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Abstract

Let p be an odd prime number and let l be a positive integer such that gcd(p, l) = 1.
The main purpose of this note is to prove an identity for the sum

p−1∑
a=1

p−1∑
b=1

b≡al (mod p)

(
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)
.

1. Introduction and Main Result

Let p be an odd prime number and let l be a positive integer such that gcd(p, l) = 1.

Set

F (p, l) :=

p−1∑
a=1

p−1∑
b=1

b≡al (mod p)
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)
.

In particular, if l = 1, then we obtain the following simple closed-form expression:

F (p, 1) =

p−1∑
a=1

(
a

p
− 1

2

)2

=
(p− 1)(p− 2)

12p
,

which naturally motivates the question of whether similar closed forms exist for

general l coprime to p.

The aim of this short note is to establish such a closed formula for F (p, l) in

terms of p, l, and a trigonometric sum involving cotangent functions, through the

following theorem.
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Theorem 1. Let p ≥ 3 be a prime and l be a positive integer such that gcd(p, l) = 1.

Then

F (p, l) =
p2 − 3lp+ l2 + 1

12lp
− s(p, l), (1)

where s(p, l), which depends only on the value of p mod l, is the Dedekind sum

s(p, l) =
1

4l

l−1∑
a=1

cot
(πa

l

)
cot

(πap
l

)
.

Example 2. Let p ≥ 3 be a prime. Then

F (p, p− 1) =
(p− 1)(2− p)

12p
,

F (p, p+ 1) =
(p− 1)(p− 2)

12p
.

Example 3. Let p ≥ 3 be a prime. Then

F (p, 2) =
(p− 1)(p− 5)

24p
;

in particular, F (5, 2) = 0.

Example 4. Let p ≥ 3 be a prime. Then

F (p, 3) =
1

36p
×

{
(p− 1)(p− 10), if p ≡ 1 (mod 3)

(p− 2)(p− 5), if p ≡ 2 (mod 3)
;

in particular, F (5, 3) = 0.

Example 5. Let p ≥ 3 be a prime. Then

F (p, 4) =
1

48p
×

{
(p− 1)(p− 17), if p ≡ 1 (mod 4)

p2 − 6p+ 17, if p ≡ 3 (mod 4)
;

in particular, F (17, 4) = 0.

Example 6. Let p ≥ 3 be a prime. According to [3, Proposition 1] we have

F (p, 8) =
1

96p
×


p2 − 66p+ 5, if p ≡ 1 (mod 8)

p2 − 30p+ 65, if p ≡ 3 (mod 8)

(p− 5)(p− 13), if p ≡ 5 (mod 8)

(p+ 5)(p+ 13), if p ≡ 7 (mod 8)

;

in particular, F (5, 8) = F (13, 8) = 0.

Moreover, one can use the results of Louboutin in [3] to derive closed-form ex-

pressions for F (p, l) with l ∈ {5, 6, 10}.
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2. Proof of Theorem 1.

We now present the proof of Theorem 1.

Proof of Theorem 1. Let l be a positive integer and let p ≥ 3 be an odd prime that

does not divide l. Set

M(p, l) :=
2

p− 1

∑
χ∈G−

p

χ(l)L(1, χ)L(1, χ),

where G−
p denotes the set of cardinality (p − 1)/2 of the odd Dirichlet characters

modulo p. On the one hand, according to [2, Theorem 1] we have

M(p, l) =
π2(p2 − 3(l + 4l s(p, l))p+ l2 + 1)

6lp2
. (2)

On the other hand, for any odd primitive character χ, it is known (see, e.g., [4,

Theorem 4.9]) that

L(1, χ) =
πi

p
τ(χ)B1(χ),

where τ(χ) and B1(χ) denote the Gaussian sum and the generalized Bernoulli num-

ber associated with χ, respectively. Substituting this into the definition of M(p, l),

we obtain

M(p, l) =
−2π2

p2(p− 1)

∑
χ∈G−

p

χ(l)τ(χ)τ(χ)B1(χ)B1(χ). (3)

Moreover, since

τ(χ)τ(χ) = −p

(see, e.g., [4, Lemmas 4.7 and 4.8]), and since

B1(χ) =

p−1∑
a=1

χ(a)

(
a

p
− 1

2

)
(see, e.g., [4, Proposition 4.1]), Identity (3) becomes

M(p, l) =
2π2

p(p− 1)

p−1∑
a=1

p−1∑
b=1

(
a

p
− 1

2

)(
b

p
− 1

2

) ∑
χ∈G−

p

χ(al)χ(b). (4)

Next, the orthogonality relations (see, e.g., [1, Theorem 6.16]) give us:

∑
χ∈G−

p

χ(m)χ (n) =

 (p− 1)/2 if n ≡ m (mod p) and gcd(m, p) = 1,
(1− p)/2 if n ≡ −m (mod p) and gcd(m, p) = 1,

0 otherwise.
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This fact allows us to write (4) as:

M(p, l) =
π2

p

p−1∑
a=1

p−1∑
b=1

b≡al (mod p)
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− 1

2

)
−
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− 1
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))(
b

p
− 1

2

)

=
2π2

p

p−1∑
a=1
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b=1

b≡al (mod p)
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)
. (5)

Identities (2) and (5) together yield the desired result. This completes the proof of

the theorem. 2
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