when di = 1 is defined as an operation that takes an arithmetical structure (d, r)

on CT(p, s) and returns an arithmetical structure (d′, r′) on CT(p−1, s), where the

components of the vectors d′, r′ are as follows:

r′j =

{
rj j ∈ {1, 2, . . . , i− 1, ℓ1, ℓ2, . . . , ℓs}
rj+1 j ∈ {i, i+ 1, . . . , p− 1}

and

d′j =


dj j ∈ {1, . . . , i− 2, ℓ1, ℓ2, . . . , ℓs}
dj − 1 j = i− 1

dj+1 − 1 j = i

dj+1 j ∈ {i+ 1, . . . , p− 1}.

The requirement that di = 1 is present to ensure that the resulting vectors (d′, r′)

form a structure on CT(p− 1, s) as shown in Proposition 1. Before we present this

result, we illustrate Definition 4.

Example 1. Consider the coconut tree CT(5, 3) with

d = (3, 1, 3, 2, 2, 2, 2, 4) and r = (1, 3, 2, 3, 4, 2, 2, 1).

Since d2 = 1, this arithmetical structure is not smooth. We can smooth at v2 by

removing v2 and connecting v1 to v3, as illustrated in the right subfigure in Figure 4.

Note that the removal of v2 yields an arithmetical structure whose entries of the

d-vector for v1 and v3 are both reduced by 1. Namely, the resulting arithmetical

structure is

d′ = (2, 2, 2, 2, 2, 2, 4) and r′ = (1, 2, 3, 4, 2, 2, 1),

which is a smooth arithmetical structure on CT(4, 3).
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Proposition 1. Let p ≥ 2 and s ≥ 1 be integers, and let (d, r) be an arithmetical

structure on CT(p, s). If di = 1 for some 1 ≤ i ≤ p− 1, then (d′, r′) resulting from

smoothing vertex vi is a valid arithmetical structure on CT(p− 1, s).

Proof. There are two cases to consider:

• For j < i−1 or j > i+1, the neighbors of vj are unchanged, so the divisibility

condition still holds for r′.

• For j = i − 1 or j = i + 1 consider the vertex vj . Note that di = 1 implies

ri = ri−1+ ri+1, and since ri−1|ri−2+ ri, we can substitute to get ri−1|ri−2+

ri−1+ ri+1. Now note that as ri−1|ri−1, then it must be that ri−1|ri−2+ ri+1.

An analogous argument shows that ri+1|ri−1 + ri+2. Thus, ensuring that

removing ri preserves the divisibility condition on ri−1 and ri+1.

Therefore (d′, r′) is an arithmetical structure on CT(p− 1, s), as claimed.

We now give the definition for smoothing at a degree one vertex. Note that the

smoothing process on a degree one vertex removes either v1 or one of the leaves.

Definition 5. Let p, s ∈ N. A smoothing at the vertex vi of degree 1 (for i = 1 or

i ∈ {ℓ1, . . . , ℓs}) when di = 1 is defined as an operation that takes an arithmetical

structure (d, r) on CT(p, s) and returns an arithmetical structure (d′, r′) on CT(p−
1, s) or CT(p, s− 1), where the components of the vectors d′, r′ are as follows. For

v1, we have

r′j =

{
rj+1 if j ∈ {1, 2, . . . p− 1}
rj if j ∈ {ℓ1, . . . , ℓs}

and

d′j =


d2 − 1 if j = 1

dj+1 if j ∈ {2, 3, 4, . . . , p− 1}
dj if j ∈ {ℓ1, . . . , ℓs},

and for a leaf vertex vℓi , we have

r′j =

{
rj if j ∈ {1, 2, . . . , p, ℓ1, . . . , ℓi−1}
rj+1 if j ∈ ℓi, ℓi+1, . . . , ℓs−1}

and

d′j =


dj if j ∈ {1, 2, . . . , p− 1, ℓ1, . . . , ℓi−1}
dj − 1 if j = p

dj+1 if j ∈ {ℓi, ℓi+1 . . . , ℓs−1}.
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Figure 5: Smoothing the r-structure (2, 2, 4, 6, 3, 3, 2, 6) on CT(4, 4) at vertex v1
followed by smoothing at vertex vℓ4 . The right-most figure is the result of these
smoothing operations.

The following example illustrates the smoothing process when d1 = 1 or dℓi = 1.

Example 2. Consider the arithmetical structure (d, r) on CT(4, 4) with d =

(1, 3, 2, 3, 2, 2, 3, 1) and r = (2, 2, 4, 6, 3, 3, 2, 6). We can first remove r1 and re-

label all of the path vertices to r′i = ri+1, reducing d2 by 1. Then remove rℓ4 ,

which reduces d4 (or d′3) by 1, no relabeling is required for this removal. This

gives r′ = (2, 4, 6, 3, 3, 2) and d′ = (2, 2, 2, 2, 2, 3), which is a smooth arithmetical

structure on CT(3, 3), illustrated on the right in Figure 5.

