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Abstract

It is the main purpose of this note to investigate the arithmetic and structural prop-
erties of Sophie Germain primes—those primes p for which 2p + 1 is also prime.
Let P, S, and T be the sets of all primes, all Sophie Germain primes, and all the
primes that are not Sophie Germain, respectively. At first, we establish an explicit
relationship between these sets via another special set composed of arithmetic pro-
gressions. Subsequently, we prove that T is an infinite set in two different ways
and discuss the primitive densities of S and T. Lastly, we search for congruence
relations characterizing each of the sets S and T by means of the value of a certain
polynomial and Wilson’s theorem.

1. Introduction

A prime number p is called a Sophie Germain prime if 2p + 1 is also a prime.

These types of primes were first studied by Sophie Germain in connection with

the first case of Fermat’s Last Theorem. Indeed, she proved that if p is a Sophie

Germain prime, then there are no integers x, y, z satisfying xp+ yp = zp in the case

when p ∤ xyz (for the proof, see, e.g., [14, Chapter 4]). It can also be seen from

Euler’s divisor criterion that if p is a Sophie Germain prime with p ≡ 3 (mod 4)

and Mp = 2p − 1 is a Mersenne number, then 2p+ 1 divides Mp.

When p is Sophie Germain, a corresponding prime q = 2p + 1 is called a safe

prime for the reason that q − 1 does not have many small factors. The first few of

these pairs (p, q) can be enumerated as follows:

(2, 5), (3, 7), (5, 11), (11, 23), (23, 47), (29, 59), (41, 83), (53, 107), (83, 167),

and so on. More pairs can be found in the OEIS [11]: A005384 and A005385. As is

easily seen, every Sophie Germain prime except 2 and 3 is of the form 6n− 1. It is

conjectured that there are infinitely many these prime pairs much like, for example,
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the twin prime conjecture and Dickson’s conjecture on the infinity of primes of

linear forms (cf., e.g., Ribenboim [15]).

In what follows, we use the following notation. Denoting by #M the cardinality

of a given set M ,

Z+ : the set of positive integers;

P : the set of all primes;

S : the set of Sophie Germain primes;

T : the set of primes that are not Sophie Germain;

π(x) := #{p ∈ P | p ≤ x} (the prime counting function);

πS(x) := #{p ∈ S | p ≤ x};
πT(x) := #{p ∈ T | p ≤ x}.

Thus, P = S∪T, where S∩T = ∅. Therefore, π(x) = πS(x)+πT(x) for any x > 0.

The following heuristic estimate for πS(x) is widely known as the most reliable

result in the literature (see, e.g., [16, Chapter 5.5.5]). Asymptotically,

πS(x) ∼
2Cx

(log x)2
, (1.1)

where C is Hardy-Littlewood’s twin prime constant, namely

C =
∏
p∈P
p>2

p(p− 2)

(p− 1)2
≈ 0.660161 · · · .

By the way, the explicit values of πS(10
n) for n ≥ 1 are listed in the OEIS [11]:

A092816.

Apart from the above, we next pick out an elementary result characterizing

Sophie Germain primes by means of certain congruences (cf. [2, Theorem 3.3]). We

see that a prime p is Sophie Germain if and only if each of the following congruences

holds true for every a ∈ Z+ coprime to p(2p+ 1):

(i) a2p ≡ (2p+ 1)ap+1 − 2p (mod p(2p+ 1));

(ii) (2p+ 1)ap−1 ≡ pa2p + p+ 1 (mod p(2p+ 1)).
(1.2)

This result can be proved based on Fermat’s little theorem and the fact that if p is a

prime satisfying (1.2) (i) or (ii), then 2p+1 is never a Carmichael number identified

by Korselt’s criterion in [8], which states that a composite number n is Carmichael

if and only if n is square-free and p− 1 | n− 1 for every prime factor p of n (for a

detailed proof, see, e.g., [4, p. 134] and [3, p. 414]).

