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Abstract

For a positive integer n, the arithmetic function σ2(n) denotes the sum of squares
of all the divisors of n. A positive integer n is called an F -perfect number if
σ2(n)−n2 = 3n. A positive integer n is termed a near F -perfect number if σ2(n)−
n2 − d2 = 3n, where d is a proper divisor of n. Similarly, n is considered a deficient
F -perfect number if σ2(n)− n2 + d2 = 3n, where d is a proper divisor of n. In this
paper, we discuss several characterizations of these numbers, establish their relations
with other significant numbers, and generalize the near-perfect and deficient-perfect
numbers.

1. Introduction

For a positive integer n, let σ(n) denote the sum of its positive divisors. Positive

integers can be categorized into three classes based on this divisor sum function. If
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σ(n) = 2n, then n is called a perfect number, and if σ(n) > 2n (respectively, σ(n) <

2n), then n is called an abundant (respectively, deficient) number. For primes p and

2p − 1, an integer n is perfect if and only if n = 2p−1(2p − 1). To the current day,

no proof has been found to justify the existence of an odd perfect number. If an

odd perfect number exists, it must be greater than 101500 [2]. Pollock and Shevelev

[3] introduced near-perfect numbers, defining them as positive integers n for which

σ(n) − d = 2n, where d is a proper divisor of n known as the redundant divisor

of n. In [3], they provided the construction of all near-perfect numbers with two

prime factors. Min Tang et al. [4] proved that there is no odd near-perfect number

with three prime factors and determined all deficient-perfect numbers with at most

two distinct prime factors. They also proved that there is no odd deficient-perfect

number with three prime factors. Xiaoyan Ma and Min Feng [5] demonstrated that

the only odd near-perfect number with four distinct prime factors is 34 ·72 ·112 ·192.
Similarly, Shichun Yang et al. [6] proved that the only odd deficient-perfect number

with four prime factors is 32 · 72 · 112 · 132.
For a positive integer n, the arithmetic function σ2(n) is defined as

σ2(n) =
∑
d|n

d2.

Tianxin Cai et al. [1] introduced the concept of F -perfect numbers. A positive

integer n is considered an F -perfect number if σ2(n) − n2 = 3n. Following the

concept of abundant and deficient numbers, we call a positive integer n an F -

abundant (respectively, F -deficient) number if σ2(n)−n2 > 3n (respectively, σ2(n)−
n2 < 3n). We have the following natural definitions.

Definition 1. A positive integer n is called a deficient F -perfect number if there

exists a proper divisor d of n such that

σ2(n)− n2 + d2 = 3n.

Definition 2. For any natural number k > 1, a positive integer n is called a

deficient Fk-perfect number if there exists a proper divisor d of n such that

σk(n)− nk + dk = 3n.

It is easily observed that a deficient F2-perfect number is nothing but a deficient

F -perfect number. If n is a deficient Fk-perfect number, where k > 1, then n must

satisfy the condition
σk(n)

n
− n < 3.

Further generalizing, we define the following.

Definition 3. For any natural numbers k and ℓ, a positive integer n is called a

[k, ℓ]-deficient-perfect number if there exists a proper divisor d of n such that

σk(n)− nk + dk = ℓn.
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Clearly, a deficient-perfect number is a [1, 1]-deficient-perfect number.

Definition 4. A positive integer n is called a near F -perfect number if there exists

a proper divisor d of n such that

σ2(n)− n2 − d2 = 3n.

Generalizing near F -perfect numbers, we define the following.

Definition 5. For any natural number k > 1, a positive integer n is called a near

Fk-perfect number if there exists a proper divisor d of n such that

σk(n)− nk − dk = 3n.

It is easily observed that a near F2-perfect number is a near F -perfect number. If

a positive integer n is a near Fk-perfect number, where k ≥ 1 is a natural number,

then n must satisfy the condition

σk(n)

n
− n > 3.

Our final definition is the following.

Definition 6. For any natural number k and ℓ, a positive integer n is called a

[k, ℓ]-near-perfect number if there exists a proper divisor d of n such that

σk(n)− nk − dk = ℓn.

Clearly, a near-perfect number is a [1, 1]-near-perfect number and a near Fk-perfect

number is a [k, 3]-near-perfect number for all k ≥ 2. Finally, a near F -perfect

number is a [2, 3]-near-perfect number. Similarly, different kinds of near-perfect

numbers can be extracted from [k, ℓ]-near-perfect numbers.

Proposition 1. An odd prime number is not a [k, ℓ]-deficient-perfect number.

Proof. Let an odd prime p be a [k, ℓ]-deficient-perfect number. Then

σk(p)− pk + dk = ℓp.

Therefore,

1 + dk = ℓp.

If d = 1, then ℓ = 1 and p = 2, this is a contradiction as p is an odd prime. If d = p,

then 1 + pk = ℓp, but p ∤ 1 + pk. Therefore, the result follows.

As a consequence of Proposition 1, we have the following corollaries.
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Corollary 1. The only even prime number 2 is a [k, ℓ]-deficient-perfect number for

ℓ = 1.

Corollary 2. No prime number is deficient F -perfect.

Proposition 2. A prime number p is not a [k, ℓ]-near-perfect number, for all nat-

ural numbers k and l.

Proof. If a prime p is a [k, ℓ]-near-perfect number, then

σk(p)− pk − dk = ℓp.

This implies,

1− dk = ℓp.

Therefore,

dk = 1− ℓp < 0, (p ≥ 2, ℓ ∈ N).

This is a contradiction, hence the result follows.