Proposition 2. Let p, s ∈ N, and let (d, r) be an arithmetical structure on CT(p, s).

If, for some i ∈ {1, ℓ1, . . . , ℓs}, we have di = 1, then (d′, r′) resulting from smoothing

at vertex vi is a valid arithmetical structure on CT(p−1, s) if i = 1 and CT(p, s−1)

if i ∈ {ℓ1, . . . , ℓs}.

Proof. There are two cases to consider.

Case 1: d1 = 1. In this case, r1 = r2. We remove v1 and relabel the vertices so

that r′j = rj+1 for j ∈ {1, 2, . . . , p − 1}. Since r2|r1 + r3 and r1 = r2, it follows

that r2|r3, which implies that d′1 = d2 − 1. All other divisibility conditions remain

unchanged, hence the result is a valid arithmetical structure.

Case 2: dℓj = 1. In this case, rℓj = rp. We remove vertex vℓj . Since rℓj ≡ 0

mod rp, subtracting rℓj does not change the divisibility condition at rp. All other

divisibility conditions remain unchanged, hence the result is a valid arithmetical

structure. We also have that d′p = dp − 1.

Therefore, (d′, r′) is an arithmetical structure on CT(p − 1, s) in the first case,

and on CT(p, s− 1) in second case, as claimed.

We use the following concept of ancestor as in [1, 8].

Definition 6. Fix p, s ∈ N. Let 1 ≤ q ≤ p and 1 ≤ t ≤ s. An arithmetical

structure (d′, r′) on CT(q, t) is called an ancestor if it is obtained from a sequence

of smoothing operations on an arithmetical structure (d, r) on CT(p, s). We call

(d, r) a descendant of (d′, r′) if and only if (d′, r′) is an ancestor of (d, r).
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Lemma 4. Every arithmetical structure on CT(p, s) with dℓ1 , . . . , dℓs ≥ 2 has a

unique smooth arithmetical structure on CT(q, s) as an ancestor for some q satis-

fying 1 ≤ q ≤ p.

Proof. The proof is analogous to that of Lemma 2.6 in [1] and so we omit it.

3.2. Subdividing Arithmetical Structures on Coconut Trees

Recall that a smoothing operation can remove a vertex of degree 2 or less if its

associated d-value is 1, which can only happen if the r-value of the vertex is equal

to the sum of its neighbors. Then, a subdivision operation can be thought of as an

inverse of the smoothing operation, as it always constructs a new vertex with an r-

label that is equal to the sum of its neighbors. Subdivisions provide the foundation

for enumerating arithmetical structures on coconut trees, as they reduce the problem

to counting the number of smooth arithmetical structures on coconut trees.

Definition 7. Let p, s ∈ N. A subdivision at the vertex vi for i ∈ {1, 2, . . . , p} (or

“at position i”) is defined as an operation that takes an arithmetical structure (d, r)

on CT(p, s) and returns an arithmetical structure (d′, r′) on CT(p+1, s), where the

components of the vectors d′ and r′ are as follows. If i > 1, then

r′j =


rj if j ∈ {1, . . . , i− 1, ℓ1, . . . , ℓs}
rj−1 + rj if j = i

rj−1 if j ∈ {i+ 1, i+ 2, . . . , p, p+ 1}

and

d′j =



dj if j ∈ {1, . . . , i− 2, ℓ1, . . . , ℓs}
dj + 1 if j = i− 1

1 if j = i

dj−1 + 1 if j = i+ 1

dj−1 if j ∈ {i+ 2, . . . , p, p+ 1}.

and if i = 1, then

r′j =


r1 if j = 1

rj−1 if j ∈ {2, 3, . . . , p+ 1}
rj if j ∈ {ℓ1, . . . , ℓs}

and

d′j =


1 if j = 1

dj−1 + 1 if j = 2

dj−1 if j ∈ {3, 4, . . . , p, p+ 1}
dj if j ∈ {ℓ1, . . . , ℓs}.
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Figure 6: Subdividing at position 2 on an arithmetical structure on CT(3, 2).
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Figure 7: Subdividing at position 1 on an arithmetical structure on CT(3, 2).

In short, a subdivision at position i takes the sum of ri−1 and ri and assigns

that value to a new vertex r′i. We illustrate the definition through the following

example.

Example 3. In Figure 6, we consider an arithmetical structure on CT(3, 2) and

subdivide at position 2 to get the structure on the right-hand side of the figure.

Note the result is an arithmetical structure on CT(4, 2). In Figure 7, we consider

the same arithmetical structure on CT(3, 2), and subdivide at position 1. This takes

the beginning vertex with labeling 1 and assigns the same value 1 to a new vertex at

the beginning of the path. Note the result is an arithmetical structure on CT(4, 2).