It is the main purpose of this note to investigate the arithmetic and structural

properties of Sophie Germain primes. In Section 2, we establish an explicit rela-

tionship between the set S and its complement T among P via another special set
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composed of arithmetic progressions depending on odd primes. Section 3 is devoted

to proving that T is an infinite set in two different ways. In Section 4, we discuss

the primitive densities of S and T. We conclude this note, in Section 5, by giving

some types of congruence relations characterizing each of the sets S and T.

2. A Relationship between S, T, and P via Another Special Set

Given an odd prime p, consider the set composed of an arithmetic progression with

the common difference p such that

A(p) :=
{
pr +

p− 1

2

∣∣∣ r = 1, 2, 3, . . .
}
. (2.1)

We next define the set A by the union of A(p) for all odd primes p, namely

A :=
⋃

p prime
p>2

A(p).

Since 2 (pr + (p− 1)/2) + 1 = p(2r + 1) ≡ 0 (mod p) for every r ∈ Z+, we have

A(p) ∩ S = ∅ and hence A ∩ S = ∅.
We will now establish an explicit relationship between the sets S, T, and P

via A defined above in a convincing way. It should be noted that exactly the same

relationship as that has been already stated in [1, Theorem 4.1], but there were some

inaccuracies in its proof. The new proof given below was personally communicated

by Andrew Granville to the present author (May, 2024).

Theorem 2.1. With the above notation, it follows that

T = P ∩A, or equivalently, S = P \ (P ∩A) . (2.2)

Proof. First note that the smallest odd integer in A is the prime 7, which is an

element of A(3) for r = 2 and A(5) for r = 1. The only primes less than 7 that do

not belong to A are 2, 3, and 5, all of which are Sophie Germain. So assuming that

n ≥ 7 is odd, write it as n = pm, where p is the largest prime that divides n, and

thus m = n/p ≥ 1 is an odd integer. Now put r′ := (m − 1)/2 for an odd m ≥ 1.

As is obvious, n = p is a prime only for m = 1. Therefore, letting m ≥ 3 and so

r′ ≥ 1, we get n = p(2r′ + 1), which belongs to the set

2A(p) + 1 := {p(2r + 1) | r = 1, 2, 3, . . .}.

All elements of this set are odd and composite, and this fact implies that the set A

contains all primes q except those of the form q = (p − 1)/2 with p a prime. The

primes q excluded here give p = 2q + 1 and this shows that such the primes q are
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Sophie Germain primes not belonging to the set P∩A. Therefore, we can conclude

that P \ (P ∩A) is exactly the same as the set S of Sophie Germain primes and so

the proof of (2.2) is now complete.

Unfortunately, we cannot think of a simple good way to extract all the primes

or all the composite numbers from the set A right now.

3. The Infinitude of T

The following statement seems almost self-evident at first glance, but in reality,

proving this was not as easy as one might imagine. We will prove it below in two

different ways, but both of them are a bit roundabout and not very direct.

Theorem 3.1. The set T is infinite, i.e., #T = ∞.

Proof (i). Given any prime p, consider the infinite sequence (qj)j≥1 defined by

q1 := p, qj+1 := 2qj + 1 (j ≥ 1).

Let l(p) be the length of a Sophie Germain prime chain (also known as a Cun-

ningham prime chain of the first kind) with the initial term q1 = p. That is to

say, all l(p) terms q1, q2,, . . . , ql(p) belong to S, but ql(p)+1 does not. Given an odd

prime p, let ordp(2) denote the order of 2 modulo p, i.e., the least positive exponent

satisfying 2ordp(2) ≡ 1 (mod p). As is obvious, an upper bound for l(p) can be given

as l(p) ≤ ordp(2) for any p ∈ S\{2}. Further, since ordp(2) ≤ p−1, it is impossible

to constitute an infinite Sophie Germain prime chain with the initial term p (see

also Löh [9] on this matter). By collecting all such primes ql(p) for infinitely many

p ∈ P \ {2}, we see that #T = ∞ and the proof is complete.

