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Abstract

Let f ∈ Fq[T ] be a monic polynomial over the finite field Fq of q elements and let
k ≥ 1 be a natural number. Following the work of Das, Elma, Kuo, and Liu, let
ωk(f) be the number of distinct monic irreducible factors of f with multiplicity
k. We study the distribution of ωk in Fq[T ] when restricted to h-free polynomials
and h-full polynomials. We show that a generalization of the Erdős–Kac Theorem
restricted to the h-free polynomials is true for ω1, but not for ωk for 2 ≤ k < h,
and similarly, a generalization of the Erdős–Kac Theorem restricted to the h-full
polynomials is true for ωh, but not for ωk for k ≥ h+ 1.

1. Introduction

Let Fq be the finite field of q elements, where q is a prime power. For f ∈ Fq[T ], let

f = αP v1
1 · · ·P vr

r (1)

be its prime factorization, where Pj ∈ Fq[T ] is monic irreducible, vj ≥ 1, and

α ∈ F∗
q .

Let h ≥ 2 be a natural number. We say that f ∈ Fq[T ] is h-free if vj < h for

j = 1, . . . , r in Equation (1). Analogously, we say that f is h-full if vj ≥ h for

j = 1, . . . , r in Equation (1). Notice that for h = 2, we obtain the square-free and

the square-full polynomials respectively. We denote by Sh and by Nh the sets of

h-free and h-full polynomials respectively.
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The number of distinct prime divisors is given by ω(f) := r. The distribution of

values of ω has been extensively studied over the natural numbers. In 1940, Erdős

and Kac famously proved that, for n a natural number, ω(n) has a limiting normal

distribution in the sense that

lim
x→∞

1

x

∣∣∣∣∣
{
3 ≤ n ≤ x : α ≤ ω(n)− log log(n)√

log log(n)
≤ β

}∣∣∣∣∣ = 1√
2π

∫ β

α

e−t2/2dt.

Various approaches to the Erdős and Kac Theorem have been pursued; see for

example the works of Delange [5, 6], Halberstam [9], Billingsley [2], and Granville

and Soundararajan [8].

The function field version of the Erdős–Kac Theorem was settled by W.-B. Zhang

[18], namely, if we let Mn denote the monic polynomials of Fq[T ] of degree n, then

lim
m→∞

∣∣∣∣{f ∈ Mn : n ≤ m,α ≤ ω(f)−log(n)√
log(n)

≤ β

}∣∣∣∣
|{f ∈ Mn : n ≤ m}|

=
1√
2π

∫ β

α

e−t2/2dt.

This was then generalized by Liu [12, 13]. Rhoades [15] gave another proof, extend-

ing the methods of Granville and Soundararajan [8] to the function field setting.

It is also interesting to pose the question of whether the Erdős–Kac Theorem

extends to subfamilies. Laĺın and X. Zhang [11] proved the corresponding gener-

alizations to the Erdős–Kac Theorem for h-free and h-full monic polynomials over

Fq[T ], by the method of moments. It is remarkable that, while a positive proportion

of monic polynomials of a certain degree are h-free, and this proportion remains

positive as the degree goes to infinity, the same is not true for h-full polynomials,

which constitute a thin family as the degree goes to infinity. Therefore, the analogue

to the Erdős–Kac Theorem is more surprising in this context.

In [7], Elma and Liu considered a refinement of ω(n) as follows. For k ≥ 1 a

natural number, let ωk(n) denote the number of distinct prime factors of n with

multiplicity k. They computed the first and second moments of ωk(n), proved the

analogue of the Erdős–Kac Theorem for ω1(n), and showed that ωk(n) for k ≥ 2

does not have normal order F (n) for any nondecreasing nonnegative function F (n).

This work was subsequently extended by Das, Elma, Kuo, and Liu [3] to the function

field setting.

The goal of this manuscript is to explore the refined functions ωk(f) in the

case of the h-free and h-full families of monic polynomials in Fq[T ]. As one may

expect from the above discussion, we obtain that ω1(f) satisfies a limiting normal

distribution over the h-free polynomials, while ωk(f) for 2 ≤ k < h does not. For

the h-full polynomials, we have that ωh(f) satisfies a limiting normal distribution,

while ωk(f) for k ≥ h + 1 does not. (In the h-free case, ωk(f) is trivial for k ≥ h

while in the h-full case, ωk(f) is trivial for k < h.)

We adopt the following notation. Let M and Mn denote the sets of monic

polynomials of Fq[T ] and monic polynomials of degree n respectively. We let
∑

P
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and
∏

P denote the sum and product over all monic irreducible polynomials in

Fq[T ]. For a polynomial F (T ) ∈ Fq[T ], the quantity |F (T )| := qdeg(F ) denotes its

norm or absolute value, and we set |0| := 0. We denote by ζq(s) the zeta function

associated to Fq[T ], defined precisely in Equation (10).

Define

B1 = γ +
∑
P

(
log

(
1− 1

|P |

)
+

1

|P |

)
to be the function field analogue of the first Mertens constant, where

γ = lim
n→∞

(
n∑

k=1

1

k
− log(n)

)
≈ 0.57721566 . . .

is the Euler–Mascheroni constant. The Mertens constant B1 appears in estimates

for
∑

n≤x ω(n). See [10, Theorem 430].

For f ∈ M and P ∈ P, let νP (f) be the multiplicity of P in the factorization of

f , that is, νP (f) is the integer such that P νP (f) | f but P νP (f)+1 ∤ f (this includes

the possibility of νP (f) = 0 when P ∤ f). We have that

ω(f) =
∑
P |f

1.

For a natural number k ≥ 1, we define

ωk(f) :=
∑
P |f

νP (f)=k

1.

Clearly we have

ω(f) =
∑
k≥1

ωk(f).

In [3, Theorem 1.1], Das, Elma, Kuo, and Liu prove that, as n → ∞,

1

|Mn|
∑

f∈Mn

ω1(f) = log(n) +

(
B1 −

∑
P

1

|P |2

)
+O

(
1

n

)
. (2)

For k ≥ 2, ε ∈ (0, 1/2), and as n → ∞, they prove

1

|Mn|
∑

f∈Mn

ωk(f) =

(∑
P

1

|P |k
− 1

|P |k+1

)
+Oε

(
q

n
k −n+εn

)
. (3)

The authors of [3] compute the second moments in Theorem 1.2, obtaining results

of the form

1

|Mn|
∑

f∈Mn

ω1(f)
2 = log2(n) + C2 log(n) + C3 +O

(
log(n)

n

)
,
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and
1

|Mn|
∑

f∈Mn

ωk(f)
2 = C ′

k +Oε

(
q

n
k −n+εn

)
,

where C2, C3, C
′
k are certain precisely given constants (depending only on q).

In contrast, [11, Theorem 4.1] states that the moments over the h-free family are

given, as n → ∞, by

1

|Sh ∩Mn|
∑

f∈Sh∩Mn

ω(f) = log(n) +B1 −
∑
P

|P | − 1

|P |(|P |h − 1)
+Oε

(
nε−1

)
,

while

1

|Sh ∩Mn|
∑

f∈Sh∩Mn

ω(f)2 = log2(n) + S2(h) log(n) + S3(h) +Oε

(
nε−1

)
,

for certain precise constants S2(h) and S3(h) depending on q and h.

Similarly, [11, Theorem 6.1] gives that

1

|Nh ∩Mn|
∑

f∈Nh∩Mn

ω(f) = log
(n
h

)
+N1(h) +Oε

(
nε−1

)
,

while

1

|Nh ∩Mn|
∑

f∈Nh∩Mn

ω(f)2 = log2
(n
h

)
+N2(h) log

(n
h

)
+N3(h) +Oε

(
nε−1

)
,

and N1(h), N2(h), N3(h) are certain precisely given constants depending on q and

h. In particular, setting h = 1 for the h-full polynomials gives the moments of ω

for the whole set of monic polynomials, namely,

1

|Mn|
∑

f∈Mn

ω(f) = log (n) +N1(1) +Oε

(
nε−1

)
,

and
1

|Mn|
∑

f∈Mn

ω(f)2 = log2 (n) +N2(1) log (n) +N3(1) +Oε

(
nε−1

)
.

