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Abstract

We show that there are infinitely many odd integers n such that the sum of the
first n nonzero Fibonacci numbers is divisible by n. This resolves a conjecture of
Fatehizadeh and Yaqubi.

1. Introduction

In a 2022 paper in the Journal of Integer Sequences [1], the authors propose the

following conjecture on the divisibility of sums of Fibonacci numbers by their index.

Conjecture 1. There are infinitely many odd integers n that divide the sum of

the first n nonzero Fibonacci numbers.

The primary purpose of this note is to provide a complete and affirmative resolu-

tion to this conjecture. We do so by constructing an explicit, infinite family of odd

integers that satisfy the required divisibility property. Our main theorem (Theorem

2) demonstrates that integers of the form Fn with n = 2p or n = 4p for a specific

class of primes p, fulfill the conditions of the conjecture. We additionally mildly

strengthen and reprove several results of [1].

Our proof is based on studying those indices n for which Fn divides
∑Fn

i=1 Fi.

We refer to the resulting sequence as the self-summable Fibonacci numbers. To our

knowledge, this sequence did not previously appear in the literature or in the Online

Encyclopedia of Integer Sequences [6]. It has since been added and now appears as

A383021. The subsequence such that Fn is odd is A381053.

We comment briefly on some related work. There is the aforementioned [1],

which resolved the problem in the even case, by proving that

3 · 2n+3 |
3·2n+3∑
i=1

Fi.
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Kr̆́ız̆ek and Somer [3] extended many of their results to more general second-order

recurrences.

A similar sequence, consisting of those integers n such that n | Fn, has been

considered by several authors [4, 7, 8] and has been called the self-Fibonacci numbers

and appears as sequence A023172 in the OEIS [6].

For clarity, we briefly recall notation. The nth Fibonacci number is denoted by

Fn, where the Fibonacci sequence is taken to start at 1, i.e., F1 = 1 and F2 = 1 so

that the sequence begins 1, 1, 2, 3, 5, . . . . The Pisano period of n is denoted π(n);

this is the period with which the sequence of Fibonacci numbers, taken modulo n,

repeats. The sum of the first n Fibonacci numbers is denoted Sn, i.e.,

Sn =
n∑

i=1

Fi

For more about the Fibonacci sequence, we refer the reader to [2].

Finally, the remainder of this paper is structured as follows. In Section 2, we

establish foundational results concerning sums of Fibonacci numbers, including the

crucial identity Sn = Fn+2 − 1. We use this to show that the conjecture does not

hold for prime indices. In Section 3, we introduce the concept of self-summable

Fibonacci numbers and present our main theorem, which provides a constructive

proof of Conjecture 1.

2. Sums of Fibonacci Numbers

This section establishes foundational properties of sums of Fibonacci numbers that

are essential for our main argument. We begin by proving the identity Sn = Fn+2−
1, which provides a closed form for the sum. Using this result, we analyze the

divisibility of Sp for prime indices and establish a stronger version of [1, Theorem

12]: whereas the original theorem states that p ∤ Sp for any odd prime p, our result

further determines the exact value of Sp mod p. This analysis demonstrates that

no prime index satisfies the conjecture’s condition.

Proposition 1. Let n ∈ N. Then

Sn = Fn+2 − 1.

Proof. The proof is a straightforward induction. For the base case,

S1 = 1 = 2− 1 = F3 − 1.

Then, by induction, suppose

Sn = Fn+2 − 1.
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We have that

Sn+1 = Sn + Fn+1 = Fn+2 + Fn+1 − 1 = Fn+3 − 1

as desired, where we have used Fn+2 + Fn+1 = Fn+3.

As mentioned before, we can now prove a stronger version of [1, Theorem 12]

with a shorter proof using the Binet formula.

Theorem 1. Let p > 5 be a prime number. Then

Sp ≡

{
3 mod p if p ≡ 1, 4 mod 5.

1 mod p if p ≡ 2, 3 mod 5.

In particular, Sp is not divisible by p.

Proof. Recall the Binet formula which states that

Fn =
ϕn − ϕ

n

√
5

where

ϕ =
1 +

√
5

2
, ϕ =

1−
√
5

2
.

Now, rearranging

Fp+2 =
ϕp+2 − ϕ

p+2

√
5

one can directly compute Fn+2 as

2p+1Fp+2 =

p+1
2∑

k=0

(
p+ 2

2k + 1

)
5k.