Incidentally, letting N := (p + 1)/2 for a prime p, the above sequence (qj)j≥1

can be written as 2jN − 1, j = 1, 2, 3, . . . (including also the case for p = 2). For

numbers of these forms, very efficient primality testing algorithms are available.

Proof (ii). For another way to make clear the assertion, we next observe the set

A(p) defined in (2.1). Since gcd(p, (p − 1)/2) = 1 for an odd prime p, Dirichlet’s

theorem on arithmetic progressions states that there are infinitely many primes in

A(p), i.e., #{q ∈ P | q ∈ A(p)} = ∞ for any fixed odd prime p. These primes are

not Sophie Germain. In fact, if we take out from A(p) any one of primes such that

q = pr′ + (p − 1)/2 for some r′ ≥ 1, then 2q + 1 = p(2r′ + 1) ≡ 0 (mod p), which

implies q ∈ T. Therefore, we have shown that #T = ∞, as desired.

We cannot say for sure at this point, but there may be other simple proofs of

Theorem 3.1 without the complicated procedures mentioned above.
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4. The Primitive Densities of S and T

Based on either the Prime Number Theorem or Selberg’s sieve method (for this

sieve method, see, e.g., [5, Chapter 2] and [17]), one is able to show that the set

S has the primitive density 0. In fact, since the relative error between π(x) and

x/ log x approaches 0 as x increases, formula (1.1) allows us to derive

lim
x→∞

πS(x)

π(x)
= lim

x→∞

2C

log x
= 0,

where C is the twin prime constant. In other words, most primes are not Sophie

Germain. On the other hand, by applying the Prime Number Theorem and (1.1)

again, we can get the asymptotic relation such that

πT(x) = π(x)− πS(x) ∼
x

log x

(
1− 2C

log x

)
,

which implies that

lim
x→∞

πT(x)

π(x)
= lim

x→∞

(
1− 2C

log x

)
= 1, (4.1)

and thus T has the primitive density 1. In addition, it may be worth observing

lim
x→∞

πS(x)

πT(x)
= lim

x→∞

2C

log x− 2C
= 0. (4.2)

So, we can say that the number of Sophie Germain primes not exceeding (large) x

is much smaller than that of all the primes in T less than or equal to x.

Next, we would like to try to get a possible approximation of the positive-valued

function δ(x) that satisfies

πT(x) = (πS(x))
δ(x)

.

From the above discussion on πT(x), it is necessary to observe the fact that

x

log x
∼

(
2Cx

(log x)2

)δ(x)

holds. Taking logarithms of both sides immediately leads to

δ(x) ∼ log x− log log x

log(2Cx)− 2 log log x
= 1 +

log log x− log(2C)

log x− 2 log log x+ log(2C)
.

Therefore, it is possible to approximate δ(x) by 1+ (log log x− log(2C))/ log x with

a small error. This conclusion is naturally consistent with (4.1) and (4.2).

All the results stated above are based on formula (1.1), and hence the above

discussion serves just to reaffirm the authenticity of (1.1).
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5. Congruences Characterizing S and T

In this section, we would like to search for possible congruences for identifying the

sets S and T. Hereafter, we always assume that a ∈ Z+.

5.1. Congruences Using the Value of a Polynomial

In what follows, let pn denote the nth prime, i.e., p1 = 2, p2 = 3, p3 = 5, and so on.

For any a ∈ Z+, let pℓ(a) be the largest prime satisfying pℓ(a) ≤
√
2a+ 1 and define

the set Pℓ(a) by

Pℓ(a) :=
{
p ∈ P | p ≤

√
2a+ 1

}
= {p1, p2, . . . , pℓ(a)}.

The first prime p1 = 2 always belongs to this set unless a = 1. It is obvious by the

Eratosthenes sieve that if a ̸≡ 0 (mod p) for all p ∈ Pℓ(a), then both a and 2a+ 1

are primes, and thus a ∈ S.

For any p ∈ P, consider the polynomial fp(X) in X defined by

fp(X) :=


X for p = p1;

X

(
X − p− 1

2

)
for all p ∈ Pℓ(a) \ {p1}.