We remark that for n ≥ h,

|Sh ∩Mn| =
qn

ζq(h)

and

|Nh ∩Mn| =
q

n
h

h

h−1∑
j=0

ξjnh

∏
P

(
1− 1

|P |

)(
1 +

1

|P |(1− (q
1
h ξjh)

− deg(P ))

)
+Oε

(
q

n
h+1+εn

)
,
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where ξh denotes a primitive complex root of unity of order h.

Throughout this article, the error terms have implied constants depending on q

and h. This does not pose a problem, as we assume q and h to be fixed.

As previously stated, [3, Theorem 1.5] asserts that ω1(f)−log(n)√
log(n)

has a limiting

normal distribution; [11, Theorem 4.2] gives the analogous result for ω(f)−log(n)√
log(n)

restricted to Sh ∩Mn, while [11, Theorem 6.2] gives this for
ω(f)−log(n

h )√
log(n

h )
restricted

to Nh ∩Mn.

In this work, we compute the first and second moments of ω1 for h-free polyno-

mials.

Theorem 1. For ε > 0 and as n → ∞, the first moment of ω1 over the h-free

polynomials of degree n is given by:

1

|Sh ∩Mn|
∑

f∈Sh∩Mn

ω1(f) = log(n) + C1(Sh, 1) +O

(
1

n

)
, (4)

where

C1(Sh, 1) = B1 −
∑
P

|P |h−1 − 1

|P |(|P |h − 1)
.

The second moment is given by:

1

|Sh ∩Mn|
∑

f∈Sh∩Mn

ω1(f)
2

= log2(n) + C2(Sh, 1) log(n) + C3(Sh, 1) +Oε

(
qn

n1−ε

)
,

(5)

where

C2(Sh, 1) =

(
2

(
B1 −

∑
P

|P |h−1 − 1

|P |(|P |h − 1)

)
+ 1

)
and

C3(Sh, 1) =B2
1 +B1 − ζ(2)−

∑
P

(
|P |h−2(|P | − 1)

|P |h − 1

)2

+

(∑
P

|P |h−1 − 1

|P |(|P |h − 1)

)2

− (2B1 + 1)
∑
P

|P |h−1 − 1

|P |(|P |h − 1)
.

Finally, the variance is given by:

Varh−free,n(ω1) :=
1

|Sh ∩Mn|
∑

f∈Sh∩Mn

ω1(f)
2 −

 1

|Sh ∩Mn|
∑

f∈Sh∩Mn

ω1(f)

2

= log(n) + C4(Sh, 1) +Oε

(
nε−1

)
,
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where

C4(Sh, 1) = B1 − ζ(2)−
∑
P

(
|P |h−2(|P | − 1)

|P |h − 1

)2

−
∑
P

|P |h−1 − 1

|P |(|P |h − 1)
.

We remark that the error term in the first moment is of better quality than the

error term in the second moment, as this latter one contains an extra factor of nε.

This is due to the fact that the first moment can be computed in two ways: one

that uses the generating function for ω1 directly, and another way, that deduces the

moments from Equations (2) and (3) (obtained by Das, Elma, Kuo, and Liu with

other methods), resulting in an improvement of the error term.

Another interesting observation is that for the case h = 2, we have ω1 = ω, and

the results for the moments coincide with the results from [11].

The techniques used to compute the first and second moments in the case of ω1

can be pushed further to prove an analogue of the Erdős–Kac Theorem.

Theorem 2. As n → ∞, ω1(f) with f ∈ Sh∩Mn approaches a normal distribution,

namely, for α ≤ β,

1

|Sh ∩Mn|

∣∣∣∣∣
{
f ∈ Sh ∩Mn : α ≤ ω1(f)− log(n)√

log(n)
≤ β

}∣∣∣∣∣→ 1√
2π

∫ β

α

e−t2/2dt.

Similarly, we obtain the first and second moments of ωk for 1 < k < h for h-free

polynomials.

Theorem 3. For ε > 0 and as n → ∞, the first moment of ωk over the h-free

polynomials of degree n is given by:

1

|Sh ∩Mn|
∑

f∈Sh∩Mn

ωk(f) =
∑
P

|P |h−k−1(|P | − 1)

|P |h − 1
+Oε

(
q

n
k −n+εn

)
(6)

and the second moment is given by:

1

|Sh ∩Mn|
∑

f∈Sh∩Mn

ωk(f)
2

=

(∑
P

|P |h−k−1(|P | − 1)

|P |h − 1

)2

−
∑
P

(
|P |h−k−1(|P | − 1)

|P |h − 1

)2

+
∑
P

|P |h−k−1(|P | − 1)

|P |h − 1
+Oε

(
q

n
k −n+εn

)
.

(7)

Let U ⊆ M and g,G : U → R≥0 be two functions. We say thatG is nondecreasing

if G(f1) ≥ G(f2) for all f1, f2 with deg(f1) ≥ deg(f2). Then g is said to have normal
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order G (for a nondecreasing function G over S) if for any ε > 0 the number of

polynomials f with degree n that do not satisfy the inequalities

(1− ε)G(f) < g(f) < (1 + ε)G(f)

is o(U ∩Mn) as n → ∞.

Theorems 1 and 2 imply in particular that ω1(f) has normal order log(deg(f))

over the h-free polynomials. It is natural to pose the same question for ωk when

k > 1. We have the following negative result, which is consistent with the findings

of [3] for the whole set of monic polynomials.

Theorem 4. For 1 < k < h, the function ωk(f) does not have normal order G(f)

for any nondecreasing function G : Sh ∩M → R≥0.

Using the same methods, we can prove analogous results for Nh. Before stating

our results, we establish some notation. Let

K(P, h, j) :=
1− (q

1
h ξjh)

− deg(P )

|P |(1− (q
1
h ξjh)

− deg(P )) + 1
,

and recall that as n → ∞,

|Nh ∩Mn| =
q

n
h

h

h−1∑
j=0

ξjnh

∏
P

(
1− 1

|P |

)(
1 +

1

|P |(1− (q
1
h ξjh)

− deg(P ))

)
+Oε

(
q

n
h+1+εn

)
.

Theorem 5. For ε > 0 and as n → ∞, the first moment of ωh over the h-full

polynomials of degree n is given by:

1

|Nh ∩Mn|
∑

f∈Nh∩Mn

ωh(f) = log
(n
h

)
+ C1(Nh, h) +Oε

(
nε−1

)
, (8)

where

C1(Nh, h) =B1 +
1

|Nh ∩Mn|
q

n
h

h

h−1∑
j=0

ξjnh

∏
P

(
1− 1

|P |

)

×

(
1 +

1

|P |(1− (q
1
h ξjh)

− deg(P ))

)∑
P

(
K(P, h, j)− 1

|P |

)
.

The second moment is given by:

1

|Nh ∩Mn|
∑

f∈Nh∩Mn

ωh(f)
2

= log2
(n
h

)
+ C2(Nh, h) log

(n
h

)
+ C3(Nh, h) +Oε

(
nε−1

)
,

(9)
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where

C2(Nh, h) =2B1 + 1 +
2

|Nh ∩Mn|
q

n
h

h

h−1∑
j=0

ξjnh

∏
P

(
1− 1

|P |

)

×

(
1 +

1

|P |(1− (q
1
h ξjh)

− deg(P ))

)∑
P

(
K(P, h, j)− 1

|P |

)
and

C3(Nh, h) =B2
1 +B1 − ζ(2)− 1

|Nh ∩Mn|
q

n
h

h

h−1∑
j=0

ξjnh

∏
P

(
1− 1

|P |

)

×

(
1 +

1

|P |(1− (q
1
h ξjh)

− deg(P ))

)[∑
P

K(P, h, j)2

+

(∑
P

(
K(P, h, j)− 1

|P |

))2

+ (2B1 + 1)
∑
P

(
K(P, h, j)− 1

|P |

) .

Finally, the variance is given by:

Varh−full,n(ωh)

:=
1

|Nh ∩Mn|
∑

f∈Nh∩Mn

ω1(f)
2 −

 1

|Nh ∩Mn|
∑

f∈Nh∩Mn

ω1(f)

2

= log
(n
h

)
+B1 − ζ(2)

+
1

|Nh ∩Mn|

h−1∑
j=0

ξjnh

∏
P

(
1− 1

|P |

)(
1 +

1

|P |(1− (q
1
h ξjh)

− deg(P ))

)

×

−∑
P

K(P, h, j)2 +

(∑
P

(
K(P, h, j)− 1

|P |

))2

+
∑
P

(
K(P, h, j)− 1

|P |

)
−

 1

|Nh ∩Mn|

h−1∑
j=0

ξjnh

∏
P

(
1− 1

|P |

)(
1 +

1

|P |(1− (q
1
h ξjh)

− deg(P ))

)

×
∑
P

(
K(P, h, j)− 1

|P |

)]2
+Oε

(
nε−1

)
.