It follows from Fermat’s little theorem that

2p+1 ≡ 4 mod p.

The binomial coefficients are divisible by p except for k = 0, p−1
2 and p+1

2 . Therefore

one has

4Fp+2 ≡
(
p+ 2

1

)
5 +

(
p+ 2

p

)
5

p−1
2 +

(
p+ 2

p+ 2

)
5

p+1
2 mod p

Finally, this simplifies to

4Fp+2 ≡ 10 +

(
5

p

)
+ 5

(
5

p

)
mod p
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using the identity

5
p−1
2 ≡

(
5

p

)
mod p

where
(

5
p

)
is the quadratic residue of 5 modulo p. Finally we know that

(
5

p

)
≡

{
1 mod p if p ≡ 1, 4 mod 5

−1 mod p if p ≡ 2, 3 mod 5

The conclusion follows by applying Proposition 1 and computing Fn+2−1 = Sn.

The remaining cases can be computed by hand:

S3 ≡ 1 mod 3, S5 ≡ 2 mod 5.

Remark 1. The natural approach to Conjecture 1 is to attempt to extend the

strategy used for the proof of Theorem 1 from primes to semiprime numbers n = pq,

via the theorem of Lucas on prime divisors of binomial coefficients [5]. However,

this strategy rapidly becomes combinatorially intractable. One may also attempt

to approach this problem via the Pisano periods of p and q and the work of [9].

This succeeds in producing sufficient (but not necessary) conditions on such primes

p, q in terms of simultaneous equations in modular arithmetic. However, it is not

clear how to prove the infinitude of solutions to such equations using modern tools

of number theory. Solving such linear Diophantine equations with prime solutions

may become more tractable in the future thanks to recent advances in the field [10].

3. Resolution of Conjecture 1

In this section, we prove Conjecture 1. Our strategy is to reframe the problem.

Instead of directly finding odd integers n that satisfy the conjecture’s condition, we

first introduce a new sequence of what we call self-summable Fibonacci numbers.

These are indices k that satisfy the condition that the corresponding Fibonacci

number Fk divides the sum of the first Fk Fibonacci numbers. Our main theorem

then provides an explicit construction of numbers n for which Fn is both odd and

self-summable.

The proof of this result relies on the periodicity of the Fibonacci sequence in

modular arithmetic. We first establish a key proposition about the Pisano period,

namely that for an even integer n, π(Fn) divides 2n. This allows us to reduce the

nested self-summable condition to a much simpler modular congruence that can be

solved directly.

Definition 1. We say an integer k is a self-summable Fibonacci number if Fk |∑Fk

i=1 Fi.
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Remark 2. It follows from Proposition 1 that the self-summable Fibonacci numbers

are the integers k such that Fk | (FFk+2 − 1). We note that the self-summable

Fibonacci numbers are precisely the indices corresponding to the subsequence of

OEIS A124456 [6] that consists of Fibonacci numbers. The first terms are

1, 2, 3, 12, 24, 34, 36, 46, 48, 60, 68, 72, 92, 94, 96, 106, . . .

For some of the terms k of this sequence, the corresponding Fibonacci number Fk

is odd. The first such terms are:

1, 2, 34, 46, 68, 92, 94, 106, 166, 188, 212, 214, 226, 274, . . .

We now show that one can explicitly describe a subsequence of the self-summable

Fibonacci numbers where Fn is odd.

Theorem 2. Let n = 2p or n = 4p, where p is an odd prime such that

p ≡ 2 mod 3 and p ≡ ±2 mod 5.

Then

Fn ≡ 1 mod 2 and FFn+2 − 1 ≡ 0 mod Fn.

The strategy behind this proof is essentially repeated use of the periodicity of

Fibonacci numbers mod m, along with some explicit computation of relevant Pisano

periods.

Remark 3. In private correspondence, F. Luca has also pointed out to us that this

theorem can also be proven via the identity

Fa − Fb =

{
FuLv if a ≡ b mod 4

FvLu if a ≡ b+ 2 mod 4

where (u, v) =
(
a−b
2 , a+b

2

)
and Lv is the vth Lucas number.

To prove this result, we first establish the following helpful proposition about

the Pisano period of Fibonacci numbers, which may be of independent interest.

