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Abstract

We study the number of monochromatic solutions to linear equations in {1, . . . , n}
when we color the set by at least three colors. We consider the r-commonness for
r ≥ 3 of linear equations with an odd number of terms and also prove that any
2-uncommon equation is r-uncommon over the integers for any r ≥ 3.

1. Introduction

1.1. Background and Motivation

In 1996, Graham, Rödl, and Ruciński [4] asked about the minimum number of

monochromatic solutions to the Schur equation x + y = z with (x, y, z) ∈ [n]3,

where the set [n] := {1, . . . , n} is 2-colored. Robertson and Zeilberger [5] showed

that the minimum number of monochromatic Schur triples in a 2-coloring of [n] is

asymptotically n2/11+O(n). This is less than (1/8+o(1))n2, which is the expected

number of monochromatic solutions under uniformly random 2-colorings.

One can ask a similar question for more general linear equations

a1x1 + · · ·+ akxk = 0, a1, . . . , ak ∈ Z\{0}, k ∈ Z≥3.

This problem has been studied for several linear equations, including generalized

Schur triples, K-term arithmetic progressions, and constellations. In fact, it still

remains unknown which linear equations have uniformly random 2-colorings that

asymptotically minimize the number of monochromatic solutions.

We define a k-term linear equation to be 2-common over the integers if any 2-

coloring of [n] has at least as many monochromatic solutions asymptotically (as

n → ∞) as uniformly random colorings. Otherwise, we say that the equation is 2-

uncommon over the integers. More generally, if we change 2 to any positive integer
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r greater than 1, we can define linear equations to be r-common over the integers

in a similar fashion.

Recently, Costello and Elvin [1] showed that all 3-term equations are 2-uncommon

over the integers. In the same paper, they conjectured that an equation is 2-common

over the integers if and only if the number of terms is even and the equation has a

canceling partition. We say that the linear equation

a1x1 + · · ·+ akxk = 0 (1)

has a canceling partition if we can partition the coefficients into pairs {ai, aj} such

that ai + aj = 0. Clearly, if a canceling partition exists, then k must be even.

More recently, Dong, Mani, Pham, and Tidor [2] showed that the conjecture is

false by showing that the linear equation x1 + 2x2 − x3 − 2x4 = 0 is 2-uncommon

over the integers. The case when the number of terms in Equation (1) is odd and

at least five still remains unknown.

While commonness over the integers is still a mystery, Versteegen [8] proved that

an equation is 2-uncommon over a finite abelian group G, with the order of G

coprime to every coefficient of the equation if and only if k is even and the equation

has no canceling partition. This generalizes the result of [3], where the same result

over finite fields was proved. See also [6] for an introduction to the topic.

We also note that another motivation for considering r-commonness of a linear

equation is because of the Sidorenko property of an equation, which was first intro-

duced in [6]. The notion is inspired by Sidorenko’s conjecture on graphs [7], which is

still a major open problem in extremal graph theory. We recall the definition here.

Given a linear equation L : a1x1 + · · · + akxk = 0 over a finite abelian group G, if

C(L) denotes the number of solutions of L = 0 in Gk, we say that L is Sidorenko in

G if for every A ⊆ G we have

tL(1A) ≥
(
|A|
|G|

)k

where 1A is the indicator function of A and

tL(1A) :=
1

|C(L)|
∑

v∈C(L)

k∏
i=1

1A(vi).

Clearly, if an equation is Sidorenko over G, then it is r-common for every r ≥ 2.

The results for finite fields are given in [3], and for general finite abelian groups

in [8]. One can think of the notion of r-commonness for r ≥ 3 as being the case

between Sidorenko and 2-common, which is often referred to simply as ‘common’

in the existing literature.
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1.2. Main Results

We now explore the phenomenon of r-commonness for linear equations with r ≥ 3.

We first consider the r-commonness over the integers for k-term linear equations

where k > 1 is an odd positive integer and r > 2. This problem is easier than in the

case of 2-commonness. In fact, all such equations are r-uncommon over the integers

as a corollary of the following theorem, whose proof will appear in Section 3.