In this paper, we categorize the different types of positive integers defined above

into two classes based on their prime factors. In Section 2, we characterize positive

integers with a single prime factor. In Section 3, positive integers with two or more

primes are characterized.

2. Characterization of Positive Integers that Factor into Single Prime
Powers

In this section, to extend our understanding of the numbers introduced in Section

1, our goal is to characterize and deduce the properties of these numbers that have

a single prime factor.

Theorem 1. For any non-negative integer a, there is neither a deficient F -perfect

number nor a near F -perfect number of the form n = pa for any prime p.

Proof. Since the case for a near F -perfect number is similar, we only prove the

result for deficient F -perfect number.

If a = 0, then n = 1 is trivially not a deficient F -perfect number. For a = 1,

we see that n = p is also not a deficient F -perfect number by Corollary 2. For any

prime p, let n = pa be a deficient F -perfect number where a ≥ 2. Then, we have

σ2(p
a)− p2a + p2b = 3pa, where b < a.
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Therefore,

1 + p2 + p4 + · · ·+ p2(a−1) + p2b = 3pa. (1)

We may consider two cases.

Case 1: b ≥ ⌈a
2 ⌉. Re-writing Equation (1), when a is even, we get

1− pa

(1− p2)pa
+A1 = 3,

where A1 =
pa + pa+2 + · · ·+ p2a−2 + p2b

pa
is a natural number. Similarly, when a

is odd, we get
1− pa+1

(1− p2)pa
+ A2 = 3, where A2 =

pa+1 + · · ·+ p2a−2 + p2b

pa
is also

a natural number. However, both
1− pa

(1− p2)pa
,
1− pa+1

(1− p2)pa
are not natural numbers,

which leads to a contradiction.

Case 2: b < ⌈a
2 ⌉. Re-writing Equation (1), when a is even, we obtain

1− pa

(1− p2)pa
+

p2b

pa
+ B1 = 3, where B1 =

pa + pa+2 + · · ·+ p2a−2

pa
∈ N. Similarly, when a is odd,

we have
1− pa+1

(1− p2)pa
+

p2b

pa
+B2 = 3, where B2 =

pa+1 + · · ·+ p2a−2

pa
∈ N. This is a

contradiction, similar to the earlier case.

Generalizing Theorem 1, we have the following result.

Theorem 2. For a prime p and non-negative integer a,the number pa is a [2, ℓ]-

near-perfect number if and only if a = 2, ℓ = 1, and d = 1.

Proof. Let n = pa be a [2, ℓ]-near-perfect number. By Definition 6, we have

1 + p2 + p4 + · · ·+ p2(a−2) + p2(a−1) − d2 = ℓpa. (2)

When a = 1, we get n = p. If d = 1, we have σ2(p) − p2 − 1 = ℓp, which implies

ℓp = 0. This leads to a contradiction. Similarly, we can see that if d = p, we get

σ2(p)− p2 − p2 = ℓp, which implies p2 + ℓp = 1. This is again a contradiction, since

any ℓ ∈ N.
We now consider a ≥ 2. If a is even, from Equation (2), we have

1 + p2 + p4 + · · ·+ pa−2 + pa + pa+2 + · · ·+ p2(a−2) + p2(a−1) − d2 = ℓpa.

If d ≥ p
a
2 , then d2 is equal to an element of {pa, pa+2, . . . , p2(a−2), p2(a−1)}. There-

fore, we get

1 + p2 + p4 + · · ·+ pa−2

pa
+A = ℓ,
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where A =
pa + pa+2 + · · ·+ p2(a−2) + p2(a−1) − d2

pa
∈ N. On further simplification,

we get

1− pa

(1− p2)pa
+A = ℓ. (3)

However, Equation (3) implies that ℓ is not a natural number, which leads to a

contradiction.

If d < p
b
2 , then d2 is equal to an element of {1, p2, p4, . . . , pa−4, pa−2}. Therefore,

we get

1 + p2 + p4 + · · ·+ pa−2 − d2

pa
+B = ℓ,

where B =
pa + · · ·+ p2(a−1)

pa
∈ N. On further simplifying, we get

(
1− pa

1− p2
− d2

)
1

pa
+B = ℓ. (4)

The first term on the left side of Equation (4) will not be an integer for all values of

a and d except for a = 2 and d = 1. Therefore, a = 2 and d = 1, and consequently

ℓ = 1.

When a is odd, from Equation (2), we get

1 + p2 + p4 + · · ·+ pa−1 + pa+1 + · · ·+ p2(a−2) + p2(a−1) − d2 = ℓpa.

If d ≥ p
a+1
2 , then d2 is equal to an element of {pa+1, pa+3, . . . , p2(a−1)}. Therefore,

we get
1 + p2 + p4 + · · ·+ pa−1

pa
+ C = ℓ,

where C =
pa+1 + · · ·+ p2(a−2) + p2(a−1) − d2

pa
∈ N. Upon further simplifying, we

get
1− pa+1

(1− p2)pa
+ C = ℓ. (5)

But
1− pa+1

(1− p2)pa
/∈ N and, consequently, from Equation (5) we get ℓ /∈ N, which is a

contradiction. Now if d < p
a+1
2 , then d2 is equal to an element of {1, p2, p4 . . . , pa−1}.

Therefore, we get

1 + p2 + p4 + · · ·+ pa−1 − d2

pa
+D = ℓ,
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where D =
pa+1 + · · ·+ p2(a−1)

pa
∈ N. Upon further simplifying, we get

1

pa

(
1− pa+1

1− p2
− d2

)
+D = ℓ. (6)

The first term on the left side of Equation (6) will not be an integer for all values

of a and d except when a = 1 and d = 1, but a = 1 is not possible, which is a

contradiction.