The techniques employed in the proof of the above statement can be pushed

further to prove an analogue of the Erdős–Kac result.
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Theorem 6. As n → ∞, ωh(f) with f ∈ Nh ∩Mn approaches a normal distribu-

tion, namely, for α ≤ β,

1

|Nh ∩Mn|

∣∣∣∣∣∣
f ∈ Nh ∩Mn : α ≤

ωh(f)− log
(
n
h

)√
log
(
n
h

) ≤ β


∣∣∣∣∣∣→ 1√

2π

∫ β

α

e−t2/2dt.

Similarly, we obtain the first and second moments of ωk for h < k for h-full

polynomials.

Theorem 7. For ε > 0 and as n → ∞, the first moment of ωk over the h-full

polynomials of degree n is given by:

1

|Nh ∩Mn|
∑

f∈Nh∩Mn

ωk(f)

=
1

|Nh ∩Mn|
q

n
h

h

h−1∑
j=0

ξjnh

∏
P

(
1− 1

|P |

)(
1 +

1

|P |(1− (q
1
h ξjh)

− deg(P ))

)

×
∑
P

|P |(q 1
h ξjh)

−k deg(P )K(P, h, j) +Oε

(
q−

n
h(h+1)

+εn
)

and the second moment is given by:

1

|Nh ∩Mn|
∑

f∈Nh∩Mn

ωk(f)
2

=
1

|Nh ∩Mn|
q

n
h

h

h−1∑
j=0

ξjnh

∏
P

(
1− 1

|P |

)(
1 +

1

|P |(1− (q
1
h ξjh)

− deg(P ))

)

×

[∑
P

(
|P |(q 1

h ξjh)
−k deg(P )K(P, h, j)

)2
−

(∑
P

|P |(q 1
h ξjh)

−k deg(P )K(P, h, j)

)2

+
∑
P

|P |(q 1
h ξjh)

−k deg(P )K(P, h, j)

]
+Oε

(
q−

n
h(h+1)

+εn
)
.

Theorems 5 and 6 imply in particular that ωh(f) has normal order log(deg(f))

over the h-full polynomials. It is natural to pose the same question for ωk when

k > h. We have the following negative result.

Theorem 8. For h < k, the function ωk(f) does not have normal order G(f) for

any nondecreasing function G : Nh ∩M → R≥0.
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This article is organized as follows. We start by including some notation and

preliminary statements in Section 2. The moments of ωk over the h-free polynomi-

als are treated in Section 3, including the first and second moment formulas, the

normality results, and the analogue of the Erdős–Kac Theorem. Then Section 4 is

organized likewise, for the h-full polynomials. Finally, we conclude with a discussion

of possible directions of future research.

2. Notation and Preliminary Statements

Let M denote the set of monic polynomials over Fq[T ] and let Mn (respectively

M≤n) denote the subset of M containing the polynomials of degree n (respectively

degree ≤ n). Let P denote the set of monic irreducible polynomials, and let Pn :=

P ∩Mn and P≤n := P ∩M≤n be defined analogously to the corresponding subsets

of M. The zeta function of Fq[T ] is given by

ζq(s) =
∑
f∈M

1

|f |s
=
∏
P

(
1− 1

|P |s

)−1

, (10)

where the sum and the product converge for Re(s) > 1. By summing over the

degree and then over Mn, one can prove that

ζq(s) =
1

1− q1−s
,

which gives a meromorphic continuation for ζq(s) to the whole complex plane, with

simple poles when qs = q. It is often convenient to consider the change of variables

u = q−s, which gives

Zq(u) =
∑
f∈M

udeg(f) =
∏
P

(
1− udeg(P )

)−1

,

now converging absolutely for |u| < 1
q , and having a meromorphic continuation to

the complex plane with a simple pole at u = 1
q .

We recall Perron’s formula over Fq[T ], which will be used throughout this article.

(See for example [14, Equation 4.4.15] for the classical statement, and [4, Lemma

2.2] for the function field version.)

Theorem 9 (Perron’s Formula). If the generating series A(u) =
∑

f∈M a(f)udeg(f)

is absolutely convergent in |u| ≤ r < 1, then∑
f∈Mn

a(f) =
1

2πi

∮
|u|=r

A(u)

un

du

u
,

where
∮

denotes the integral over the circle centered at the origin and oriented

counterclockwise.
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The following result is due to Warlimont [17] in the context of arithmetical semi-

groups. It was later rediscovered by Afshar and Porritt [1] in the function field

setting, and intensively used in [11]. It extends the Selberg–Delange method to

function fields and is crucial for obtaining the first and second moments for ω1(f)

in all cases.

Theorem 10 ([17, 1]). Let C(u, z) =
∑

n≥0 Cz(n)u
n and B(u, z) =

∑
n≥0 Bz(n)u

n

be power series with coefficients depending on z satisfying C(u, z) = B(u, z)Zq(u)
z.

Suppose also that, uniformly for |z| ≤ A,∑
n≥0

|Bz(n)|
qn

n2A+2 ≪A 1.

Then, uniformly for |z| ≤ A and n ≥ 1, we have

Cz(n) = qn
nz−1

Γ(z)
B (1/q, z) +OA

(
qnnRe(z)−2

)
,

where Γ(z) is the gamma function defined by

Γ(z) =

∫ ∞

0

tz−1e−tdt.

For the h-full polynomial case we will need the following extension proven in [11].

Theorem 11 ([11]). Let C(u, z) =
∑

n≥0 Cz(n)u
n and B(u, z) =

∑
n≥0 Bz(n)u

n be

power series with coefficients depending on z satisfying C(u, z) = B(u, z)Zq(u
h)z,

where h is a positive integer. Suppose also that, uniformly for |z| ≤ A,∑
n≥0

|Bz(n)|
q

n
h

n2A+2 ≪A 1.

Then, uniformly for |z| ≤ A and n ≥ 1, we have

Cz(n) =
q

n
h nz−1

hzΓ(z)

h−1∑
j=0

ξjnh B
(
(q

1
h ξjh)

−1, z
)
+OA

(
q

n
h nRe(z)−2

)
,

where ξh denotes a primitive h-root of unity in C.

To close this section, we recall a version of [11, Lemma 3.2] and take the op-

portunity to correct the statement and the proof, which are incorrect in [11]. This

result will allow us to differentiate inside an error term after applying Theorems 10

and 11.

Lemma 1. Let Gn(z), f(z) be analytic functions at z = 1 such that

Gn(z) = f(z)nz−1 +O
(
nRe(z)−2

)
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in a neighborhood of z = 1. Then, for an arbitrary small ε > 0, we have

G′
n(1) =

∂

∂z
(f(z)nz−1)

∣∣∣∣
z=1

+Oε

(
n−1+ε

)
, (11)

G(k)
n (1) =

∂k

∂zk
(f(z)nz−1)

∣∣∣∣
z=1

+Oε

(
n−1+ε

)
. (12)

Proof. We begin by writing

Gn(z) = f(z)nz−1 +Rn(z).

Fix δ > 0 and assume that |z − 1| < δ. For any K > 0 there is an M = MK such

that if n ≥ M , we have for |z − 1| < δ,

|Rn(z)| ≤ KnRe(z)−2.

Note that f(z)nz−1 and Rn(z) are analytic at z = 1. Therefore by Cauchy’s

integral formula for an arbitrarily small ε > 0,

G′
n(z) =

1

2πi

∫
|ξ−1|=ε

Gn(z)

(ξ − 1)2
dξ

=
1

2πi

∫
|ξ−1|=ε

f(z)nz−1

(ξ − 1)2
dξ +

1

2πi

∫
|ξ−1|=ε

Rn(z)

(ξ − 1)2
dξ

=
∂

∂z
(f(z)nz−1) +

1

2πi

∫
|ξ−1|=ε

Rn(z)

(ξ − 1)2
dξ.