By evaluating the value of this polynomial at X = a modulo p, it is possible to

determine as to whether a given integer a ≥ 2 is Sophie Germain or not.

Theorem 5.1. The following are equivalent:

(a) a ∈ S;

(b) fp1
(a) ≡ 0 (mod p1) and fp(a) ̸≡ 0 (mod p) for all p ∈ Pℓ(a) \ {p1}.

Proof. From what already has been said above, a proof may not be necessary, but

we wish to repeat it briefly just to be sure. Since the case for a = p1 is trivial, let

a ≥ p2. Then, the condition in (b) such that

fp(a) =
1

2
a(2a+ 1− p) ≡ 1

2
a(2a+ 1) ̸≡ 0 (mod p) for all p ∈ Pℓ(a) \ {p1}

implies a ∈ S from the Eratosthenes sieve, and the reverse implication is also true.

So (a) is equivalent to (b), as desired.

Note that (b) is completely denied if a is composite. In fact, if there exists a

prime factor q of a with 2 ≤ q < a, then q ∈ Pℓ(a) and it satisfies fq(a) ≡ 0 (mod q).

Therefore, every composite number does not apply to (b). In conclusion, an integer

a that satisfies (b) must be a prime.

Obviously, the negation of Theorem 5.1 can be stated as follows:
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Theorem 5.2. The following are equivalent:

(c) a ∈ T;

(d) there exists at least one of p ∈ Pℓ(a) \ {p1} such that fp(a) ≡ 0 (mod p).

Summarizing Theorems 5.1 and 5.2, we get

S = {2} ∪
{
a ∈ Z+ | fp(a) ̸≡ 0 (mod p) for all p ∈ Pℓ(a) \ {p1}

}
;

T =
{
a ∈ Z+ | there exists p ∈ Pℓ(a) \ {p1} such that fp(a) ≡ 0 (mod p)

}
.

For example, if a = 131, then Pℓ(131) = {2, 3, 5, 7, 11, 13}, since ⌊
√
2 · 131 + 1⌋ =

16. By direct verification, we see that fp(131) ̸≡ 0 (mod p) for all p ∈ Pℓ(131) and

thereby 131 ∈ S. On the other hand, if a = 157, thenPℓ(157) = {2, 3, 5, 7, 11, 13, 17},
since ⌊

√
2 · 157 + 1⌋ = 17. In this case, we have fp(157) ≡ 0 (mod p) for p = 3, 5, 7,

but fp(157) ̸≡ 0 (mod p) for p = 11, 13, 17. So we have verified that 157 ∈ T.

Here, we would like to briefly explain the main reason why we came up with the

above polynomial fp(X). Let a ∈ T, i.e., a is not a Sophie Germain prime. From

(d), there exists an odd prime p in Pℓ(a) such that fp(a) ≡ 0 (mod p), so we have

a ≡ (p− 1)/2 (mod p) since p ∤ a. Hence, a can be expressed in the form

a = pr +
p− 1

2
for some r ∈ Z+,

which shows that a ∈ A(p) and so a ∈ A. Since T = P ∩A from (2.2), it is quite

reasonable to define the above fp(X) and evaluate its value at X = a modulo p.

5.2. Congruences Derived from Wilson’s Theorem

Next, we discuss possible congruence relations for Sophie Germain primes using

Wilson’s theorem, stating that (n − 1)! ≡ −1 (mod n) is valid only in the case

when n is a prime.

Here is the main result we want to mention in this subsection.

Theorem 5.3. The following are equivalent:

(a′) a ∈ S \ {2};
(b′) one of the congruences given below holds true.