Conversely, let a = 2, ℓ = 1, and d = 1. Then n = p2 and σ2(p
2) = 1 + p2 + p4.

It is easy to see that σ2(p
2)− p4 − 1 = p2. Therefore, n = pa is a [2, ℓ]-near-perfect

number when a = 2, ℓ = 1, and d = 1.

Similarly, generalizing Theorem 1, we have the following result.

Theorem 3. For a prime p and non-negative integer a, the number pa is not a

[2, ℓ]-deficient-perfect number for all a except when a = 2 and ℓ = 1.

The proof follows the same structure as the proof of Theorem 2, so we omit it here.

On further generalizing Theorem 2, we have the following result.

Theorem 4. For a prime p, the number pa is a [k, ℓ]-near-perfect number if and

only if a = k, d = 1, and ℓ = 1 + pk + p2k + · · ·+ pk(k−2).

Proof. If n = pa is a [k, ℓ]-near-perfect number, then

1 + pk + p2k + · · ·+ p(a−1)k − dk = ℓpa. (7)

We may consider two cases.

Case 1: k|a. Re-arranging Equation (7), we have

1 + pk + p2k + · · ·+ p(r−1)k + prk + p(r+1)k + · · ·+ p(a−1)k − dk = ℓn, (8)

where r =
a

k
, which means r < a. If d ≥ p

a
k , we have dk ≥ pa = prk. Then dk is an

element from the set {prk, p(r+1)k, . . . , p(a−1)k}. From Equation (8), we have

1 + pk + p2k + · · ·+ p(r−1)k

pa
+A = ℓ, (9)

where A =
prk + p(r+1)k + · · ·+ p(a−1)k − dk

pa
∈ N. On further simplifying Equation

(9), we have
1− pa

(1− pk)pa
+A = ℓ. (10)
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Here,
1− pa

(1− pk)pa
/∈ N, which implies ℓ /∈ N. This is a contradiction. If d < p

a
k ,

then dk is an element from the set {1, pk, p2k . . . , p(r−1)k}, and from Equation (8),

we have
1

pa

(
1− pa

(1− pk)
− dk

)
+B = ℓ, (11)

where B =
prk + p(r+1)k + · · ·+ p(a−1)k

pa
∈ N. The left side of Equation (11) will

be an integer only if k = a and d = 1. When k = a and d = 1, we get

ℓ = 1 + pk + p2k + · · ·+ p(k−2)k.

Case 2: k ∤ a. Re-arranging Equation (7), we have

1 + pk + p2k + · · ·+ p(u−1)k + puk + p(u+1)k + · · ·+ p(a−1)k = ℓn, (12)

where a = uk + v, where we clearly have 1 ≤ u < a and 1 ≤ v < a. Now if d ≥ pu,

then dk is an element from the set {puk, p(u+1)k, . . . , p(a−1)k}. From Equation (8),

we have
1 + pk + p2k + · · ·+ p(u−1)k

pa
+ C = ℓ, (13)

where C =
puk + p(u+1)k + · · ·+ p(a−1)k − dk

pa
∈ N. On further simplifying Equa-

tion (13), we have
1− puk

(1− pk)pa
+ C = ℓ, (14)

where
1− puk

(1− pk)pa
/∈ N. This implies ℓ /∈ N, which leads to a contradiction. If

d < puk, then dk is an element from the set {1, pk, p2k . . . , p(u−1)k}, and from

Equation (12) we have

1

pa

(
1− puk

(1− pk)
− dk

)
+D = ℓ, (15)

where D =
puk + p(u+1)k + · · ·+ p(a−1)k

pa
∈ N. The left side of Equation (15) will

not be an integer, as uk = a − v. This implies that ℓ is not an integer. This is a

contradiction.

Conversely, let n = pa where a = k, d = 1, and ℓ = 1 + pk + p2k + · · ·+ pk(k−2).

Now,

σk(p
k) = 1 + pk + p2k + · · ·+ p(k−1)k + pk

2

,
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and

σk(p
k)− nk − dk = pk + p2k + · · ·+ p(k−1)k

= (1 + pk + p2k + · · ·+ p(k−2)k)pk = ℓn.

This proves that n = pa is a [k, ℓ]-deficient-perfect number.

Theorem 5. For a prime p and k ≥ 2, the number pa is not a [k, ℓ]-deficient-

perfect number for all a, except when p = 2 and a = 1. If k = 1, then pa is a

[k, ℓ]-deficient-perfect number if and only if p = 2, ℓ = 1, and d = 1.

The proof follows the same structure as the proof of Theorem 4, so we will not

present it here.

3. Characterization of Positive Integers that Factor into Two or More
Prime Powers

To expand the scope of the numbers we worked on in Section 2, in this section we

aim to characterize and derive the properties of numbers defined in Section 1 that

have two or more prime factors.

Theorem 6. A natural number n = 2p is not a [k, ℓ]-near-perfect number, where p

is an odd prime.

Proof. Let n = 2p be a [k, ℓ]-near-perfect number. Then, the possible values of

redundant divisors are 1, 2, and p. Using Definition 6, we have

1 + 2k + pk − dk = 2ℓp.