Now note that for n ≥ M and ε < δ,∣∣∣∣∣ 1

2πi

∫
|ξ−1|=ε

Rn(z)

(ξ − 1)2
dξ

∣∣∣∣∣ ≤ 1

2π

∫
|ξ−1|=ε

KnRe(z)−2

ε2
|dξ|

≤ 1

2π
2π · ε · 1

ε2
Kn1+ε−2 = O

(
n−1+ε

ε

)
,

where the last inequality follows from |Re(ξ)| ≤ |ξ| ≤ 1 + |ξ − 1| ≤ 1 + ε. This

concludes the proof of Equation (11).

The general formula

G(k)
n (1) =

∂k

∂zk
(f(z)nz−1)

∣∣∣∣
z=1

+O

(
n−1+ε

εk

)
can be proven similarly.
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3. Moments for h-Free Polynomials

In this section we treat the case of h-free monic polynomials, where h ≥ 2 and

h ≥ k ≥ 1. To prove Theorems 1 and 3, we start by considering the following Euler

product, which converges absolutely for |u| < 1
q and gives the generating Dirichlet

series for the h-free polynomials:

Zq(u)

Zq(uh)
=
∏
P

(
1− uh deg(P )

1− udeg(P )

)
=
∏
P

(
1 + udeg(P ) + · · ·+ u(h−1) deg(P )

)
=

∑
f∈Sh∩M

udeg(f).

We introduce the coefficient ωk(f) by writing it as the exponent of an extra variable,

which we will later differentiate. This preserves the additive structure of ωk(f). We

have

Ck,Sh
(u, z) :=

∑
f∈Sh∩M

zωk(f)udeg(f)

=
∏
P

(1 + udeg(P ) + · · ·+ zuk deg(P ) + · · ·+ u(h−1) deg(P ))

=
∏
P

(
1− uh deg(P )

1− udeg(P )
+ (z − 1)uk deg(P )

)
,

which converges absolutely for |u| < 1
q and |z| < A for any positive constant A.

The above generating series can be used in two ways to compute the moments

of ωk(f). Firstly, we can use techniques such as Perron’s formula (Theorem 9) and

Theorem 10 to directly estimate the coefficient of un and obtain the moments by

differentiating and evaluating at z = 1. Secondly, we can use the generating series to

relate ωk(f) over the h-free monic polynomials to the results from [3] for the whole

family of monic polynomials. Next, we explain this second approach in detail.

Any f ∈ M can always be written as f(T ) = m(T )n(T )h in an unique way, where

m(T ) is h-free. We define mh(f) := m(f). Our next goal is to study ωk ◦mh for k =

1, . . . , h−1, that is to say, we want to find
∑

f∈Mn
ωk(m(f)) and

∑
f∈Mn

ωk(m(f))2.

We have the following generating function for ωk ◦mh:∑
f∈M

zωk(mh(f))udeg(f) =
∏
P

(
1 + · · ·+ u(k−1) deg(P ) + zuk deg(P )

+u(k+1) deg(P ) + · · ·+ zu(h+k) deg(P ) + · · ·
)

=
∏
P

(
1

1− udeg(P )
+

(z − 1)uk deg(P )

1− uh deg(P )

)
=Zq(u

h)Ck,Sh
(u, z). (13)
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We immediately see that there must be a relation between
∑

f∈Sh∩Mn
ωk(f)

j and∑
f∈Mn

ωk(mh(f))
j . We will make this more precise after we do a careful study of

the generating functions.

Now, notice also that for f ∈ Mn,

ωk(mh(f)) = ωk(f) + ωh+k(f) + · · ·+ ω(⌊n
h ⌋−1)h+k(f). (14)

Thus, if we can describe the relationship between the moments of ωk(f) over Sh

and the moments of ωk(mh(f)) in more precise terms, we can use Equation (14) and

deduce Theorems 1 and 3 from the results of Das, Elma, Kuo, and Liu’s, Equations

(2) and (3). While we have not found an efficient way of doing this for the second

moment, we do have a way of doing this for the first moment, which in the case of

ω1(f), leads to an improvement to the error term compared to what is obtained by

directly applying the generating function.

We analyze the first two moments in the next subsections, as we consider two

natural cases, according to whether k = 1 or 1 < k < h, separately.

3.1. First and Second Moments of ω1 for h-Free Polynomials

The case of ω1 corresponds to k = 1. We proceed to extract the singularity at u = 1
q

in the generating function by writing

B1,Sh
(u, z) := Zq(u)

−zC1,Sh
(u, z).

Our goal is to apply Theorem 10. In order to proceed, we verify that the hypotheses

are satisfied.

Lemma 2. Let B1,Sh
(u, z) =

∑
n≥0 Bz(n)u

n. For |z| ≤ A, n ≥ 2, and σ > 1
2 ,∑

0≤a≤n

|Bz(a)|
qσa

≤ cA,σ,q,

where cA,σ,q is a constant depending on A, σ, and q.

Proof. The argument follows very similar steps to those in the proof of [1, Propo-

sition 2.5] and [11, Lemmas 3.1 and 5.1]. Let bz(f) be the function defined on the

powers of monic irreducible polynomials P by

1 +
∑
j≥1

bz(P
j)uj =(1 + zu+ u2 + · · ·+ uh−1)(1− u)z

=(1 + zu+ u2 + · · ·+ uh−1)

∞∑
k=0

(
z

k

)
(−u)k

=1− 1

2
(z2 + z − 2)u2 + · · · (15)
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and extended multiplicatively to all f ∈ M.

Now B1,Sh
(u, z) =

∑
f∈M bz(f)u

deg(f), and therefore, Bz(n) =
∑

f∈Mn
bz(f).

As seen on the right-hand side of Equation (15), bz(P ) = 0. We also remark that

B1,Sh
(u, z) converges absolutely for |u| < 1√

q and |z| ≤ A. By Cauchy’s integral

formula over |u| = q−
1+ε
2 , we obtain

bz(P
j) =

1

2πi

∮
|u|=q−

1+ε
2

(1 + zu+ u2 + · · ·+ uh−1)(1− u)z
du

uj+1
.

Thus,

|bz(P j)| ≤ q
j
2 (1+ε)MA

for j ≥ 2, where

MA := sup
|z|≤A,|u|≤

√
2
3

∣∣(1 + zu+ u2 + · · ·+ uh−1)(1− u)z
∣∣

is a constant depending on A. The rest of the proof proceeds exactly as in [11,

Lemma 3.1] to obtain ∑
0≤a≤n

|Bz(a)|
qσa

≪σ.q exp

(
MA

q2σ−1 − 1

)
,

where the implied constant is independent of n.

Since a2A+2 < qa/3 as a approaches infinity, it follows from Lemma 2 that∑
a≥0

|Bz(a)|
qa

a2A+2 <
∑
a≥0

|Bz(a)|
q

2a
3

≪A 1

uniformly for |z| ≤ A. Thus we can apply Theorem 10 to B1,Sh
(u, z).

Proof of Theorem 1. Recall that we have∑
f∈Sh∩M

zω1(f)udeg(f) = C1,Sh
(u, z) = B1,Sh

(u, z)Zq(u)
z.

Applying Theorem 10, this gives∑
f∈Sh∩Mn

zω1(f) = qn
nz−1

Γ(z)
B1,Sh

(1/q, z) +OA

(
qnnRe(z)−2

)
. (16)

Differentiating both sides of Equation (16) with respect to z for z close to 1, and

applying Equation (11), we have that∑
f∈Sh∩Mn

ω1(f)z
ω1(f)−1 =

(
B1,Sh

(1/q, z)

Γ(z)

)′

qnnz−1

+
B1,Sh

(1/q, z)

Γ(z)
qn log(n)nz−1 +Oz(1)Oε

(
qn

n1−ε

)
.

(17)
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Evaluating Equation (17) at z = 1, we have∑
f∈Sh∩Mn

ω1(f) =
∂
∂zB1,Sh

(1/q, 1)Γ(1)− B1,Sh
(1/q, 1)Γ′(1)

Γ(1)2
qn

+
B1,Sh

(1/q, 1)

Γ(1)
qn log(n) +Oε

(
qn

n1−ε

)
.

(18)

Recall that Γ(1) = 1 and Γ′(1) = −γ. Notice that the evaluation of B1,Sh
(1/q, 1) is

particularly simple:

B1,Sh
(1/q, 1) =

∏
P

(
1− 1

|P |h

)
=

1

ζq(h)
.