(i) (a− 1)! ≡ 2a− 1 (mod a(2a+ 1));

(ii) (a− 1)! ≡ −(6a+ 1) (mod a(2a+ 1)).
(5.1)

Proof. If we observe the congruences in (5.1) for modulo a, then a must be a prime

from Wilson’s theorem. Therefore, it is sufficient to prove the theorem only modulo

2a+ 1, that is to say,

(i) (a− 1)! ≡ 2a− 1 ≡ (2a+ 1)− 2 ≡ −2 (mod 2a+ 1);

(ii) (a− 1)! ≡ −(6a+ 1) ≡ −3(2a+ 1) + 2 ≡ 2 (mod 2a+ 1).
(5.2)
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(a′)⇒ (b′): Since 2a+ 1 for a ∈ S \ {2} is a prime, Wilson’s theorem provides

(2a)! ≡ −1 (mod 2a+ 1). (5.3)

The left-hand side of this can be written as

(2a)! =(a− 1)!

a+1∏
j=1

((2a+ 1)− j) ≡ (a− 1)!

a+1∏
j=1

(−j)

≡(a+ 1)a{(a− 1)!}2 (mod 2a+ 1).

Multiplying the whole of this expression by 4,

4 · (2a)! ≡ {(2a+ 1)2 − 1}{(a− 1)!}2 ≡ −{(a− 1)!}2 (mod 2a+ 1).

Therefore, above (5.3) is equivalent to

{(a− 1)!}2 ≡ 4 (mod 2a+ 1),

which implies that at least one of (5.2) (i) and (ii) holds true. These do not occur

simultaneously because 2a+ 1 ∤ (a− 1)!, so only one of them is valid.

(b′)⇒ (a′): We prove that if either (5.2) (i) or (ii) holds, then 2a + 1 is a prime.

Suppose that 2a + 1 is composite, i.e., 2a + 1 = km with k,m ∈ Z+ such that

3 ≤ k ≤ m < 2a+ 1. Since k(m− 2) ≥ 3, we can deduce the inequality

a− 1 =
km− 3

2
=

k(m− 2) + 2k − 3

2
≥ 2k

2
= k,

which gives (a − 1)! ≡ 0 (mod k) and hence 2 ≡ 0 (mod k) from (5.2), but this is

contrary to k ≥ 3. So 2a+ 1 must be a prime and thus a ∈ S \ {2}.

Although we will not go into details here, the negation of Theorem 5.3 can also

be easily derived. Summarizing all the discussion in this subsection, we get

S = {2} ∪
{
a ∈ Z+ | a satisfies either (5.1) (i) or (ii)

}
;

T = {a ∈ P \ {2} | a does not satisfy both (5.1) (i) and (ii)} .

When a ≥ 3 is fairly small, we can verify by hand calculations that a = 11, 29

(resp. a = 3, 5, 23) satisfy (5.1) (i) (resp. (ii)); but the prime a = 7 does not

satisfy both of them, and so 7 ∈ T. When a is large, it is technically impossible to

directly clarify whether a satisfies (5.1) (i) or (ii) without use of computer, because

the amount of calculation is huge. For that reason, Theorem 5.3 itself may be

interesting and meaningful in theory, but it has no practical application unlike

Theorems 5.1 and 5.2. In any case, it is needed to find an efficient and reasonable
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algorithm for evaluating the rapidly growing factorial (a− 1)! modulo a(2a+ 1) or

modulo 2a+ 1.

Lastly, we want to introduce some results involving primitive roots. Ramesh and

Makeshwari [12] proved that if a prime p is a primitive root of 2p + 1, then p ∈ S

(see also [13] for a generalized version). Very recently, they also derived in [10]

necessary and sufficient conditions for a prime p to be a safe prime based on the

number of primitive or semi-primitive roots of p. On the other hand, Ishii [7] showed

that for a prime p and an integer n ≥ 1 with n ≡ 1 (mod 3), if np is a primitive

root of 2p+ 1, then p ∈ S. In addition, Filipovski [6] revealed that the pairs (p, k)

(p a prime; k > 1 an integer) for which p is a primitive root of 2kp + 1 are only

(2, 2), (3, 3), (3, 4), (5, 4). Through these results, we can see that Sophie Germain

primes and safe primes have many unexpected but very interesting connections to

primitive or semi-primitive roots.
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