If d = 1, we get 2k + pk = 2ℓp, which implies pk ≡ 0 (mod 2). This is a

contradiction as p is odd. If d = 2, we get 1 + pk = 2ℓp, which implies p|1. This is
not possible as p is odd. If d = p, we get 1 + 2k = 2ℓp. This is a contradiction as

1 + 2k is odd.

Table 1 gives the list of a few [k, ℓ]-deficient-perfect numbers of the form 2p for

1 ≤ k ≤ 6.

Theorem 7. For any non-negative integer a, there is no deficient F -perfect number

of the form n = 2ap, where p is any prime, except when p = 3 and a = 1.

Proof. Let n be a deficient F -perfect number of the form n = 2ap. Therefore,

σ2(n) =
(22a+2 − 1)

3
(p2 + 1) =

22a+2p2 − p2 + 22a+2 − 1

3
.
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k p ℓ n = 2p
1 5 1 10
2 3 3 6
3 17 145 34
4 3 and 11 19 and 667 respectively 6 and 22 respectively
5 5 and 13 319 and 14283 respectively 10 and 26 respectively
6 3 and 43 143 and 73504223 respectively 6 and 86 respectively

Table 1: [k, ℓ]-deficient-perfect numbers of the form 2p.

From Definition 1, we have

σ2(n)− n2 + d2 = 3n.

Rearranging, we get

d2 = 3n+ n2 − σ2(n).

Therefore,

d2 = 3 · 2ap+ 22ap2 −
(
22a+2p2 − p2 + 22a+2 − 1

3

)
,

which gives us

3d2 = 32 · 2ap+ 3 · 22ap2 − 22a+2p2 + p2 − 22a+2 + 1

= 32 · 2ap+ 3 · 22ap2 − 4 · 22ap2 + p2 − 22a+2 + 1

= 32 · 2ap− 22ap2 + p2 − 22a+2 + 1

= 9 · 2ap− 22ap2 + p2 − 22a+2 + 1

= −2ap(−9 + 2ap) + p2 − 22a+2 + 1.

Rearranging the above, we get

3d2 = 1 + p2 − 2ap(2ap− 9)− 22a+2. (16)

By Proposition 1, it is clear that n is not a deficient F -perfect number when

a = 0. Theorem 1 shows that n is not a deficient F -perfect number when p = 2.

However, for a = 1 and p = 3, n = 6 is a deficient F -perfect number. So, we now

consider the following two cases.

Case 1: a = 1 and p > 3. The possible values of d are 1, 2, and p. If d = 1, Equation

(16) becomes p2 − 6p + 6 = 0. This implies p is not a prime, a contradiction. If

d = 2, Equation (16) gives p = 3, which contradicts p > 3. If d = p, Equation (16)
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becomes 2p2 + 5 = 6p, which leads to a contradiction as 2p2 + 5 is odd, but 6p is

even.

Case 2: a > 1 and p > 3. Depending on the possible values of d, we study the

following cases. If d = 1, from Equation (16), we get

2 + 2ap(2ap− 9) + 22a+2 = p2.

This is a contradiction, as 2 + 2ap(2ap− 9) + 22a+2 is even, but p2 is odd. If d = p,

then from Equation (16), we get

2p2 + 2ap(2ap− 9) + 22a+2 = 1.

This is a contradiction, as 2p2+2ap(2ap−9)+22a+2 is even, but 1 is odd. If d = 2b,

where 1 ≤ b ≤ a, then from Equation (16), we have

3 · 22b + 22a+2 + p(2a(2ap− 9)− p) = 1. (17)

But for all a > 1 and p > 3, we have

2a(2ap− 9) > 3 and 2a(2ap− 9) > p,

2a(2ap− 9)− p > 0,

p(2a(2ap− 9)− p) > 0.

It is clear that 3 · 22b + 22a+2 + p(2a(2ap− 9)− p) > 1, which contradicts Equation

(17). If d = 2cp, where 1 ≤ c < a, from Equation (16), we get

p(2a(2ap− 9)− p) = 1− 3 · 22a · p2 − p2a+2.

It is clear that 1 − 3 · 22a · p2 − p2a+2 < 0, but p(2a(2ap − 9) − p) > 0. This is a

contradiction.

Theorem 8. For a non-negative integer a and a natural number k, a number of

the form n = 2ap, where p is an odd prime, is not a [k, ℓ]-deficient-perfect number

when d = 1 or d = p.

Proof. Let n = 2ap be a [k, ℓ]-deficient-perfect number for k ≥ 1. When a = 0, from

Proposition 1, it is clear that n is not a [k, ℓ]-deficient-perfect number. Let a > 0.

By using Definition 3, we have

σk(2
ap)− 2akpk + dk = ℓ2ap,

which gives us

(1 + 2k + 22k + · · ·+ 2(a−1)k)(1 + pk) + 2ak + dk = ℓ2ap. (18)

When d = 1 or d = p, it is clear that the left side of Equation (18) is not even,

which leads to a contradiction since the right side of Equation (18) is even.
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Theorem 9. For any non-negative integer a, there is no near F -perfect number of

the form n = 2ap, where p is any prime number.

Proof. If a = 0 or p = 2, it follows from Theorem 1 that n is not a near F -perfect

number. Similarly, by using the same theorem, it is clear that n is not a near F -

perfect number when a = 1 and p = 2. If a = 1, for any odd prime p, it is obvious

from Theorem 6 that n is not a near F -perfect number.