In addition, the logarithmic derivative of B1,Sh
(1/q, z) gives

∂
∂zB1,Sh

(1/q, z)

B1,Sh
(1/q, z)

=
∑
P

(
log

(
1− 1

|P |

)
+

|P |h−2(|P | − 1)

|P |h − 1 + (z − 1)|P |h−2(|P | − 1)

)
.

(19)

Applying the above identities to Equation (18), we obtain the proof of Equation

(4) (with an error term of Oε

(
qn

n1−ε

)
).

We now proceed to prove Equation (5). Multiplying Equation (17) by z, differ-

entiating both sides with respect to z for z close to 1, and applying Equation (12),

we obtain∑
f∈Sh∩Mn

ω1(f)
2zω1(f)−1 =

(
B1,Sh

(1/q, z)

Γ(z)

)′′

qnznz−1

+

(
B1,Sh

(1/q, z)

Γ(z)

)′

qn(nz−1 + 2znz−1 log(n))

+
B1,Sh

(1/q, z)

Γ(z)
qn log(n)(nz−1 + znz−1 log(n))

+Oz(1)Oε

(
qn

n1−ε

)
. (20)

Now observe that(
B1,Sh

(1/q, z)

Γ(z)

)′′

=

(
∂
∂zB1,Sh

(1/q, z)Γ(z)− B1,Sh
(1/q, z)Γ′(z)

Γ(z)2

)′

=
1

Γ(z)3

(
∂2

∂z2
B1,Sh

(1/q, z)Γ(z)2 − 2
∂

∂z
B1,Sh

(1/q, z)Γ(z)Γ′(z)

+B1,Sh
(1/q, z)(2Γ′(z)2 − Γ(z)Γ′′(z))

)
.

In addition, multiplying Equation (19) by B1,Sh
(1/q, z), taking the derivative,

and evaluating at z = 1, we obtain
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∂2

∂z2
B1,Sh

(1/q, 1) =
∂

∂z
B1,Sh

(1/q, 1)
∑
P

(
log

(
1− 1

|P |

)
+

|P |h−2(|P | − 1)

|P |h − 1

)

− B1,Sh
(1/q, 1)

∑
P

(
|P |h−2(|P | − 1)

(|P |h − 1)

)2

=
1

ζq(h)

[∑
P

(
log

(
1− 1

|P |

)
+

|P |h−2(|P | − 1)

|P |h − 1

)]2

− 1

ζq(h)

∑
P

(
|P |h−2(|P | − 1)

(|P |h − 1)

)2

. (21)

Evaluating Equation (20) at z = 1 gives

∑
f∈Sh∩Mn

ω1(f)
2 =

1

Γ(1)3

(
∂2

∂z2
B1,Sh

(1/q, 1)Γ(1)2 − 2
∂

∂z
B1,Sh

(1/q, 1)Γ(1)Γ′(1)

+ B1,Sh
(1/q, 1)(2Γ′(1)2 − Γ(1)Γ′′(1))

)
qn

+
∂
∂zB1,Sh

(1/q, 1)Γ(1)− B1,Sh
(1/q, 1)Γ′(1)

Γ(1)2
qn(1 + 2 log(n))

+
B1,Sh

(1/q, 1)

Γ(1)
qn log(n)(1 + log(n)) +Oε

(
qn

n1−ε

)
.

Inserting Equation (21) in the above equation, and using the fact that Γ′′(1) =
γ2 + ζ(2), we obtain∑

f∈Sh∩Mn

ω1(f)
2

=
qn(log(n))2

ζq(h)
+

qn(log(n))

ζq(h)

(
2
∑
P

(
log

(
1− 1

|P |

)
+

|P |h−2(|P | − 1)

|P |h − 1

)

+ 2γ + 1

)
+

qn

ζq(h)

[∑
P

(
log

(
1− 1

|P |

)
+

|P |h−2(|P | − 1)

|P |h − 1

)]2

− qn

ζq(h)

∑
P

(
|P |h−2(|P | − 1)

(|P |h − 1)

)2

+
2γ + 1

ζq(h)
qn
∑
P

(
log

(
1− 1

|P |

)
+

|P |h−2(|P | − 1)

|P |h − 1

)
+

γ2 + γ − ζ(2)

ζq(h)
qn +Oε

(
qn

n1−ε

)
.

Combining this with the definition of B1, we obtain Equation (5).
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The variance can be directly computed from Equations (4) and (5) by recalling
that [11, Lemma 3.3] gives, for n ≥ h,

|Sh ∩Mn| =
qn

ζq(h)
.

Now we consider the improvement on the error term of the first moment that
can be obtained by working with Equations (13), (14), as well as Equations (2) and
(3). From the above discussion of the generating function and Equation (13), we
deduce that ∑

f∈Sh∩Mn

ωk(f)
j =

1

ζq(h)

∑
f∈Mn

ωk(mh(f))
j . (22)

Now, combining the above with Equations (14), (2), and (3) gives

∑
f∈Sh∩Mn

ω1(f) =
1

ζq(h)

[
qn log(n) + qn

(
B1 −

∑
P

1

|P |2

)

+

⌊n
h ⌋−1∑
j=1

qn

(∑
P

1

|P |jh+1
− 1

|P |jh+2

)
+O

(
qn

n

)
+Oε

(
nq

n
h+εn

)
=
qn log(n)

ζq(h)
+

qn

ζq(h)

(
B1 −

∑
P

|P |h−1 − 1

|P |(|P |h − 1)

)
+O

(
qn

n

)
,

yielding Equation (4) with the better error term of size qn

n .

This concludes the proof of the first and second moments of ω1(f).

3.2. First and Second Moments of ωk for h-Free Polynomials

Here we consider the case 1 < k < h. We have that Ck,Sh
(u, z) has a pole of order

1 at u = 1
q . We extract it as follows:

Bk,Sh
(u, z) =Zq(u)

−1Ck,Sh
(u, z)

=
∏
P

(
1− uh deg(P ) + (z − 1)uk deg(P )(1− udeg(P ))

)
,

where Bk,Sh
(u, z) is absolutely convergent for |u| < q−

1
k and |z| ≤ A.

By Perron’s formula (Theorem 9), we have that∑
f∈Sh∩Mn

zωk(f) =
1

2πi

∮
Bk,Sh

(u, z)

(1− qu)un

du

u
,
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where the integral takes place on a small circle around the origin. We move the

circle to |u| = q−ε− 1
k and obtain the residue at u = 1

q . This gives∑
f∈Sh∩Mn

zωk(f) =− Resu= 1
q

Bk,Sh
(u, z)

(1− qu)un+1
+

1

2πi

∮
|u|=q−ε− 1

k

Bk,Sh
(u, z)

(1− qu)un

du

u

=Bk,Sh
(1/q, z)qn +Oz(1)Oε

(
q

n
k +εn

)
. (23)

Proof of Theorem 3. In order to recover the first moment, we differentiate and eval-

uate Equation (23) at z = 1:∑
f∈Sh∩Mn

ωk(f) =
∂

∂z
Bk,Sh

(1/q, 1)qn +Oε

(
q

n
k +εn

)
. (24)

The logarithmic derivative of Bk,Sh
(1/q, z) gives

∂
∂zBk,Sh

(1/q, z)

Bk,Sh
(1/q, z)

=
∑
P

|P |h−k−1(|P | − 1)

|P |h − 1 + (z − 1)|P |h−k−1(|P | − 1)
,

and thus
∂

∂z
Bk,Sh

(1/q, 1) =
1

ζq(h)

∑
P

|P |h−k−1(|P | − 1)

|P |h − 1
. (25)

Substituting the above in Equation (24) gives the first moment, Equation (6).

We proceed to compute the second moment. Differentiating Equation (23), mul-

tiplying by z, differentiating again, and setting z = 1, we have∑
f∈Sh∩Mn

ωk(f)
2 =

∂2

∂z2
Bk,Sh

(1/q, 1)qn +
∂

∂z
Bk,Sh

(1/q, 1)qn +Oε

(
q

n
k +εn

)
. (26)

For the second derivative we have

∂2

∂z2
Bk,Sh

(1/q, 1)

=
∂

∂z
Bk,Sh

(1/q, 1)
∑
P

|P |h−k−1(|P | − 1)

|P |h − 1

− Bk,Sh
(1/q, 1)

∑
P

(
|P |h−k−1(|P | − 1)

|P |h − 1

)2

=
1

ζq(h)

(∑
P

|P |h−k−1(|P | − 1)

|P |h − 1

)2

−
∑
P

(
|P |h−k−1(|P | − 1)

|P |h − 1

)2
 .