Although this result seems likely to exist in the literature, we were unable to locate

a reference, and the associated sequence does not appear in the OEIS at the time

of writing.

Proposition 2. Let n > 1 and 2 | n. Then π(Fn) | 2n.

Proof. The fact that the Fibonacci numbers form a strong divisibility sequence and

that n | 2n implies that Fn | F2n. It therefore suffices to establish that

Fn | (F2n+1 − 1).
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By the addition rule for Fibonacci numbers, we can establish

F2n+1 = Fn+(n+1) = F 2
n + F 2

n+1.

Therefore, it suffices to show that

Fn | (F 2
n+1 − 1).

By Cassini’s Identity, F 2
n+1 − FnFn+2 = (−1)n, we get

F 2
n+1 ≡ (−1)n mod Fn.

When n is even, (−1)n = 1, and therefore

F 2
n+1 ≡ 1 mod Fn,

which implies that Fn | (F 2
n+1 − 1). This completes the proof.

The following immediate corollary of Proposition 2 is likely well-known to experts

but we could not locate it in the literature.

Corollary 1. One has

lim
N→∞

min

{
π(n)

n
: n ∈ N, n < N

}
= 0.

Proof. Clearly,

min

{
π(n)

n
: n ∈ N, n < FM + 1

}
<

π(FM )

FM
.

For an even M , by Proposition 2 we have π(FM ) | 2M , so

π(FM )

FM
≤ 2M

FM
.

The right-hand side of the inequality goes to 0 as M → ∞.

We are now ready to prove our main result.

Proof of Theorem 2. The conclusion that Fn is odd for n = 2p or n = 4p (with

p ≡ 2 mod 3) follows from the fact that Fk is odd if and only if k ̸≡ 0 mod 3. In

our case, n is not divisible by 3, so Fn is odd.

To prove that FFn+2−1 ≡ 0 mod Fn, we shall use the periodicity of the Fibonacci

numbers mod Fn. We consider first the case n = 2p. By the definition of the

Pisano period, FFn+2 ≡ Fk mod Fn for any k such that Fn + 2 ≡ k mod π(Fn). In

particular, as π(Fn) | 2n by Proposition 2, one may choose any k such that

Fn + 2 ≡ k mod 2n.
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We are interested in the case where this congruence results in Fk = 1, which occurs

for k = 1 or k = 2. If we can show Fn + 2 ≡ 1 or 2 mod 2n, then FFn+2 − 1 ≡
Fi − 1 ≡ 1− 1 ≡ 0 mod Fn where i ∈ {1, 2}. This requires us to establish that

Fn ≡ −1 or 0 mod 2n. (1)

Note that for n = 2p, π(2n) = π(4p). By the known divisibility relation for Pisano

periods [9] and the fact π(4) = 6, we have π(4p) = lcm(π(4), π(p)) = lcm(6, π(p)).

Next, we apply a result from Wall [9], which states that when p ≡ ±2 mod 5,

one has π(p) | 2(p + 1). The integer p + 1 is divisible by 2 (since p is odd) and by

3 (since p ≡ 2 mod 3). Thus 6 | (p + 1), and we can conclude that π(p) | 2(p + 1).

This implies π(2n) = lcm(6, π(p)) also divides 2(p+ 1).

It therefore follows from the periodicity of the Fibonacci sequence mod 2n that

Fn ≡ Fk′ mod 2n for any k′ ≡ n mod 2(p+ 1). Now,

n ≡ 2p ≡ −2 mod 2(p+ 1).

Thus, Fn ≡ F−2 mod 2n. Since F−2 = −1, we have Fn ≡ −1 mod 2n.

This satisfies Equation (1), completing the proof for n = 2p. A similar argument

goes through for n = 4p.

Conjecture 1 follows as a simple corollary of Theorem 2.

Corollary 2. There are infinitely many odd integers k such that k divides the sum

of the first k Fibonacci numbers.

Proof. By Dirichlet’s theorem on primes in arithmetic progressions, there are in-

finitely many prime numbers satisfying the conditions of Theorem 2. For each such

prime p, Theorem 2 ensures that, for n = 2p and n = 4p, the corresponding Fi-

bonacci number Fn is an odd integer satisfying the required divisibility property,

Fn |
∑Fn

i=1 Fi. This construction therefore yields an infinite set of distinct odd

integers that satisfy the condition of the conjecture.
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