We now consider n = 2ap to be a near F -perfect number, where p is an odd

prime and a ≥ 2. Using Definition 4, we have

1 + 22 + 24 + · · ·+ 22a + p2 + 22p2 + · · ·+ 22(a−1)p2 − d2 = 3 · 2ap. (19)

We now consider the following cases based on the possible values of d. If d = 1,

from Equation (19), we get

p2 + 22 + 24 + · · ·+ 22a + 22p2 + · · ·+ 22(a−1)p2 = 3 · 2ap. (20)

This is not possible, as the left side of Equation (20) is odd, whereas the right side

is even. If d = p, Equation (19) becomes

1 + 22 + 24 + · · ·+ 22a + 22p2 + · · ·+ 22(a−1)p2 = 3 · 2ap. (21)

Again this is not possible, as the left side of Equation (21) is odd, but the right side

is even. If d = 2b in Equation (19), where 1 ≤ b ≤ a, then

A+ 22bp2 = 3 · 2ap,

which is equivalent to
A

p222b − 3 · 2ap
+ 1 = 0,

where A = (1 + 22 + · · ·+ 22b−2 + 22b+2 + · · ·+ 22a−2)(1 + p2) + 22a. If we assume

that A = 3 · 2ap− p222b, then we have

(1 + 22 + · · ·+ 22b−2 + 22b+2 + · · ·+ 22a−2)(1 + p2) + 22a = 3 · 2ap− 22bp2,

which is equivalent to

(1 + 22 + · · ·+ 22b−2 + 22b+2 + · · ·+ 22a−4)(1 + p2)

+ 22a + 22a−2 + 2ap(2a−2p− 3) + 22bp2 = 0. (22)

But for all a ≥ 2 we have 2a−2p− 3 ≥ 0. This shows that the left side of Equation

(22) is greater than 0, which leads to a contradiction. Therefore, A ̸= 3 ·2ap−22bp2,

which contradicts d = 2b. If d = 2cp in Equation (19), where 1 ≤ c < a, then

B + 22a = 3 · 2ap,
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which is equivalent to
B

22a − 3 · p · 2a
+ 1 = 0,

where B = (1+ 22 + · · ·+22c−2 +22c+2 + · · ·+22a−2)(1+ p2) + 22c. Let us assume

that B = 3 · 2a · p− 22a. Therefore,

(1 + 22 + · · ·+ 22c−2 + 22c+2 + · · ·+ 22a−2)(1 + p2) + 22c = 3 · 2a · p− 22a,

which give us

(1 + 22 + · · ·+ 22c−2 + 22c+2 + · · ·+ 22a−4)(1 + p2)

+ 22c + 22a−2 + 2ap(2a−2p− 3) + 22a = 0. (23)

But for all a > 1, we have 2a−2p−3 ≥ 0, this shows that the left side of Equation

(23) is greater than 0. This is a contradiction. Therefore, B ̸= 3 · 2a · p − 22a,

contradicting d = 2cp.

In the next theorem, we generalize Theorem 9 from near F -perfect number to

[2, ℓ]-near-perfect number.

Theorem 10. For an odd prime p and a non-negative integer a, a number n = 2ap

is not a [2, ℓ]-near-perfect number.

Proof. Let n = 2ap be a [2, ℓ]-near-perfect number, where p is an odd prime. When

a = 0, from Proposition 2, it is clear that n is not a [2, ℓ]-near-perfect number.

When a = 1, from Theorem 6, it is clear that n is not a [k, ℓ]-near-perfect number

for k = 2. Let a > 1. From Definition 6, we have

(1 + 22 + 24 + · · ·+ 22a)(1 + p2)− 22ap2 − d2 = 2apℓ.

Since a > 1,

2apℓ− (22 + 24 + · · ·+ 22a)(1 + p2) + 22ap2 ≡ 0 (mod 4).

Therefore, 1 + p2 − d2 ≡ 0 (mod 4). If d = 1, then p2 ≡ 0 (mod 4). This is a

contradiction as p is an odd prime. If d = p, then 1 ≡ 0 (mod 4), which is not

possible. If 2|d, then 1 + p2 ≡ 0 (mod 4). This is a contradiction as 1 ≡ 1 (mod 4)

and p2 ≡ 0, 1 (mod 4). Therefore, 1 + p2 ≡ 1, 2 (mod 4).

The next theorem is an immediate generalization from [2, ℓ]-near-perfect number

to [k, ℓ]-near-perfect number for any natural number k.

Theorem 11. For an odd prime p and a > 1, the positive integer n = 2ap is not a

[k, ℓ]-near-perfect number when d = 1 and d = p.
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Proof. Let n = 2ap be a [k, ℓ]-near-perfect number where a > 1. We know that,

σk(2
ap) = (1 + 2k + 22k + 23k + · · ·+ 2ak)(1 + pk).

From Definition 6, we have

σk(n)− nk − dk = ℓn.

Therefore,

(2k + 22k + 23k + · · ·+ 2ak)(1 + pk) + 1 + pk − 2akpk − dk = ℓ2ap. (24)

We now consider two cases for the value of k.

Case 1: k = 1. From Equation (24), we have

(22 + 23 + · · ·+ 2a)(1 + p)− 2ap− ℓ2ap = d− 3− 3p.

Since a > 1, we see that

(22 + 23 + · · ·+ 2a)(1 + p)− 2ap− ℓ2ap ≡ 0 (mod 4).

This implies,

d− 3− 3p ≡ 0 (mod 4).

Therefore, when d=1, we have −(2+3p) ≡ 0 (mod 4). This is a contradiction, since

2 + 3p is an odd number. When d = p, we have −(3 + 2p) ≡ 0 (mod 4). This is a

contradiction as 3 + 2p is an odd number.

