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Abstract

We propose a sum rule for derangements. Three different proofs are provided. The
first one involves integral representations and the second one relies on the Hermite
identity for the integer part of the product of an integer by a real number. The third
one, which, unlike the previous ones, is not based on induction, proceeds directly
from a recurrence relation for the number of derangements.

1. Introduction

A derangement of En = {1, 2, 3, · · · , n} is a permutation of En that has no fixed

points. The number of derangements (sequence A000166 in OEIS [14]) is given by

D(n) = n!

n∑
i=0

(−1)i

i!
.

One also has, for n ≥ 1:

D(n) =
∣∣∣∣∣∣n!
e

∣∣∣∣∣∣ = ⌊n!
e

+
1

2

⌋
,

where ⌊x⌋ represents the integer part of x and ||x|| represents the nearest integer

to x, as well as

D(n) =

⌊
n! + 1

e

⌋
. (1)

Derangements have many interesting properties (see, for instance, [1, 6, 7, 8]).

Several identities involving derangements are known, such as, for an integer p ≥ 1

(see, for instance, [16])
p∑

n=0

(
p

n

)
D(n) = p!,
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and, if p and l are integers (p ≥ 1 and l < p)

p∑
n=0

(
p− l

n− l

)
D(p− n) = (p− l)!.

In the following, we provide an expression for the partial sum
∑p

n=0 nD(n).

Theorem 1. Given an integer p ≥ 0, we have

p∑
n=0

nD(n) =
⌊ (p+ 1)!

e

⌋
.

Three proofs of Theorem 1 will be provided. The first one, given in Section 2,

relies on integral representations; the second one, in Section 3, uses the Hermite

identity, and the third one, detailed in Section 4, is a direct (non-inductive) proof

involving a recurrence relation.

2. First Proof Using Integral Representations

The proof of Theorem 1 given in this section is based on induction and involves

integral representations.

Proof of Theorem 1. Let us define

Sp =

p∑
n=0

nD(n). (2)

We will prove the result

Sp =
⌊ (p+ 1)!

e

⌋
by induction. We obviously have

S0 = 0 and
⌊1!
e

⌋
= 0

as well as

S1 = D(1) = 0 and
⌊2!
e

⌋
= 0,

and, since D(2) = 1,

S2 = D(1) + 2D(2) = 2 and
⌊3!
e

⌋
= 2.
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Identity (2) is thus valid for the first three values of p. Assuming it is true for p,

one has to show, that for p+ 1,

Sp+1 =

p+1∑
n=0

nD(n) =
⌊ (p+ 2)!

e

⌋
,

which is equivalent to

Sp+1 = Sp + (p+ 1)
⌊ (p+ 1)! + 1

e

⌋
.

In other words, using the expression for the number of derangements in Equation

(1), one needs to prove⌊ (p+ 2)!

e

⌋
=

⌊ (p+ 1)!

e

⌋
+ (p+ 1)

⌊ (p+ 1)! + 1

e

⌋
. (3)

Hassani [7, Corollary 3.2] found that

e
⌊n! + 1

e

⌋
=

∫ ∞

−1

e−t tn dt, (4)

as well as ∫ 0

−1

e−t tn dt =

{
−e

{
n!
e

}
if n odd,

e− e
{

n!
e

}
if n even,

which can be recast into∫ 0

−1

e−t tn dt = e

(
1 + (−1)n

2
−

{
n!

e

})
, (5)

where {x} denotes the fractional part of x. Then, using {x} = x−⌊x⌋ and Equation

(5), one obtains⌊ (p+ 1)!

e

⌋
=

1

e

∫ 0

−1

e−t tp+1 dt+
(p+ 1)!

e
− [1 + (−1)p+1]

2
(6)

and ⌊ (p+ 2)!

e

⌋
=

1

e

∫ 0

−1

e−t tp+2 dt+
(p+ 2)!

e
− [1 + (−1)p+2]

2
.

The difference of the two latter equations reads⌊ (p+ 2)!

e

⌋
−
⌊ (p+ 1)!

e

⌋
=

1

e

∫ 0

−1

e−t tp+1(t− 1) dt+ (−1)p+1 +
(p+ 2)!

e
− (p+ 1)!

e
,

i.e., since

n! =

∫ ∞

0

e−t tn dt, (7)
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one has⌊ (p+ 2)!

e

⌋
−
⌊ (p+ 1)!

e

⌋
=

1

e

∫ 0

−1

e−t tp+1(t−1) dt+(−1)p+1+
1

e

∫ ∞

0

e−t tp+1 (t−1) dt.