Next, we prove that subdivision results in a valid arithmetical structure.

Proposition 3. Let p, s ∈ N, and let (d, r) be an arithmetical structure on CT(p, s).

We have that (d′, r′) resulting from subdividing vertex i ∈ {1, . . . , p} is a valid

arithmetical structure on CT(p+ 1, s).

Proof. Note that the gcd condition is unchanged by adding a new vertex, so we

only need to check divisibility. There are two cases:

• For i = 1, note that r′1 = r′2 = r1, so r′1 | r′2. Since r1 | r2 and r′3 = r2, then

r′2 | r′1 + r′3. For all other vertices, the divisibility condition does not change,

so (d′, r′) is an arithmetical structure on CT(p+ 1, s).

• For i > 1, the only divisibility conditions that have changed are related to the

new vertex and its two adjacent vertices. Note that ri−1 | ri−2 + ri, hence
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ri−1 | ri−2 + (ri−1 + ri), which is equivalent to r′i−1 | r′i−2 + r′i. Regarding r′i,

it divides the sum of the labels on its two neighbors as it is defined as exactly

that sum, that is, r′i = ri−1 + ri = r′i−1 + r′i+1. Finally, a similar argument

to the one for r′i−1 shows that r′i+1 (which equals ri) divides the sum of its

neighbors as the only change in the sum of its neighbors is the addition of ri.

So (d′, r′) is a valid arithmetical structure on CT(p+ 1, s).

4. Counting Arithmetical Structures on Coconut Trees

We now focus our attention on enumerating arithmetical structures on coconut

trees. To begin, we define a subdivision sequence.

Definition 8. Let (d0, r0) be an arithmetical structure on CT(p, s), with p, s ∈ N.
A sequence of positive integers b = (b1, b2, . . . , bk) is a valid subdivision sequence if

its entries satisfy 1 ≤ bi ≤ p+ i− 1 for i ∈ {1, 2, . . . , k}.
The arithmetical structure Sub((d0, r0), b) on CT(p, s) is inductively defined as

follows. Let (di, ri) be the arithmetical structure on CT(p+ i, s) obtained from the

arithmetical structure (di−1, ri−1) on CT(p+ i− 1, s) by subdividing at the vertex

vbi . Then, let

Sub((d0, r0), b) := (dk, rk) on CT(p+ k, s).

Example 4. Consider the arithmetical structure (d0, r0) on CT(8, 3) with d0 =

(2, 2, 2, 2, 2, 2, 2, 2, 8, 2, 2) and r0 = (1, 2, 3, 4, 5, 6, 7, 8, 1, 4, 4). Let b = (3, 4, 4, 7).

Note that 3 ≤ 8, 4 ≤ 9, 4 ≤ 10, and 7 ≤ 11, so b is a valid subdivision sequence.

We now construct (di, ri) for i = 1, 2, 3, 4,

d1 = (2, 3,1, 3, 2, 2, 2, 2, 2, 8, 2, 2) r1 = (1, 2,5, 3, 4, 5, 6, 7, 8, 1, 4, 4)

d2 = (2, 3, 2,1, 4, 2, 2, 2, 2, 2, 8, 2, 2) r2 = (1, 2, 5,8, 3, 4, 5, 6, 7, 8, 1, 4, 4)

d3 = (2, 3, 3,1, 2, 4, 2, 2, 2, 2, 2, 8, 2, 2) r3 = (1, 2, 5,13, 8, 3, 4, 5, 6, 7, 8, 1, 4, 4)

d4 = (2, 3, 3, 1, 2, 5,1, 3, 2, 2, 2, 2, 8, 2, 2) r4 = (1, 2, 5, 13, 8, 3,7, 4, 5, 6, 7, 8, 1, 4, 4).

Therefore, Sub((d0, r0), b) is the following structure on CT(12, 3) :

((2, 3, 3, 1, 2, 5, 1, 3, 2, 2, 2, 2, 8, 2, 2), (1, 2, 5, 13, 8, 3, 7, 4, 5, 6, 7, 8, 1, 4, 4)) .

Next we define the ballot numbers, a generalization of the Catalan numbers,

where the nth Catalan number (for n ≥ 1) is defined by [7, A000108]:

Cn =
1

n+ 1

(
2n

n

)
.

The ballot numbers, which we denote by B(n, k), count the number of lattice paths

from (0, 0) to (n, k) that do not cross above the line y = x. For more on ballot

numbers see [4].

https://oeis.org/A000108
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(0,0)

(8,4)

Figure 8: A lattice path starting at (0, 0) and ending at (8, 4), which is associated
to the subdivision sequence b = (3, 4, 4, 7).

Definition 9. For all n, k ∈ N∪ {0}, with 0 ≤ k ≤ n, define the ballot numbers [7,

A009766] by

B(n, k) :=
n− k + 1

n+ 1

(
n+ k

n

)
.