Case 2: k > 1. From Equation (24), we have

2akpk + ℓ2ap− (2k + 22k + 23k + · · ·+ 2ak)(1 + pk) ≡ 0 (mod 4).

This implies

1 + pk − dk ≡ 0 (mod 4).

Since a > 1, for d = 1, we have pk ≡ 0 (mod 4). This is a contradiction as p is an

odd prime. For d = p, we have 1 ≡ 0 (mod 4). This is a contradiction.

Therefore, n = 2ap is not a [k, ℓ]-near-perfect number when d = 1 and d = p for

a > 1.

Theorem 12. For any non-negative integer a and any prime p, the only deficient

F -perfect number of the form n = 2pa is 6.

Proof. When a > 1, using Definition 1, we have

σ2(n)− n2 + d2 = 3n.
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Since

σ2(2p
a) = (1 + 22)(1 + p2 + p4 + · · ·+ p2a)

= 5 + 5p2 + 5p4 + · · ·+ 5p2a,

applying Definition 1, we have

6pa = 5 + 5p2 + 5p4 + · · ·+ 5p2(a−1) + 5p2a − 22p2a + d2

= 5 + 5p2 + 5p4 + · · ·+ 5p2(a−1) + p2a + d2,

which implies

5 + 5p2 + 5p4 + · · ·+ 5p2(a−1) + d2 + pa(pa − 6) = 0.

Since a > 1 and p is an odd prime, pa ≥ 9, and therefore, (pa − 6) > 0. This shows

that 5+5p2+5p4+ · · ·+5p2(a−1)+d2+pa(pa−6) > 0. Therefore, if a > 1, n = 2pa

is not a deficient F -perfect number.

Finally, for a = 1, we have n = 2p and σ2(2p) = 6p+ 4p2 − d2. Therefore,

d2 = 6p− p2 − 5. (25)

It can easily be observed that the only prime number that satisfies Equation (25) is

p = 3 when d = 2. Hence, the only deficient F -perfect number of the form n = 2pa

is 6.

Theorem 13. For any nonnegative integer a, there is no near F -perfect number of

the form n = 2pa, where p is any prime.

Proof. Let n = 2pa be a positive integer. If p is even, it follows from Theorem 1

that n cannot be a near F -perfect number. Therefore, p is an odd prime. When

a = 0, again from Theorem 1, we see that n is not a near F -perfect number. When

a = 1, it follows from Theorem 1 that n is not a near F -perfect number. Therefore,

a > 1. Let n = 2pa be a near F -perfect number, where a > 1 and p is an odd prime.

From Definition 4, we have

5 + 5p2 + 5p4 + · · ·+ 5p2(a−1) + p2a = 6pa + d2. (26)

We now consider the following four possible values of d.

Case 1: d = 1. From Equation (26), we get

5 + 5p2 + 5p4 + · · ·+ 5p2(a−1) + p2a = 6pa + 1.

This is a contradiction, as

5 + 5p2 + 5p4 + · · ·+ 5p2(a−1) + p2a > 6pa + 1.
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Case 2: d = 2. From Equation (26), we get

5 + 5p2 + 5p4 + · · ·+ 5p2(a−1) + p2a = 6pa + 4.

This is a contradiction, as

5 + 5p2 + 5p4 + · · ·+ 5p2(a−1) + p2a > 6p2a + 4.

Case 3: d = 2pq, where 2 ≤ q < a. From Equation (26), it is clear that

5 + 5p2 + 5p4 + · · ·+ 5p2(a−1) + p2a = 6p2a + 4p2q.

Since q < a, there exists some s = q, such that

5 + 5p2 + 5p4 + · · ·+ 5p2(s−1) + 5p2s + 5p2(s+1) · · ·+ 5p2(a−1) + p2a = 6p2a + 4p2q.

This is a contradiction, as

5 + 5p2 + 5p4 + · · ·+ 5p2(s−1) + 5p2s + 5p2(s+1) · · ·+ 5p2(a−1) + p2a > 6p2a + 4p2q.

Case 4: d = pb, where 1 < b ≤ a. If 1 < b < a from Equation (26), we see that

5 + 5p2 + 5p4 + · · ·+ 5p2(b−1) + 5p2b + 5p2(b+1) · · ·+ 5p2(a−1) + p2a = 6p2a + 4p2b.

This is a contradiction, as

5 + 5p2 + 5p4 + · · ·+ 5p2(b−1) + 5p2b + 5p2(b+1) · · ·+ 5p2(a−1) + p2a > 6p2a + 4p2b.

If b = a, from Equation (26), we get

5 + 5p2 + 5p4 + · · ·+ 5p2(a−1) + p2a = 6pa + p2a,

that is,

5 + 5p2 + 5p4 + · · ·+ pa(5pa − 6p2)

p2
= 0.

For all a > 2, we see that
pa(5pa − 6p2)

p2
> 0 and therefore,

5 + 5p2 + 5p4 + · · ·+ pa(5pa − 6p2)

p2
> 0.

This is a contradiction. When a = 2, from Equation (26), we get

5 + 5p2 + 5p4 − 4p4 − p4 = 6p2.

This implies

5 = p2.

This is a contradiction as p is an odd prime. Therefore, there is no near F -perfect

number of the form n = 2pa, where p is any prime.
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Theorem 14. For any non-negative integer a and an odd prime p, let us consider

a number of the form n = 2pa. Then

1. The only [k, ℓ]-near-perfect number when k = 1 is 18.

2. If n is a [k, ℓ]-near-perfect number, then p is a solution of the congruence

1 + 2k ≡ 0 (mod p2) when k > 1.