Theorem 1. Let G be an arbitrary nontrivial finite abelian group and let E be

an arbitrary linear equation a1x1 + · · · + a2m+1x2m+1 = 0 such that ai ∈ Z\{0}
for each i = 1, . . . , 2m + 1 with m ≥ 1. Assume |G| is coprime to each ai for

i = 1, . . . , 2m+ 1. Then the equation E is r-uncommon over G for every r ≥ 3.

Corollary 1. Let m ≥ 1 be an integer and let E be a (2m + 1)-linear equation

a1x1 + · · ·+ a2m+1x2m+1 = 0, where ai ∈ Z\{0} for each i = 1, . . . , 2m+ 1. Then

E is r-uncommon over the integers for every r ≥ 3.

Next, we consider the case where the number of terms in the equation is even. As

mentioned, it is known from [8] that every equation that has no canceling partition

is 2-uncommon over an abelian group G, provided the order of G is coprime to

every ai. In particular, by Lemma 1, such an equation is 2-uncommon over the

integers. As noted earlier, we have that the equation x1 + 2x2 − x3 − 2x4 = 0 is

2-uncommon over the integers. We have that these equations are also r-uncommon,

using a different proof method than in Corollary 1, as shown in Section 3.

Theorem 2. Let k ≥ 3 and let E be a 2-uncommon equation over the integers

a1x1 + · · · + akxk = 0 with ai ∈ Z\{0} for each i = 1, . . . , k. Then the equation is

also r-uncommon over the integers for any r ≥ 3.

Corollary 2. Every linear equation a1x1 + · · · + a2mx2m = 0,m ≥ 2, that has no

canceling partition is r-uncommon over the integers for any r ≥ 2. The same is

true for the equation x+ 2y − z − 2w = 0.

2. Notation and Conventions

We now introduce some notation that we will use throughout this paper. We write

f = O(g) or f ≪ g if there exists a constant C such that |f | ≤ Cg. We denote a

prime number by p, and a cyclic group of order ℓ is denoted by Z/ℓZ where ℓ > 1 is

a positive integer. Let f, g : G → [0, 1], which we interpret as probabilistic colorings

via

f(t) = P[t is the first color]

g(t) = P[t is the second color].
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One may think that we use red, green, and blue as colors, with red being the

first color, green the second color, and blue the third color. We define the Fourier

transform of f , denoted by f̂ , by

f̂(ξ) :=
1

|G|
∑
t∈G

f(t) e(−ξ · t)

where e(x) = e2πix and ξ is a homomorphism from Ĝ to R/Z acting as ξ : t 7→
ξ · t. Here Ĝ denotes the dual group of G, which is isomorphic to G. The Fourier

transform of g, denoted by ĝ, is defined similarly to f̂ .

We can write the expected number of red solutions of a1x1+· · ·+a2m+1x2m+1 = 0

over G in terms of Fourier transforms:

E[number of red solutions] = |G|2m
∑
t∈G

f̂(a1t) . . . f̂(a2m+1t).

Note that the formula above holds only if at least one of a1, . . . , a2m+1 is coprime to

|G|, which we always assume. The expected proportion of monochromatic solutions

in G is given by

µa1x1+···+a2m+1x2m+1=0(f, g)

=
∑
t∈G

f̂(a1t) . . . f̂(a2m+1t) +
∑
t∈G

ĝ(a1t) . . . ĝ(a2m+1t)

+
∑
t∈G

( ̂1− f − g)(a1t) . . . ( ̂1− f − g)(a2m+1t).

(2)

3. Linear Equations That Are r-Uncommon

We begin by proving Theorem 1. Corollary 1 follows from Theorem 1 and the

following lemma, which appears as [1, Lemma 2.1]. For an arbitrary set S and an

arbitrary linear equation E : a1x1 + · · · + akxk = 0, we denote by µ(S) to be the

proportion of the minimum number of monochromatic solutions relative to the total

number of solutions of E in Sk.

Lemma 1. Let E be a linear equation a1x1+ · · ·+a2m+1x2m+1 = 0. Then we have

lim sup
n→∞

µE([n]) ≤ µE(Z/ℓZ)

for any positive integer ℓ.

We now proceed to the proof of Theorem 1.