Example 5. Consider the lattice path from (0, 0) to (8, 4) depicted in Figure 8. We

now propose a subdivision sequence that is in bijection with these lattice paths. We

want a vector with k parts (subdivisions) such that the value of every part satisfies

1 ≤ bi ≤ p+ i− 1.

We do so by the following process:

1. First, identify every “north” step we take and place the corresponding x-

coordinate in a vector (x1, x2, . . . , xk).

2. Then, subtract each value of the vector from n+ 1.

3. Place the resulting values in ascending order in a vector, b = (b1, b2, . . . , bk).

Let us return to Figure 8, and find its corresponding subdivision sequence. The 4

north steps come at the x-coordinates 2, 5, 5, and 6. So we get the vector (2, 5, 5, 6).

Then we subtract each coordinate from 9 to get 9 − 2 = 7, 9 − 5 = 4, 9 − 5 = 4

and 9 − 6 = 3 and arrange them in ascending order to get b = (3, 4, 4, 7). This

is a valid subdivision sequence because each bi is between 1 and 8 + i − 1. Note

that each lattice path takes exactly k north steps. Due to the line y = x, there can

never be more than 1 north step at x = 1, 2 north steps at x = 2, and so on. The

values also can never go above n. These are the exact conditions for a subdivision

sequence with k subdivisions and maximum value n. Hence, the number of vectors

b which are valid subdivision sequences with k subdivisions and maximum value n

is the same as the number of lattice paths from (0, 0) to (n, k) that do not go above

y = x.

https://oeis.org/A009766
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The next result is used to count the number of arithmetical structures on CT(p, s)

as we find a bijection between the subdivision sequences on smaller coconut trees

and non-decreasing sequences, similar to the method used in Archer et al. [1].

Proposition 4. Fix s ≥ 2. Let 1 ≤ i ≤ p and let (d, r) be any smooth arithmetical

structure on CT(i, s). The number of arithmetical structures on CT(p, s) that are

descendants of (d, r) is B(p− 1, p− i).

Proof. The proof follows in a similar manner to Proposition 2.11 in [1].

Next, we count the number of arithmetical structures on CT(p, s) with non-

smoothable leaf nodes, that is, when dℓj > 1 for j ∈ {1, 2, . . . , s}.

Corollary 1. Fix p ≥ 1, s ≥ 2. The number of arithmetical structures on CT(p, s)

such that all of the leaf vertices vℓj for j ∈ {1, 2, . . . , s} cannot be smoothed is given

by
p∑

i=1

B(p− 1, p− i)|SArith(CT(i, s))|.

Proof. Since Proposition 4 shows that each smooth structure on CT(i, s) has B(p−
1, p − i) descendant arithmetical structures on CT(p, s), we iterate through every

smooth structure on CT(i, s) from i = 1 to i = p and count the number of de-

scendant arithmetical structures to get the total count of structures on CT(p, s)

such that the leaf vertices cannot be smoothed. Thus, the number of arithmetical

structures on CT(p, s) with dℓ1 , . . . , dℓk ≥ 2 is given by

p∑
i=1

B(p− 1, p− i)|SArith(CT(i, s))|.

Example 6. Referring back to Figure 8, each lattice path corresponds to a unique

descendant of a smooth arithmetical structure (d, r) on CT(5, s). The descendant

structures are on CT(9, s). There are

B(p− 1, p− i) = B(9− 1, 9− 5) = B(8, 4) = 275

such descendants.

Proposition 5. Let p ≥ 1. The number of arithmetical structures on CT(p, 1) such

that the leaf vertex vℓ1 cannot be smoothed is given by

|Arith(Pp+1)| − |Arith(Pp)| = Cp − Cp−1,

where Cn is the nth Catalan number.
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Proof. Braun et al. in [3, Lemma 1] proved that an arithmetical structure on a path

must begin and end with 1. Thus, if vℓ1 can be smoothed, then rℓ1 = rp = 1. The

arithmetical structures on CT(p, 1) ∼= Pp+1 with rℓ1 = rp = 1 are in bijection with

arithmetical structures on Pp via smoothing at vℓ1 . Hence, there are |Arith(Pp)| =
Cp−1 many of them. Therefore, there are |Arith(Pp+1)|−|Arith(Pp)| = Cp−Cp−1

many arithmetical structures on CT(p, 1) with the property that the leaf vertex

cannot be smoothed.

Note that for s = 0, there are no leaf vertices that can be smoothed. Thus, the

number of arithmetical structures on CT(p, 0) = Pp is |Arith(Pp)| = Cp−1. Next,

we prove the main result of the paper, Theorem 1, providing a count for the number

of arithmetical structures on CT(p, s) in terms of smooth arithmetical structures as

presented in Section 1.