Furthermore, a is even if and only if d is odd.

Proof. If a = 1, then from Theorem 6, it is clear that n is not a [k, ℓ]-near-perfect

number. Therefore, let n = 2pa be a [k, ℓ]-near-perfect number for a > 1. By

Definition 6, we have

(1 + 2k)(1 + pk + p2k + · · ·+ pak)− 2kpak − dk = 2ℓpa. (27)

First we prove Statement 1. If k = 1, from Equation (27), we get

3(1 + p)− d = 2ℓpa − 3(p2 + p4 + · · ·+ pa) + 2pa.

As

2ℓpa − 3(p2 + p4 + · · ·+ pa) + 2pa ≡ 0 (mod p2),

this implies that

3(1 + p)− d ≡ 0 (mod p2).

When the value of d is 1 or 2, the congruence is invalid. When d = p, we get

3 + 2p ≡ 0 (mod p2), which implies that p = 3. Therefore, from Equation (27), we

get

32(1 + 3 + 32 + · · ·+ 3a−1)− 2 · 3a = ℓ2 · 3a,

from which, after simplification, we obtain

9(3a − 1)

4 · 3a
− 1 = ℓ. (28)

For all a, except when a = 2, it is easy to see that the first term on the left side of

Equation (28) is not a natural number, which implies ℓ ̸∈ N. This is a contradiction.

When a = 2, it is clear that ℓ = 1. Therefore, when a = 2 and p = 3, it is easy to

see that 18 is a [1, 1]-near-perfect number. This proves the first statement.

Now we prove statement 2. When k > 1 in Equation (27), we have

1 + 2k − dk = 2ℓpa − (1 + 2k)(pk + p2k + · · ·+ pak) + 2k + pak.

As

2ℓpa − (1 + 2k)(pk + p2k + · · ·+ pak) + 2k + pak ≡ 0 (mod p2),
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this implies that 1 + 2k − dk ≡ 0 (mod p2). If p2 ∤ dk, then dk = 1 or 2k. In both

cases, the congruence is invalid. If p2|dk, then from Equation (27), we get 1+2k ≡ 0

(mod p2). Also, from Equation (27), it is easy to see that a is even when d is odd.

Table 2 gives a list of [k, ℓ]-near-perfect numbers of the form 2pa for k = 1, 3, 9, 10, 15.

k 1 + 2k n d ℓ
1 1 + 21 = 3 2 · 32 3 1
3 1 + 23 = 32 2 · 32 3 53

32 14
9 1 + 29 = 33 · 19 2 · 32 3 22083261

32 560994
9 1 + 29 = 33 · 19 2 · 33 2 · 3 144895263260

2 · 32 141222129692
10 1 + 210 = 52 · 41 2 · 52 5 1907548632833

2 200195333
15 1 + 215 = 32 · 11 · 331 2 · 32 3 11464517612333

32 26122187014

Table 2: [k, ℓ]-near-perfect numbers of the form 2pa.

Theorem 15. For a non-negative integer a, there is no near F -perfect number of

the form 2apb, when 2|b.

Proof. Let n = 2apb be a near F -perfect number where a, b ∈ N and b ≡ 0 (mod 2).

If p = 2, n is not a near F -perfect number by Theorem 1. Similarly, by using the

same theorem, we can show that n is not a near F -perfect number if a = 0 and

b ≥ 2. By Theorem 13, we can show that if a = 1 and b ≥ 1, then n is not a near

F -perfect number. Therefore, for an odd prime p, we consider n = 2apb to be a

near F -perfect number, where a > 1 and b ≥ 2 with 2|b. Since n is a near F -perfect

number, we have

σ2(2
apb)− 22ap2b − d2 = 3 · 2apb, (29)

where

σ2(2
apb) =

22(a+1) − 1

3
(1 + p2 + p4 + · · ·+ p2b). (30)

Since 2|b, from Equation (30), we see that σ2(2
apb) is odd. From Equation (29), it

is clear that the redundant divisor d is odd. Let d = pc, where 0 < c ≤ b. Then,

from Equation (29), we have

22a+2 − 1

3

p2b+2 − 1

p2 − 1
− 22ap2b − p2c = 3 · 2apb.
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Simplifying further, we obtain

22ap2b+2 + 3 · 22ap2b + 3 · 2apb − 32 · 2apb+2 − 22a+2 − p2b+2 < 3p2c+2,

which eventually reduces to

p2b+2(22a − 1) +A < 3p2c+2 + 22a+2, (31)

where

A = 3 · 22ap2b − 322apb+2 + 3 · 2apb.

Since pc ≤ pb and (22a − 1) > 3 for all a ≥ 2, we have

p2b+2(22a − 1) > 3p2c+2. (32)

For all b ≥ 2, we have p2b ≥ pb+2 and pb > 4. Therefore, 3p2b − 4 > 3pb+2 − pb.

Since for all a ≥ 2, we have 2a > 3. This implies,

2a(3p2b − 4) > 3(3pb+2 − pb).

On further simplification, we get

3 · 2ap2b − 2a+2 > 33pb+2 − 3pb,

which implies

3 · 22ap2b − 322apb+2 + 3 · 2apb > 22a+2.

Therefore, we see that

A > 22a+2. (33)

Thus, by using Equation (32) and (33), it is easy to see that Equation (31) leads to

a contradiction. Hence, we conclude that there is no near F -perfect number of the

form 2apb when 2|b.