(8)

Integrating by parts, one easily gets that the right-hand side of Equation (8) equals∫ ∞

−1

e−t tp+1 (t− (p+ 2)) dt = (−1)p e (9)

and thus, after multiplication by e and expressing (−1)p+1 using Equation (9), we

obtain

e

(⌊ (p+ 2)!

e

⌋
−
⌊ (p+ 1)!

e

⌋)
=

∫ 0

−1

e−t tp+1(t− 1) dt

−
∫ ∞

−1

e−t tp+1 (t− (p+ 2)) dt

+

∫ ∞

0

e−t tp+1(t− 1) dt

= (p+ 1)

∫ ∞

−1

e−t tp+1 dt.

Finally, using the representation of Equation (4), Equation (8) becomes:⌊ (p+ 2)!

e

⌋
−
⌊ (p+ 1)!

e

⌋
=

(p+ 1)

e

∫ ∞

−1

e−t tp+1 dt = (p+ 1)
⌊ (p+ 1)! + 1

e

⌋
,

which completes the proof. 2

3. Second Proof Using the Hermite Identity

As shown in Section 2, proving Theorem 1 amounts to proving Equation (3). The

proof presented in this section is inductive (like the previous one), but relies on the

Hermite identity.

Proof of Theorem 1. The Hermite identity [11] reads

m−1∑
k=0

⌊
x+

k

m

⌋
= ⌊mx⌋.

This can be easily shown by noticing that the function

f(x) = ⌊x⌋+
⌊
x+

1

m

⌋
+ . . .+

⌊
x+

m− 1

m

⌋
− ⌊mx⌋
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is 1/m-periodic. Indeed, since f(x) = 0 for all x ∈ [0, 1/m[, it follows that f(x) = 0

for all real x.

Let us set m = p+ 2 and x = (p+ 1)!/e. The Hermite identity becomes⌊ (p+ 2)!

e

⌋
=

⌊ (p+ 1)!

e

⌋
+
⌊ (p+ 1)!

e
+

1

p+ 2

⌋
+
⌊ (p+ 1)!

e
+

2

p+ 2

⌋
+ · · ·+

⌊ (p+ 1)!

e
+

p+ 1

p+ 2

⌋
.

For t ∈ [0, 1], one has −e < e−t < e and thus

− e

p+ 2
< −e

(−1)p

p+ 2
= −e

[
tp+2

p+ 2

]−1

0

= −e

∫ −1

0

tp+1 dt <

∫ −1

0

tp+1 e−t dt,

as well as∫ −1

0

tp+1 e−t dt < e

∫ −1

0

tp+1 dt = e

[
tp+2

p+ 2

]−1

0

= e
(−1)p

p+ 2
<

e

p+ 2

and

− e

p+ 2
<

∫ ∞

0

tp+1 e−t dt−
∫ ∞

−1

tp+1 e−t dt <
e

p+ 2
.

Using Equations (4) and (7), one gets

− 1

p+ 2
<

(p+ 1)!

e
−
⌊ (p+ 1)! + 1

e

⌋
<

1

p+ 2
,

or

− k

p+ 2
<

(p+ 1)!

e
−

⌊ (p+ 1)! + 1

e

⌋
< 1− p+ 1

p+ 2
≤ 1− k

p+ 2

for 0 ≤ k ≤ p. This implies⌊ (p+ 1)! + 1

e

⌋
− (p+ 1)! + 1

e
<

k

p+ 2
− 1

e
<

⌊ (p+ 1)! + 1

e

⌋
+1− (p+ 1)! + 1

e
. (10)

Let us now set y = [(p + 1)! + 1]/e and α = k/(p + 2) − 1/e. Since Equation (10)

means that ⌊y⌋ − y < α < ⌊y⌋+ 1− y, one has ⌊y + α⌋ = ⌊y⌋, i.e.,⌊ (p+ 1)!

e
+

k

p+ 2

⌋
=

⌊ (p+ 1)! + 1

e

⌋
and

p∑
k=0

⌊ (p+ 1)!

e
+

k

p+ 2

⌋
= (p+ 1)

⌊ (p+ 1)! + 1

e

⌋
.