Combining this with Equation (25) in Equation (26) gives Equation (7), the desired

result.

As a final note, we remark that we could have computed the first moment from

Equation (22) by combining with Equations (14) and (3). This alternative approach

does not improve the error term in Equation (6).
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3.3. Normal Order and an Erdős–Kac Result for h-Free Polynomials

The goal of this section is to prove Theorem 2, namely the Erdős–Kac result for ω1

over the h-free polynomials, and Theorem 4, which investigates the normal order of

the functions ωk over the h-free polynomials.

Proof of Theorem 2. Our argument follows very closely the proof of [11, Theorem

1.3]. In order to prove the statement we will show that as n → ∞,

1

|Sh ∩Mn|
∑

f∈Sh∩Mn

(
ω1(f)− log(n)√

log(n)

)v

→ Cv

where

Cv =


v!

2
v
2 ( v

2 )!
v even,

0 v odd.
(27)

Let us study the higher moments of ω1. We consider again the moment generating

function with z = et:

C1,Sh
(u, et) =

∑
f∈Sh∩M

etω1(f)udeg(f) =
∏
P

(
1 + etudeg(P ) + · · ·+ u(h−1) deg(P )

)
.

Evaluating at z = et will allow us to differentiate multiple times in a single step

and recover the moments via the generating function

E
(
ωℓ
1

)
= E

(
etω1

)(ℓ)∣∣∣
t=0

. (28)

We extract the singularity of C1,Sh
(u, et) at u = 1

q as

B1,Sh
(u, et) = Zq(u)

−etC1,Sh
(u, et).

By applying Theorem 10 we obtain∑
f∈Sh∩Mn

eω1(f)t = qn
net−1

Γ(et)
B1,Sh

(
1/q, et

)
+OA

(
qnnRe(et)−2

)
.

By Equation (28), we have

E
(
ωℓ
1

)
= ζq(h)

ℓ∑
j=0

(
ℓ

j

)
(net−1)(j)

(
B1,Sh

(1/q, et)

Γ(et)

)(ℓ−j)
∣∣∣∣∣∣
t=0

+Oε

(
1

n1−ε

)
. (29)

Recall from Equation (24) in [11], that for j ≥ 1,

(net−1)(j) = net−1

j∑
m=1

{
j

m

}
(et log(n))m = net−1Tj(e

t log(n)), (30)
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where the
{

j
m

}
are the Stirling numbers of the second kind, and the Tj are the

Touchard polynomials [16].

By combining Equation (30) with Equation (29), we have:

E
(
ωℓ
1

)
= ζq(h)

ℓ∑
j=0

(
ℓ

j

)
Tj(log(n))

(
B1,Sh

(1/q, et)

Γ(et)

)(ℓ−j)
∣∣∣∣∣∣
t=0

+Oε

(
1

n1−ε

)
. (31)

Notice that

1

|Sh ∩Mn|
∑

f∈Sh∩Mn

(
ω1(f)− log(n)√

log(n)

)v

=
1

(log n)
v
2

v∑
ℓ=0

(
v

ℓ

)
E(ωℓ

1)(−1)v−ℓ(log n)v−ℓ.

Combining the above with Equation (31), we then obtain

1

(log n)
v
2

v∑
ℓ=0

(
v

ℓ

)
E(ωℓ

1)(−1)v−ℓ(log n)v−ℓ

=
ζq(h)

(log n)
v
2

v∑
ℓ=0

(
v

ℓ

) ℓ∑
j=0

(
ℓ

j

)
Tj(log(n))

×
(
B1,Sh

(1/q, et)

Γ(et)

)(ℓ−j)
∣∣∣∣∣
t=0

(−1)v−ℓ(log n)v−ℓ +Oε

(
1

n1−ε

)
. (32)

Consider the change of variables u = v − ℓ, m = v − ℓ+ j. Then, the main term

in Equation (32) becomes

ζq(h)

(log n)
v
2

v∑
m=0

(
B1,Sh

(1/q, et)

Γ(et)

)(v−m)
∣∣∣∣∣
t=0

×
m∑

u=0

(
v

u

)(
v − u

m− u

)
Tm−u(log n)(−1)u(log n)u

=
ζq(h)

(log n)
v
2

v∑
m=0

(
v

m

) (
B1,Sh

(1/q, et)

Γ(et)

)(v−m)
∣∣∣∣∣
t=0

×
m∑

u=0

(
m

u

)
Tm−u(log n)(−1)u(log n)u. (33)

Since the generating function for the Touchard polynomials [16] is

ex(e
t−1) =

∞∑
m=0

Tm(x)

m!
tm,
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one can see that the generating function for the inner sum in Equation (33) is given

by

ex(e
t−1−t) =

∞∑
m=0

tm

m!

m∑
u=0

(
m

u

)
Tm−u(x)(−1)uxu.

Notice that the coefficient of xu in the power series of ex(e
t−1−t) is given by (et−1−t)u

u! ,

whose lowest power of t is t2u. Therefore, thinking of ex(e
t−1−t) as a power series

in t, we have that the coefficient of tv is a polynomial in x of degree at most
⌊
v
2

⌋
.

Now suppose that v is even. Then, the coefficient of x
v
2 tv in ex(e

t−1−t) is given

by 1

2
v
2 ( v

2 )!
. Back to the inner sum in Equation (33), this gives a leading coefficient

of m!

2
m
2 (m

2 )!
for (log n)

m
2 when m is even. Incorporating this information in Equation

(33), we get, for v even,

1

(log n)
v
2

v∑
ℓ=0

(
v

ℓ

)
E(Ω(f)ℓ)(−1)v−ℓ(log n)v−ℓ

=
ζq(h)

(log n)
v
2

B(1/q, 1)
Γ(1)

v∑
u=0

(
v

u

)
Tv−u(log n)(−1)u(log n)u +O

(
1

log n

)
=

v!

2
v
2

(
v
2

)
!
+O

(
1

log n

)
,

while for v odd we get

O

(
1√
log n

)
,

as desired.

Before proceeding to the proof of Theorem 4, we need an auxiliary result.

Lemma 3. Let n ≥ 0, ℓ > 0 be integers and let P ∈ P. Then, as n → ∞,∑
f∈Sℓ∩Mn

(f,P )=1

1 =
qn

ζq(ℓ)

(
1− |P |−1

1− |P |−ℓ

)
+Oℓ,deg(P )(1).

Proof. We consider the generating function

∑
f∈Sℓ∩M
(f,P )=1

udeg(P ) =
Zq(u)(1− udeg(f))

Zq(uℓ)(1− uℓ deg(P ))
.

We remark that the above generating function has simple poles at u = 1
q and

u = ξjℓ deg(P ) for j = 0, . . . , ℓ deg(P )− 1, and no other poles.
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By Perron’s formula (Theorem 9), and by moving the integral to |u| = R with

R → ∞, we have∑
f∈Sℓ∩Mn

(f,P )=1

1 =
1

2πi

∮
(1− quℓ)(1− udeg(P ))

(1− qu)(1− uℓ deg(P ))

du

un+1

=− Resu= 1
q

(1− quℓ)(1− udeg(P ))

(1− qu)(1− uℓ deg(P ))un+1

−
ℓ deg(P )−1∑

j=0

Resu=ξj
ℓ deg(P )

(1− quℓ)(1− udeg(P ))

(1− qu)(1− uℓ deg(P ))un+1

=
qn

ζq(ℓ)

(
1− |P |−1

1− |P |−ℓ

)
+Oℓ,deg(P )(1).

Notice in particular that Lemma 3 implies that∑
f∈Sℓ∩Mn

νP (f)=k

1 =
∑

f∈Sh∩Mn−k deg(P )

(f,P )=1

1 =
qn−k deg(P )

ζq(ℓ)

(
1− |P |−1

1− |P |−ℓ

)
+Oh,deg(P )(1).

Proof of Theorem 4. We follow the argument given in [3, Theorem 1.4]. Let G(f)

be a nondecreasing function G : Sh ∩ M → R≥0. First assume that there is an

f0 ∈ Sh ∩M such that G(f0) > 0. Therefore, G(f) > 0 for all f ∈ Sh ∩M such

that deg(f) > deg(f0).

Let n > deg(f0) and consider the following set:

OS,0(n, h) := {f ∈ Sh ∩Mn : ωk(f) = 0}.