Theorem 16. For any two odd primes p1 and p2, there is no deficient Fk-perfect

number of the form n = pa1p2, where a is a non-negative integer.

Proof. Let n = pa1p2 be a deficient Fk-perfect number. Using Definition 2, we have

(1 + pk1 + p2k1 + · · ·+ pak1 )(1 + pk2)− pak1 pk2 + dk = 3pa1p2. (34)

Since both p1 and p2 are odd, d is odd and therefore, the left side of Equation (34)

is even, but the right side of Equation (34) is odd. This is a contradiction.

Theorem 17. For any two odd primes p1 and p2, there are no near Fk-perfect

numbers of the form n = pa1p2, where a is a non-negative integer.
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The proof follows the same structure as the proof of Theorem 16, so we omit it

here.

Theorem 18. For a non-negative integer a, there is no deficient Fk-perfect number

of the form 2pa when k > 2 and p is an odd prime.

Proof. When a = 0, by Proposition 1 it is clear that n is not a deficient Fk-perfect

number. Let a > 1. When k = 2, it is clear from Theorem 12 that the only deficient

Fk-perfect number is 6. When k > 2, let n = 2pa be a deficient Fk-perfect number.

Using Definition 2, we have

(1 + 2k) + (1 + 2k)pk + · · ·+ (1 + 2k)pk(a−1) + pak + dk = 6pa.

When a ≥ 1 and k ≥ 3, as p ≥ 3, we have 1 + 2k + pak ≥ 36 and 6pa ≥ 18. This

implies that 1+2k+pak > 6pa. Therefore, 1+2k+pak−6pa > 1, which contradicts

(1 + 2k) + (1 + 2k)pk + · · ·+ (1 + 2k)pk(a−1) + pak + dk − 6pa = 0

for all values of d. Therefore, we conclude that there is no deficient Fk-perfect

number of the form 2pa when k > 2 and p is an odd prime.

Theorem 19. For natural numbers a and b, and odd primes p1 and p2, there is no

odd deficient Fk-perfect number of the form n = pa1p
b
2 when a + b ≡ 1 (mod 2) or

both a and b are odd.

Proof. Let n = pa1p
b
2 be an odd deficient Fk-perfect number, where a+b ≡ 1 (mod 2)

or both a, b ≡ 1 (mod 2). Here, p1 and p2 are odd primes, with a, b ∈ N. Using

Definition 2, we get

σk(p
a
1p

b
2)− pka1 pkb2 + pka1

1 pkb12 = 3pa1p
b
2. (35)

Where d = pa1
1 pb12 , and a1 ≤ a, b1 ≤ b, and a1 + b1 < a+ b. The condition a+ b ≡ 1

(mod 2) leads to two possibilities, either a ≡ 1 (mod 2) and b ≡ 0 (mod 2), or

a ≡ 0 (mod 2) and b ≡ 1 (mod 2). When a ≡ 1 (mod 2) and b ≡ 0 (mod 2), we

have

σk(p
a
1p

b
2) = (1+ pk1 + p2k1 + p3k1 · · ·+ pka1 )(1+ p22 + p2k2 + p3k2 · · ·+ pkb2 ) ≡ 0 (mod 2).

This implies that the left side of Equation (35) is even and the right side of Equation

(35) is odd, which is not possible. Therefore, this leads to a contradiction. In the

same way, we can prove for a ≡ 0 (mod 2) and b ≡ 1 (mod 2), and a, b ≡ 1

(mod 2).

Theorem 20. For natural numbers a and b and odd primes p1 and p2, there is no

odd near Fk-perfect number of the form n = pa1p
b
2 where a + b ≡ 1 (mod 2) or if

both a and b are odd.
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The proof follows the same structure as the proof of Theorem 19, so we omit it

here.

Theorem 21. For m > 0 and 1 ≤ i ≤ m, there is no deficient Fk-perfect number

of the form n = p1p2p3 · · · pm, where the pi’s are odd primes.

Proof. Let n = p1p2p3 · · · pm be a deficient Fk-perfect number, where the pi’s are

odd primes and m > 0. When m = 1, it is clear from Proposition 1 that n is not a

deficient Fk-perfect number. Therefore, let m > 1, from which we know that

σk(p1p2p3 · · · pm) = (1 + pk1)(1 + pk2)(1 + pk3) · · · (1 + pkm). (36)

From Definition 2, we have

(1 + pk1)(1 + pk2)(1 + pk3) · · · (1 + pkm)− pk1p
k
2p

k
3 · · · pkm − dk = 3p1p2p3 · · · pm. (37)

Thus, it is clear that σk(p1p2p3 · · · pm) is even in Equation (36). This implies that

the left side of Equation (37) is even. However, the right side of Equation (37) is

odd, leading to a contradiction.

Theorem 22. For m > 0 and 1 ≤ i ≤ m, there is no linear near Fk-perfect number

of the form n = p1p2p3 · · · pm, where the pi’s are odd primes.

The proof follows the same structure as the proof of Theorem 21, so we omit it

here.

4. Concluding Remarks

In this paper, the concept of F -perfect numbers is extended to two new types of

numbers called near and deficient F -perfect numbers. These numbers are char-

acterized and further generalized to near and deficient Fk-perfect numbers, whose

properties are explored. Finally, we further generalized these numbers to [k, l]-near

and [k, l]-deficient-perfect numbers and we characterized these numbers having one

and two prime factors. Further work may focus on determining bounds for these

numbers and characterizing [k, l]-near (deficient)-perfect numbers with more than

two prime factors.
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