Proof of Theorem 1. We begin by counting the number of arithmetical structures

on CT(p, s) by enumerating arithmetical structures on CT(p, s) that have j leaf

vertices (among the s vertices vℓ1 , vℓ2 , . . . , vℓs) that can be smoothed for 0 ≤ j ≤ s.

For 0 ≤ j ≤ s − 2, by Corollary 1, the number of arithmetical structures on

CT(p, s− j) such that all s− j leaf vertices cannot be smoothed is given by

p∑
k=1

B(p− 1, p− k)|SArith(CT(k, s− j))|

=

p+(s−j)∑
i=s−j+1

B(p− 1, p− i+ s− j)|SArith(CT(i− (s− j), s− j))|

= A(p+ s− j, s− j).

Given one such structure (d, r) on CT(p, s− j), we can construct
(
s
j

)
structures in

CT(p, s) by choosing j leaf vertices and setting their r-value to rp, placing the labels

rℓ1 , rℓ2 , . . . , rℓs−j (none of which equals rp) in the remaining s−j leaves in the order

listed, and keeping the values of r1, r2, . . . , rp intact in the first p vertices. Thus,

the total number of arithmetical structures with j vertices that can be smoothed is

given by
(
s
j

)
A(p+s− j, s− j). Taking the sum over the possible values of j gives all

but the last two terms on the right-hand side of Equation (1). We consider those

values for j next.

If j = s − 1, then CT(p, s − j) = CT(p, 1). By Proposition 5, the number of

arithmetical structures on CT(p, 1) such that the leaf vertex vℓ1 cannot be smoothed

is Cp −Cp−1 = A(p+1, 1). Similarly to the previous case, given one such structure

(d, r) in CT(p, 1), we can construct
(

s
s−1

)
structures in CT(p, s) by choosing s− 1

leaf vertices and setting their r-value to rp, placing the label rℓ1 (that is not equal

to rp) in the remaining leaf vertex, and keeping the values of r1, r2, . . . , rp intact in

the first p vertices.
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If j = s, then CT(p, s − j) = CT(p, 0). Hence, the number of arithmetical

structures on CT(p, 0) with no leaf vertices that can be smoothed is simply the

number of structures on CT(p, 0) = Pp, which is given by Cp−1 = A(p, 0). Similar

to previous cases, given one such structure, we can place the label rp on every one

of the s leaf vertices of CT(p, s), to get a structure on CT(p, s). This gives the final

correspondence to get that

|Arith(CT(p, s))| =
s∑

j=0

(
s

j

)
A(p+ s− j, s− j).

We now confirm the count for the number of arithmetical structures on a coconut

tree CT(p, 2) as given in [1, Theorem 2.12].

Corollary 2. If p ≥ 2, then

|Arith(CT(p, 2))| = 2Cp − Cp−1 +

p+2∑
i=3

B(p− 1, p+ 2− i)|SArith(CT(i− 2, 2))|.

Proof. By Theorem 1 we have

|Arith(CT(p, 2))| =
2∑

j=0

(
2

j

)
A(p+ 2− j, 2− j),

=

(
2

0

)
A(p+ 2, 2) +

(
2

1

)
A(p+ 1, 1) +

(
2

2

)
A(p, 0)

=

(
p+2∑
i=3

B(p− 1, p+ 2− i)|SArith(CT(i− 2, 2))|

)
+ 2(Cp − Cp−1) + Cp−1

= 2Cp − Cp−1 +

p+2∑
i=3

B(p− 1, p+ 2− i) · |SArith(CT(i− 2, 2))|.

The following is a derivation of the number of arithmetical structures on a star

graph. Let Ss denote the star graph on s+1 vertices, which is equivalent to CT(1, s).

The next result shows that the number of arithmetical structures on a star graph

can be computed using the number of smooth arithmetical structures on smaller

star graphs.

Corollary 3. If p = 1 and s ≥ 2, then

|Arith(CT(1, s))| = 1 +

s−2∑
j=0

(
s

j

)
|SArith(Ss−j)|.
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Proof. Using Theorem 1, we have

|Arith(CT(1, s))|

=

s∑
j=0

(
s

j

)
A(s+ 1− j, s− j)

=

(
s

s

)
A(1, 0) +

(
s

s− 1

)
A(2, 1) +

s−2∑
j=0

(
s

j

)
A(s+ 1− j, s− j)

= 1 · 1 + s · 0

+
s−2∑
j=0

(
s

j

) s+1−j∑
i=s+1−j

B((i− (s− j)− 1, (s+ 1− j)− i)|SArith(CT(i− (s− j), s− j))|


= 1 +

j=s−2∑
j=0

(
s

j

)
B(0, 0)|SArith(CT(1, s− j))|

= 1 +

j=s−2∑
j=0

(
s

j

)
|SArith(CT(1, s− j))|.