It can be seen that

Sk ∩Mn = Sh ∩Mn ∩ Sk ⊆ OS,0(n, h),

and therefore

|OS,0(n, h)| ≥ |Sk ∩Mn| =
qn

ζq(k)

for n ≥ k.

This means that |OS,0(n, h)| is ≫ qn. In particular, the set of monic h-free

polynomials f for which G(f) > 0 and ωk(f) = 0 is not o(qn). Clearly, for those f ,

we have

|ωk(f)−G(f)| > G(f)

2

is satisfied. That means that ωk(f) does not have normal order G when G is not

the constant function 0.
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Now, if G(f) = 0 for all f ∈ Sh ∩M we define:

OS,1(n, h) := {f ∈ Sh ∩Mn : ωk(f) = 1}.

Let P ∈ P1 be a fixed monic irreducible polynomial of degree 1. It can be seen that

|OS,1(n, h)| ≥
∑

f∈Sh∩Mn, νP (f)=k
νQ(f)<k, for allQ∈P, Q ̸=P

1 ≥
∑

f∈Sk∩Mn−k

(f,P )=1

1

=
qn−k

ζq(k)

(
1− q−1

1− q−k

)
+Ok(1),

where we have used Lemma 3.

This means that |OS,1(n, h)| is ≫ qn. In particular, the set of monic h-free

polynomials f for which G(f) = 0 and ωk(f) = 1 is not o(qn). For those f , we have

that

|ωk(f)−G(f)| > G(f)

2
.

Therefore ωk does not have normal order G when G is the constant function 0.

4. Moments for h-Full Polynomials

In this section we prove the analogous results for the case of h-full polynomials,

where k ≥ h ≥ 2. To prove Theorems 5 and 7 we consider the following Euler

product, which converges absolutely for u < q−
1
h and gives the generating Dirichlet

series for the h-full polynomials:∏
P

(
1 + uh deg(P ) + u(h+1) deg(P ) + · · ·

)
=

∑
f∈Nh∩M

udeg(f).

We introduce the coefficient ωk(f) as in previous sections, the process being

completely analogous.

Ck,Nh
(u, z) :=

∑
f∈Nh∩M

zωk(f)udeg(f)

=
∏
P

(
1 + uh deg(P ) + · · ·+ zuk deg(P ) + · · ·

)
=
∏
P

(
1− udeg(P ) + uh deg(P )

1− udeg(P )
+ (z − 1)uk deg(P )

)
,

which converges absolutely for |u| < q−
1
h and |z| < A for any positive constant A.

For the h-full polynomials there are two cases, according to whether k = h or

h < k. These two cases will be considered separately.
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4.1. First and Second Moments of ωh for h-Full Polynomials

We consider here the case k = h. We proceed to extract the singularity at u = q−
1
h

by writing

Bh,Nh
(u, z) := Zq(u

h)−zCh,Nh
(u, z)

Our goal is to apply Theorem 11, for which we need to verify that the hypotheses

are satisfied.

Lemma 4. Let Bh,Nh
(u, z) =

∑
n≥0 Bz(n)u

n. For |z| ≤ A, n ≥ 2 and σ > 1
h+1 ,∑

0≤a≤n

|Bz(a)|
qσa

≤ cA,σ,q,

where cA,σ is a constant depending on A, σ, and q.

Proof. The argument follows very similar steps to those in the proof of [1, Propo-

sition 2.5] and [11, Lemmas 3.1 and 5.1]. Let bz(f) be the function defined on the

powers of monic irreducible polynomials P by

1 +
∑
j≥1

bz(P
j)uj = (1 + zuh + uh+1 + · · · )(1− uh)z, (34)

and extended multiplicatively to all f ∈ M.

Now Bh,Nh
(u, z) =

∑
f∈M bz(f)u

deg(f), and therefore, Bz(n) =
∑

f∈Mn
bz(f).

Expanding the right-hand side of Equation (34), we see that bz(P
j) = 0 for j ≤ h.

We remark that B1,Nh
(u, z) converges absolutely for |u| < q−

1
h+1 and |z| ≤ A. By

Cauchy’s integral formula over |u| = q−
1+ε
h+1 , we obtain

bz(P
j) =

1

2πi

∮
|u|=q

− 1+ε
h+1

(1 + zu+ u2 + · · ·+ uh−1)(1− u)z
du

uj+1
.

Thus,

|bz(P j)| ≤ q
j

h+1 (1+ε)MA,

for j ≥ 2, where

MA := sup

|z|≤A,|u|≤( 2
3 )

1
h+1

∣∣(1 + zu+ u2 + · · ·+ uh−1)(1− u)z
∣∣

is a constant depending on A. The rest of the proof proceeds exactly as in [11,

Lemma 3.1] to obtain ∑
0≤a≤n

|Bz(a)|
qσa

≪σ.q exp

(
MA

q2σ−1 − 1

)
,

where the implied constant is independent of n.
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Since a2A+2 < qa/3 as a approaches infinity, it follows from Lemma 2 that∑
a≥0

|Bz(a)|
qa

a2A+2 <
∑
a≥0

|Bz(a)|
q

2a
3

≪A 1

uniformly for |z| ≤ A. Thus we can apply Theorem 11 to B1,Sh
(u, z).

Proof of Theorem 5. Recall that we have∑
f∈Nh∩M

zωh(f)udeg(f) = Ch,Nh
(u, z) = Bh,Nh

(u, z)Zq(u
h)z.

Applying Theorem 11, this gives

∑
f∈Nh∩Mn

zωh(f) =
q

n
h nz−1

hzΓ(z)

h−1∑
j=0

ξjnh Bh,Nh

(
(q

1
h ξjh)

−1, z
)
+OA(q

n
h nRe(z)−2). (35)

Differentiating both sides of Equation (35) with respect to z for z close to 1 and

applying Equation (11) we get:

∑
f∈Nh∩Mn

ωh(f)z
ωh(f)−1 =

q
n
h nz−1

hz
log
(n
h

) h−1∑
j=0

ξjnh

Bh,Nh

(
(q

1
h ξjh)

−1, z
)

Γ(z)

+
q

n
h nz−1

hz

h−1∑
j=0

ξjnh

Bh,Nh

(
(q

1
h ξjh)

−1, z
)

Γ(z)

′

(36)

+Oz(1)Oε

(
q

n
h

n1−ε

)
.

Evaluating Equation (36) at z = 1 we have∑
f∈Nh∩Mn

ωh(f)

=
q

n
h

h
log
(n
h

) h−1∑
j=0

ξjnh Bh,Nh

(
(q

1
h ξjh)

−1, 1
)

+
q

n
h

h

h−1∑
j=0

ξjnh

∂
∂zBh,Nh

((q
1
h ξjh)

−1, 1)Γ(1)− Bh,Nh
((q

1
h ξjh)

−1, 1)Γ′(1)

Γ(1)2
(37)

+Oε

(
q

n
h

n1−ε

)
.

Note that we have

Bh,Nh
((q

1
h ξjh)

−1, 1) =
∏
P

(
1− 1

|P |

)(
1 +

1

|P |(1− (q
1
h ξjh)

− deg(P ))

)
. (38)



INTEGERS: 25 (2025) 27

The logarithmic derivative of Bh,Nh
(u, z) gives

∂
∂zBh,Nh

(u, z)

Bh,Nh
(u, z)

=
∑
P

(
log(1− uh deg(P ))

+
uh deg(P )(1− udeg(P ))

1− udeg(P ) + uh deg(P ) + (z − 1)uh deg(P )(1− udeg(P ))

)
, (39)

and thus

∂
∂zBh,Nh

((q
1
h ξjh)

−1, 1)

Bh,Nh
((q

1
h ξjh)

−1, 1)
=
∑
P

(
log

(
1− 1

|P |

)
+

1− (q
1
h ξjh)

− deg(P )

|P |(1− (q
1
h ξjh)

− deg(P )) + 1

)
.

(40)

Substituting the above result and Equation (38) in Equation (37) gives∑
f∈Nh∩Mn

ωh(f)

=
q

n
h

h

h−1∑
j=0

ξjnh

∏
P

(
1− 1

|P |

)(
1 +

1

|P |(1− (q
1
h ξjh)

− deg(P ))

)

×

[
log
(n
h

)
+
∑
P

(
log

(
1− 1

|P |

)
+

1− (q
1
h ξjh)

− deg(P )

|P |(1− (q
1
h ξjh)

− deg(P )) + 1

)
+ γ

]

+Oε

(
q

n
h

n1−ε

)
.