Proof of Theorem 1. Let E be a linear equation a1x1+ · · ·+a2m+1x2m+1 = 0 where

ai ∈ Z\{0}. We first prove that the equation is 3-uncommon and then show that it
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is also r-uncommon for any r > 3 by generalizing the case where r = 3. We need

to find f and g such that the quantity in (2) is less than 1
32m . But we have

µa1x1+···+a2m+1x2m+1=0(f, g)

=
1

32m
+

∑
t∈G\{0}

f̂(a1t) . . . f̂(a2m+1t) +
∑

t∈G\{0}

ĝ(a1t) . . . ĝ(a2m+1t)

+
∑

t∈G\{0}

( ̂1− f − g)(a1t) . . . ( ̂1− f − g)(a2m+1t)

=
1

32m
+

∑
t∈G\{0}

f̂(a1t) . . . f̂(a2m+1t) +
∑

t∈G\{0}

ĝ(a1t) . . . ĝ(a2m+1t)

+
∑

t∈G\{0}

(−f̂ − ĝ)(a1t) . . . (−f̂ − ĝ)(a2m+1t).

The last equality follows from the fact that for s ̸= 0, we have (1̂− f)(s) = −f̂(s).

We refer to the quantity∑
t∈G\{0}

f̂(a1t) . . . f̂(a2m+1t) +
∑

t∈G\{0}

ĝ(a1t) . . . ĝ(a2m+1t)

+
∑

t∈G\{0}

(−f̂ − ĝ)(a1t) . . . (−f̂ − ĝ)(a2m+1t)

as the deviation.

We assume without loss of generality that f̂(0) = ĝ(0) = 1
3 , which is equivalent to

requiring that red, green, and blue appear with equal overall probability. To ensure

that the proportion is less than that of a uniformly random coloring, it suffices to

find f and g such that f̂(0) = ĝ(0) = 1
3 and the deviation is negative. Therefore, it

is enough to find f and g such that f̂(0) = ĝ(0) = 1
3 and∑

t∈G\{0}

f̂(a1t) · · · f̂(a2m+1t) +
∑

t∈G\{0}

ĝ(a1t) · · · ĝ(a2m+1t)

+
∑

t∈G\{0}

(−f̂ − ĝ)(a1t) · · · (−f̂ − ĝ)(a2m+1t) < 0.

By Fourier inversion, f and g are uniquely determined by their Fourier coef-

ficients. First, we note that f and g are real-valued if and only if f̂ and ĝ are

Hermitian, i.e., f̂(s) = f̂(−s) and ĝ(s) = ĝ(−s). So we need to ensure this condi-

tion holds for f̂ and ĝ. Second, we need to make sure that the ranges of f and g

are subsets of [0, 1]. To do this, we use the Fourier inversion formula

f(u) =
∑
ξ∈Ĝ

f̂(ξ) e(ξ · u), u ∈ G
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where we again use e(x) = e2πix. By the triangle inequality, we have

|f(u)− 1/3| ≤
∑

t∈G\{0}

|f̂(t)|. (3)

By the same calculation, we also have

|g(u)− 1/3| ≤
∑

t∈G\{0}

|ĝ(t)|. (4)

With these observations, we now construct f and g explicitly as follows.

We define f by setting

f̂(s) = − 2

p2
, s ∈ G\{0}

and g by setting

ĝ(s) =
1

p2
, s ∈ G\{0}

We can take a prime p such that p > |ai| and gcd(ai, p) = 1 for each i = 1, . . . , 2m+1,

with

0 ≤ 1

3
− 2(p− 1)

p2
=

1

3
−

∑
t∈G\{0}

|f̂(t)| ≤ f(u)

≤ 1

3
+

2(p− 1)

p2
=

1

3
+

∑
t∈G\{0}

|f̂(t)| ≤ 1

and

0 ≤ 1

3
− (p− 1)

p2
=

1

3
−

∑
t∈G\{0}

|ĝ(t)| ≤ g(u)

≤ 1

3
+

(p− 1)

p2
=

1

3
+

∑
t∈G\{0}

|ĝ(t)| ≤ 1.

for any u ∈ G. The above inequalities follow from Inequalities (3) and (4) and the

specific values of f̂ and ĝ. These ensure that the images of f and g lie in [0, 1]. We

also remark that f̂ and ĝ are Hermitian since f̂ and ĝ are real-valued and both take

only one value except at zero.