4.1. Counting Smooth Arithmetical Structures

In this subsection, we give an explicit construction of smooth arithmetical struc-

tures on coconut tree graphs and give some enumeration results. First, we define

Euclidean chains, which are sequences that capture the construction of arithmetical

structures on paths. As an important notation convention, in this section, when we

write c = a mod b we take c to be the smallest nonnegative representative in the

class of a mod b. In particular, c is always less than b.

Definition 10. A Euclidean chain is a sequence {xi}i∈N defined as follows: x1, x2 ∈
N and for all i ≥ 2,

xi+1 =

{
−xi−1 mod xi if xi ̸= 0, 1

0 otherwise.

Then, the Euclidean chain function F : N×(N∪{0}) → N is defined as the function

F (x1, x2) = k where k is the largest value of i such that xi is nonzero, or the number

of positive terms in the sequence {xi}. Since xi+1 = −xi−1 mod xi < xi, then the

sequence eventually terminates and F is well defined.

Example 7. We calculate F (13, 60). Take x1 = 13 and x2 = 60. Let x3 be the

least residue of −13 (mod 60) ≡ 47 (mod 60), which gives us 47 = x3. Likewise,

let us calculate the remaining xi for i = 3, . . . , 9, which are found as follows:
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−13 (mod 60) ≡ 47 (mod 60) ⇒ x3 = 47
−60 (mod 47) ≡ 34 (mod 47) ⇒ x4 = 34
−47 (mod 34) ≡ 21 (mod 34) ⇒ x5 = 21
−34 (mod 21) ≡ 8 (mod 21) ⇒ x6 = 8
−21 (mod 8) ≡ 3 (mod 8) ⇒ x7 = 3
−8 (mod 3) ≡ 1 (mod 3) ⇒ x8 = 1
−3 (mod 1) ≡ 0 (mod 1) ⇒ x9 = 0.

Hence, F (13, 60) = 8 as x8 is the last xi with a non-zero value.

Next, we give the following proposition from Archer et al. [1] that greatly sim-

plifies calculations involving the Euclidean chain function F .

Proposition 6 ([1, Lemma 3.2]). Let x ∈ N and y, k ∈ N ∪ {0}. Then,

1. F (x+ ky, y) = F (x, y)

2. F (x, kx+ y) = F (x, y) + k.

Corollary 4. Let x, y ∈ N such that x | y. Then, F (x, y) = 1 + y
x .

Proof. Since x | y, there exists some n ∈ N such that nx = y. Then, note that

F (x, y) = F (x, nx+0) = F (x, 0) + n, where we used property (2) of Proposition 6.

Since nx = y yields n = y
x and by definition F (x, 0) = 1, we have F (x, y) =

1 + y
x .

Corollary 5. If y ∈ N ∪ {0}, then F (1, y) = y + 1 and if x ∈ N, then F (x, 1) = 2.

Proof. Since 1 | y, we use Corollary 4 to arrive F (1, y) = 1 + y
1 = y + 1. For the

second statement, if a Euclidean chain starts with {x, 1} then, by definition, the

next term is 0 and the sequence is {x, 1, 0, 0, . . .}. Thus, F (x, 1) = 2.

In what follows, we begin by assuming that we have assigned labels to the leaf

vertices such that they divide the assigned label on the center vertex of a coconut

tree graph. Our main result establishes that given this initial labeling, we can

construct a unique smooth arithmetical structure on a coconut tree whose path

length is one less than the Euclidean chain evaluated at the sum of the leaf labels

and the label of the center vertex (Corollary 6). Before we establish this result, we

illustrate the procedure.

Example 8. Let (c, a1, a2, a3, a4) = (60, 2, 3, 3, 5). Note that
∑4

j=1 aj = 13 and by

Example 7, we have F (13, 60) = 8. Hence, we will construct a smooth arithmetical

structure on CT(8− 1, 4) with r7 = 60 and rℓj = aj for j = 1, 2, 3, 4. To determine

r1, r2, . . . , r6, we use the positive entries of the Euclidean chain that starts {13, 60}
in reverse order. By Example 7, this chain is {13, 60, 47, 34, 21, 8, 3, 1, 0, 0, . . .}.
Hence, we let

r = (1, 3, 8, 21, 34, 47, 60, 2, 3, 3, 5),
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2

3

3

5

1 3 8 21 34 47 60

Figure 9: The constructed Coconut Tree CT(7, 4).

which is illustrated in Figure 9.

Proposition 7. For every tuple (c, a1, a2, . . . , as) ∈ Ns+1 such that ai | c, ai < c

for i ∈ {1, 2, . . . , s}, and gcd(c, a1, a2, . . . , as) = 1, there is a unique p ≥ 1 such

that there is a smooth arithmetical structure (d, r) on CT(p, s) with rℓi = ai for

i ∈ {1, 2, . . . , s} and rp = c. Moreover, the arithmetical structure (d, r) is also

unique.