This finally yields⌊ (p+ 2)!

e

⌋
=

⌊ (p+ 1)!

e

⌋
+ (p+ 1)

⌊ (p+ 1)! + 1

e

⌋
,

which completes the proof. 2
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4. Direct (Non-Inductive) Proof Using a Recurrence Relation

In this section we present a non-inductive proof of Theorem 1 (i.e., which is not

based on a proof of the identity of Equation (3)). The proof involves a recurrence

relation for the number of derangements.

Proof of Theorem 1. The derangements satisfy the well-known relation

D(n) = (n− 1)(D(n− 1) +D(n− 2)). (11)

The relation (11) can be recast into

D(n) = nD(n− 1)− (D(n− 1)− (n− 1)D(n− 2)),

which gives

D(n)− nD(n− 1) = −(D(n− 1)− (n− 1)D(n− 2))

= · · ·
= (−1)n−2(D(2)− 2D(1))

= (−1)n,

the last equality stemming from the fact that D(2)− 2D(1) = 1, as seen in Section

2. We thus have

D(n)−D(n− 1) = (n− 1)D(n− 1) + (−1)n,

for which different proofs and combinatorial interpretations were provided. Thus,

one has
p+1∑
n=2

(D(n)−D(n− 1)) =

p+1∑
n=2

(n− 1)D(n− 1) +

p+1∑
n=2

(−1)n,

or

D(p+ 1) =

p∑
n=0

nD(n) +
1− (−1)p

2
,

yielding

Sp = D(p+ 1)− 1− (−1)p

2
,

or also

Sp =
∣∣∣∣∣∣ (p+ 1)!

e

∣∣∣∣∣∣− 1− (−1)p

2
.

Using Equation (6), one gets

(p+ 1)!

e
−
⌊ (p+ 1)!

e

⌋
= −1

e

∫ 0

−1

e−t tp+1 dt+
[1 + (−1)p+1]

2
.
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Setting

f(p) = −1

e

∫ 0

−1

e−t tp+1 dt =
(−1)p

e

∫ 1

0

et tp+1 dt,

one sees that, for p even, f(p) is a positive decreasing function of p and since

f(0) = 1/e < 1/2, we obtain that f(p) < 1/2. On the other hand, when p is odd,

then f(p) is a negative increasing function of p and since f(1) = (2−e)/e, it follows

that f(1) + 1 = 2/e > 1/2 and f(p) > 1/2. Thus,

−1

e

∫ 0

−1

e−t tp+1 dt+
[1 + (−1)p+1]

2


< 1/2 if p is even,

> 1/2 if p is odd,

and then

(p+ 1)!

e


<

⌊ (p+ 1)!

e

⌋
+ 1/2 if p is even,

>
⌊ (p+ 1)!

e

⌋
+ 1/2 if p is odd.

This gives

∣∣∣∣∣∣ (p+ 1)!

e

∣∣∣∣∣∣ =

⌊ (p+ 1)!

e

⌋
if p+ 1 is odd,

⌊ (p+ 1)!

e

⌋
+ 1 if p+ 1 is even,

yielding finally

Sp =
⌊ (p+ 1)!

e

⌋
,

which completes the proof. 2

It is worth mentioning that in an article about permutation enumeration [13],

Sedgewick proposed an improvement of Heap’s algorithm for the generation of per-

mutations by interchanges [10]. It turns out that the complexity of Sedgewick’s

efficient algorithm involves the quantity AN defined by the induction relation

AN = NAN−1 +

{
0 if N is even,

N − 1 if N is odd,

for N > 1 and A1 = 0. One actually has

AN = N !

N∑
k=2

(−1)k

k!
=

⌊
N !

e

⌋
,

and there is a strong connection between the sum Sp and the quantity AN , which

are related to each other by

Sp = Ap+1.
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5. Conclusion

We obtained a sum rule for derangements, proven by three different methods. The

first two methods are inductive proofs; the first one uses integral representations of

the integer part of (n!+1)/e and of the fractional part of n!/e (n being an integer),

and the second one is based on the Hermite identity, expanding the integer part of

nx (where x is a real number) as a sum of integer parts of x+ k/n, with k ranging

from 0 to n − 1. The third proof proceeds directly from a recurrence relation for

derangements. The identity presented in Theorem 1 may be useful for deriving sum

rules for Laguerre polynomials [5].
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