We also require that 0 < f(u)+g(u) < 1 for any u ∈ G, which can be guaranteed

by taking p sufficiently large such that

0 <
2

3
− 3(p− 1)

p2
<

2

3
+

3(p− 1)

p2
< 1.
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Recalling the Fourier coefficients of f and g again, we find that the deviation is

−
(

2

p2

)2m+1

+

(
1

p2

)2m+1

+

(
1

p2

)2m+1

< 0. (5)

Therefore, every linear equation with 2m+ 1 terms is 3-uncommon.

To show that those equations are also r-uncommon for r > 3, we need to construct

r − 1 functions f1, . . . , fr−1 such that the deviation is negative. We generalize the

construction used for the case r = 3. As in the case when r = 3, for r > 3 we

require that f̂j(0) = 1
r for every j ∈ {1, . . . , r − 1}. Now we assign the values of

their Fourier coefficients as follows. For j = 1, 2, we have

f̂1(s) = − 2

p2
, s ∈ G\{0},

f̂2(s) =
1

p2
, s ∈ G\{0}.

where p is a sufficiently large prime number in terms of a1, . . . , a2m+1, and also in

terms of r so that 0 ≤ fj(u) ≤ 1, u ∈ G, j = 1, 2.

Then we define f̂j(s) = 0 for any j = 3, . . . , r−1 and any s ∈ G\{0}. Clearly, we
have that each f̂j is Hermitian and fj(u) ∈ [0, 1] for any u ∈ G and any j = 1, . . . , r−
1. By performing similar calculations to the case where r = 3, we also get that the

deviation is negative, and we can choose p such that 0 < f1(u) + · · ·+ fr−1(u) < 1

for any u ∈ G. This concludes the proof of Theorem 1.

Remark 1. We note that if we choose a sufficiently large p, although the deviation

in (5) is negative, it becomes negligible and the quantity is much smaller compared

to the size of the group G. It would be interesting to obtain such an r-uncommon

coloring explicitly.

To prove Theorem 2, we use the probabilistic method instead of using the Fourier

method.

Proof of Theorem 2. We claim that if an equation is (r − 1)-uncommon over the

integers, then it is also r-uncommon over the integers for any r ≥ 3. This clearly

implies the statement of the theorem.

Note that the total number of solutions with xi = xj for some i ̸= j is O(nk−1).

Thus, for large n, such solutions are negligible. Thus, we can focus on solutions

with pairwise distinct coordinates.

Now, let (x1, . . . , xk) be a solution of our linear equation in [n]k with xi ̸= xj

for i ̸= j, and let n be a sufficiently large integer such that the equation E is 2-

uncommon over [n]. We consider an (r−1)-coloring of [n] under which the equation

is (r − 1)-uncommon. We choose ⌊n
r ⌋ elements of [n] uniformly at random, then

we color those elements with the r-th color. Then if (x1, . . . , xk) is monochromatic
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under the original coloring and xi ̸= xj for i ̸= j, the probability that it will be

monochromatic in the same color is(
r − 1

r

)k

.

If (x1, . . . , xk) is an arbitrary solution, it becomes monochromatic in the r-th color

with probability (
1

r

)k

.

Since the equation is (r − 1)-uncommon, the expected proportion of monochro-

matic solutions under r colors is less than(
r − 1

r

)k
1

(r − 1)k−1
+

(
1

r

)k

=

(
1

r

)k−1

.

Hence, there is an r-coloring of [n] such that the equation E is r-uncommon.

Since we started with an equation that is (r−1)-uncommon, we get the result.

4. Open Problem

Costello and Elvin [1] used the Fourier method to show that equations of the form

x1 + · · ·+ xm = xm+1 + · · ·+ x2m (6)

are 2-common over the integers for anym ≥ 2. While we proved that 2-uncommonness

implies r-uncommonness for all r ≥ 3, it is unknown whether 2-commonness implies

r-commonness for r ≥ 3. Even in the simplest case where m = 2 in (6), we are not

yet able to determine whether it is 3-common or not.

This motivates the following question.

Question 1. Is there a linear equation that is r-uncommon for some r ≥ 3 but

s-common for some s < r?

We are particularly interested in equations with canceling partitions that are

2-common over the integers, since these remain poorly understood.
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