Proof. Let (c, a1, a2, . . . , as) ∈ Ns+1 such that gcd(c, a1, a2, . . . , ak) = 1, ai | c and

c > ai for i ∈ {1, 2, . . . , s}. Let rℓi = ai for i ∈ {1, 2, . . . , s}. Define the sequence

{xi}∞i=1 as follows:

xi =


c if i = 1,(
−
∑s

j=1 aj

)
mod c if i = 2,

−xi−2 mod xi−1 if i ≥ 3 and xi−1, xi−2 ̸= 0, 1

0 otherwise,

Hence, {xi}∞i=1 forms a decreasing sequence and moreover, it is a Euclidean chain.

Let p = F
(
c,
(
−
∑s

j=1 aj

)
mod c

)
, that is, let p be the number of nonzero entries

of {xi}∞i=1. Let rp+1−i = xi for i ∈ {1, 2, . . . , p} such that xi ̸= 0. Then, we verify

the resulting r-vector, namely r = (r1, r2, . . . , rp, a1, a2, . . . , as), is an arithmetical

structure. By assumption, rℓi = ai and since ai | c = rp, then rℓi | rp. For vp, note
that rp−1 =

(
−
∑s

j=1 aj

)
mod rp, hence rp

∣∣∣(∑s
j=1 rℓj

)
+ rp−1. For the vertices

v2, . . . , vp−1, we constructed the r labels such that ri+1 = −ri−1 mod ri hence

ri | (ri−1 + ri+1). Finally, for v1, since r1 = xp, it is the last nonzero entry of

the Euclidean chain {xi}∞i=1. Thus, xp+1 = 0, which means that either xp = 1 or

−xp−1 mod xp = 0. In both cases, we get that xp | xp−1, that is, r1 | r2. Hence,

the constructed r-vector determines an arithmetical structure on CT(p, s).

Now, we show this arithmetical structure on CT(p, s) is smooth. Note that by

assumption rℓi < rp and gcd(rp, rℓ1 , rℓ2 , . . . , rℓs) = 1 . Since the entries of the
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tuple (rp, rp−1, . . . , r1) are consecutive entries of the Euclidean chain {xi}∞i=1, then

rp > rp−1 > · · · > r1. By Lemma 2, we get that r is a smooth arithmetical

structure. The uniqueness of p (and of r) comes from the fact that in order to have

rp > rp−1 > · · · > r1 and ri | (ri−1 + ri+1) for i = 1, 2, . . . , p (denoting r0 = 0 and

rp+1 =
∑s

j=1 rℓj ), we must have ri = −ri+2 mod ri+1, hence the values of r must

be the entries of the Euclidean chain {xi}∞i=1.

The next corollary reduces the problem of bounding the number of smooth arith-

metical structures that can be generated from only the leaf vertices to studying the

Euclidean chain function F .

Corollary 6. Let (c, a1, a2, . . . , as) ∈ Ns+1 such that gcd(c, a1, a2, . . . , as) = 1,

ai | c, and ai < c for all i ∈ {1, 2, . . . , s}. The smooth arithmetical structure on the

coconut tree CT(p, s) constructed from Proposition 7 satisfies

p = F

 s∑
j=1

aj

 , c

− 1.

Proof. Note that by the construction of the Euclidean chain {xi} in Proposition 7,

the number of vertices that are constructed is

F

c,−

 s∑
j=1

aj

 mod c

 = F

 s∑
j=1

aj

 , c

− 1.

Next, we show that having only assigned labels to the leaf vertices is not enough

to guarantee a unique smooth arithmetical structure.

Example 9. Let c = 6, and let (a1, a2, a3, a4, a5) = (2, 2, 3, 3, 3). Using Corol-

lary 6 followed by Proposition 6 we have p = F (13, 6) − 1 = F (1, 6) − 1. Then

by Corollary 5, F (1, 6) = 7, so p = 6. On the other hand, if c = 12, then

we have (c, a1, a2, a3, a4, a5) = (12, 2, 2, 3, 3, 3). Using the same results, we have

p = F (13, 12)− 1, which then utilizing the fact that F (13, 12) = F (1, 12), results in

p = 12. Moreover, the resulting arithmetical structures on CT(6, 5) and CT(12, 5),

have the path labels 1 through 6, and 1 through 12, respectively, listed in increasing

order.

Proposition 8. Let p ≥ 1. Any smooth arithmetical structure (d, r) on CT(p, s)

has dp > 1 if and only if rp <
∑s

j=1 rℓj .

Proof. Let (d, r) be a smooth arithmetical structure on CT(p, s) with dp > 1. If

p = 1, then
s∑

j=1

rℓj = dprp > rp.
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If p > 1, then

dprp = rp−1 +

s∑
j=1

rℓj .

Since the arithmetical structure is smooth, by Lemma 1, we have rp > rp−1. Thus,

dprp = rp−1 +

s∑
j=1

rℓj < rp +

s∑
j=1

rℓj .

Subtracting rp from both sides and combining terms yields

s∑
j=1

rℓj > (dp − 1)rp > rp.

For the reverse direction, assume that rp <
∑s

j=1 rℓj . Note that p > 1, because

rp ̸=
∑s

j=1 rℓj . Then

dprp = rp−1 +

s∑
j=1

rℓj > rp−1 + rp > rp,

which implies that dp > 1.

Next, we give an alternative proof to Proposition 2.3 in Archer et al. [1], which

stated that any smooth arithmetical structures on bidents, denoted as CT(p, 2),

must have center vertex equal to 1.

Corollary 7. Let p ≥ 1. There are no smooth arithmetical structures (d, r) on

CT(p, 2) with dp > 1.

Proof. Let (d, r) be a smooth arithmetical structure on CT(p, 2). Then rℓ1 and rℓ2
are proper divisors of rp. By Proposition 8, dp > 1 if and only if rℓ1 + rℓ2 > rp.

So we need rℓ1 + rℓ2 > rp. However, since rℓ1 and rℓ2 are proper divisors of rp, we

have rℓ1 + rℓ2 ≤ rp. Therefore, dp can not be greater than 1.

Next, given the numbers assigned to leaf vertices, we count the number of smooth

arithmetical structures that have a label greater than one at the central vertex.

Proposition 9. Let (rℓ1 , . . . , rℓs) ∈ Ns, let S = {n ∈ N | n · lcm(rℓ1 , . . . , rℓs) <∑s
j=1 rℓj}. Then, given (rℓ1 , . . . , rℓs), the number of smooth arithmetical structures

that can be constructed such that the central vertex has label greater than 1 is given

by

|S| =

⌊ ∑s
j=1 rℓj

lcm(rℓ1 , . . . , rℓs)

⌋
.
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Proof. First, consider when |S| = 0, which implies lcm(rℓ1 , . . . , rℓs) ≥
∑s

j=1 rℓj . If

there is a structure (d, r) on CT(p, s) for some p ∈ N, then since each rℓj divides

rp, we have lcm(rℓ1 , . . . , rℓs) | rp. Thus, rp ≥ lcm(rℓ1 , . . . , rℓs) ≥
∑s

j=1 rℓj . This

contradicts Proposition 8, hence there exists no smooth arithmetical structures that

can be constructed such that dp > 1.

Now, consider when |S| ≥ 1. Let rpi
= i · lcm(rℓ1 , . . . , rℓs) for i = 1, 2, . . . , |S|.

By Proposition 7, we can construct |S| smooth arithmetical structures, one per

each value of rpi assigned to the central vertex. By Proposition 8, each of these

structures have dpi > 1. Moreover, since in any structure of the form

(r1, r2, . . . , rp, rℓ1 , rℓ2 , . . . , rℓs)

we must have rp | lcm(rℓ1 , . . . , rℓs), the only values of rp that satisfy that rp <∑s
j=1 rℓj are rpi for i = 1, 2, . . . , |S|. Then by Proposition 8 these are the only

possible smooth structures with dp > 1. To complete the proof, note that by the

definition of S, |S| is the largest integer m such that m <
∑s

j=1 rℓj
lcm(rℓ1 ,rℓs )

. Hence,

|S| =
⌊ ∑s

j=1 rℓj
lcm(rℓ1 ,...,rℓs )

⌋
.

We conclude with an application of Proposition 9.

Example 10. Recalling Example 9, note that lcm(rℓ1 , . . . , rℓ5) = 6 and
∑5

j=1 rℓj =

13. Thus, the number of smooth arithmetical structures with label at the center

vertex greater than 1 is ⌊ 13
6 ⌋ = 2, which corresponds to when rp1

= 6 and rp2
= 12.

These are precisely the two structures presented in Example 9, namely,

r = (1, 2, 3, 4, 5, 6, 2, 2, 3, 3, 3) and r = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 2, 2, 3, 3, 3).

5. Future Work

We conclude with some direction for future research. We recall that Archer et al. [1]

establish that the number of smooth arithmetical structures on a bident is bounded

by a cubic polynomial. We ask the following questions.

Question 1. Does there exist a polynomial bound for the number of smooth arith-

metical structures on coconut trees CT(p, s) for s > 2?

Question 2. If a polynomial bound for the number of smooth arithmetical struc-

tures on coconut trees CT(p, s) for s > 2 exists, how does it relate to s the number

of leaves?

We now pose a number theoretic question which would help in enumerating

smooth arithmetical structures on CT(p, s) if we are given rp and the sum of the

leaves.
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Question 3. Given integers rp and
∑s

j=1 rℓj , in how many ways can we partition∑s
j=1 rℓj using the proper divisors of rp?
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