Combining the above results with the definition of B1 proves Equation (8).

We now proceed to prove Equation (9). Multiplying Equation (36) by z, differ-

entiating both sides with respect to z for z close to 1, and applying Equation (12),

we obtain∑
f∈Nh∩Mn

ωh(f)
2zωh(f)−1

=
(
1 + z log

(n
h

)) q
n
h nz−1

hz
log
(n
h

) h−1∑
j=0

ξjnh
Bh,Nh

((q
1
h ξjh)

−1, z)

Γ(z)

+
(
1 + 2z log

(n
h

)) q
n
h nz−1

hz

h−1∑
j=0

ξjnh

(
Bh,Nh

((q
1
h ξjh)

−1, z)

Γ(z)

)′

(41)

+
q

n
h nz−1

hz
z

h−1∑
j=0

ξjnh

(
Bh,Nh

((q
1
h ξjh)

−1, z)

Γ(z)

)′′

+Oz(1)Oε

(
q

n
h

n1−ε

)
.
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Now notice that(
Bh,Nh((q

1
h ξjh)

−1, z)

Γ(z)

)′′

=

(
∂
∂z

Bh,Nh((q
1
h ξjh)

−1, z)Γ(z)− Bh,Nh((q
1
h ξjh)

−1, z)Γ′(z)

Γ(z)2

)′

=
1

Γ(z)3

[
∂2

∂z2
Bh,Nh((q

1
h ξjh)

−1, z)Γ(z)2 − 2
∂

∂z
Bh,Nh((q

1
h ξjh)

−1, z)Γ(z)Γ′(z)

+ Bh,Nh((q
1
h ξjh)

−1, z)(2Γ′(z)2 − Γ(z)Γ′′(z))

]
. (42)

Differentiating from Equation (39), we have that

∂2

∂z2
Bh,Nh((q

1
h ξjh)

−1, 1)

=
∂

∂z
Bh,Nh((q

1
h ξjh)

−1, 1)
∑
P

(
log

(
1− 1

|P |

)
+

1− (q
1
h ξjh)

− deg(P )

|P |(1− (q
1
h ξjh)

− deg(P )) + 1

)

− Bh,Nh((q
1
h ξjh)

−1, 1)
∑
P

(
1− (q

1
h ξjh)

− deg(P )

|P |(1− (q
1
h ξjh)

− deg(P )) + 1

)2

=
∏
P

(
1− 1

|P |

)(
1 +

1

|P |(1− (q
1
h ξjh)

− deg(P ))

)

×

[(∑
P

(
log

(
1− 1

|P |

)
+

1− (q
1
h ξjh)

− deg(P )

|P |(1− (q
1
h ξjh)

− deg(P )) + 1

))2

−
∑
P

(
1− (q

1
h ξjh)

− deg(P )

|P |(1− (q
1
h ξjh)

− deg(P )) + 1

)2]
. (43)

Evaluating Equation (41) at z = 1, recalling that Γ(1) = 1, Γ′(1) = −γ, Γ′′(1) =
γ2 + ζ(2), and inserting Equation (42) in Equation (41) gives∑

f∈Nh∩Mn

ωh(f)
2

=
(
1 + log

(n
h

)) q
n
h

h
log
(n
h

) h−1∑
j=0

ξjnh Bh,Nh((q
1
h ξjh)

−1, 1) +
(
1 + 2 log

(n
h

))

× q
n
h

h

h−1∑
j=0

ξjnh

[
∂

∂z
Bh,Nh((q

1
h ξjh)

−1, 1) + γBh,Nh((q
1
h ξjh)

−1, 1)

]

+
q

n
h

h

h−1∑
j=0

ξjnh

[
∂2

∂z2
Bh,Nh((q

1
h ξjh)

−1, 1) + 2γ
∂

∂z
Bh,Nh((q

1
h ξjh)

−1, 1)

+(γ2 − ζ(2))Bh,Nh((q
1
h ξjh)

−1, 1)
]
+Oε

(
q

n
h

n1−ε

)
.
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Inserting Equations (38), (40), and (43) in the above expression gives∑
f∈Nh∩Mn

ωh(f)
2

=
q

n
h

h

h−1∑
j=0

ξjnh

∏
P

(
1− 1

|P |

)(
1 +

1

|P |(1− (q
1
h ξjh)

− deg(P ))

)

×

[(
log
(n
h

))2
+ log

(n
h

)
×

[
1 + 2γ + 2

∑
P

(
log

(
1− 1

|P |

)
+

1− (q
1
h ξjh)

− deg(P )

|P |(1− (q
1
h ξjh)

− deg(P )) + 1

)]

+

(∑
P

(
log

(
1− 1

|P |

)
+

1− (q
1
h ξjh)

− deg(P )

|P |(1− (q
1
h ξjh)

− deg(P )) + 1

)
+ γ

)2

+
∑
P

(
log

(
1− 1

|P |

)
+

1− (q
1
h ξjh)

− deg(P )

|P |(1− (q
1
h ξjh)

− deg(P )) + 1

)
+ γ − ζ(2)

−
∑
P

(
1− (q

1
h ξjh)

− deg(P )

|P |(1− (q
1
h ξjh)

− deg(P )) + 1

)2


+Oε

(
q

n
h

n1−ε

)
.

Combining the above with the definition of B1 proves Equation (9).

An explicit expression for |Nh ∩Mn| can be found in [11, Lemma 5.3]. Indeed,
for n ≥ h, we have

|Nh ∩Mn|

=
q

n
h

h

h−1∑
j=0

ξjnh

∏
P

(
1− 1

|P |

)(
1 +

1

|P |(1− (q
1
h ξjh)

− deg(P ))

)
+Oε

(
q

n
h+1+εn

)
.

The variance can be then directly computed by combining the above with Equations
(8) and (9).

4.2. First and Second Moments of ωk for h-Full Polynomials

Here we consider the case k > h. We have that Ck,Sh
(u, z) has poles of order 1 when

u = 1
qh
. We extract these poles as

Bk,Nh
(u, z) = Zq(u

h)−1Ck,Sh
(u, z)

=
∏
P

(
1 +

u(h+1) deg(P )(1− u(h−1) deg(P ))

1− udeg(P )
+ (z − 1)uk deg(P )(1− uh deg(P ))

)
,
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where Bk,Nh
(u, z) is absolutely convergent for |u| < q−

1
h+1 and |z| ≤ A.

We use Perron’s formula (Theorem 9) to compute the first moment and obtain∑
f∈Nh∩Mn

zωk(f) =
1

2πi

∮
Bk,Nh

(u, z)

(1− quh)un

du

u
,

where the integral takes place in a small circle around the origin. We move the

circle to |u| = q−ε− 1
h+1 and obtain the residues at u = (q

1
h ξjh)

−1. This gives

∑
f∈Nh∩Mn

zωk(f) =−
h−1∑
j=0

Res
u=(q

1
h ξjh)

−1

Bk,Nh
(u, z)

(1− quh)un+1

+
1

2πi

∮
|u|=q

−ε+ 1
h+1

Bk,Nh
(u, z)

(1− quh)un

du

u

=

h−1∑
j=0

(q
1
h ξjh)

n+1Bk,Nh
((q

1
h ξjh)

−1, z)
1

q
1
h ξjh

∏
m ̸=j

(
1− ξm−j

h

)
+Oz(1)Oε

(
q

n
h+1+εn

)
=
q

n
h

h

h−1∑
j=0

ξjnh Bk,Nh
((q

1
h ξjh)

−1, z) +Oz(1)Oε

(
q

n
h+1+εn

)
. (44)

Proof of Theorem 7. To recover the first moment, we differentiate and evaluate the

above equation at z = 1. This gives

∑
f∈Nh∩Mn

ωk(f) =
q

n
h

h

h−1∑
j=0

ξjnh
∂

∂z
Bk,Nh

((q
1
h ξjh)

−1, 1) +Oε

(
q

n
h+1+εn

)
. (45)

We have

Bk,Nh
((q

1
h ξjh)

−1, 1) =
∏
P

(
1− 1

|P |

)(
1 +

1

|P |(1− (q
1
h ξjh)

− deg(P ))

)
. (46)

The logarithmic derivative gives

∂
∂zBk,Nh

(u, z)

Bk,Nh
(u, z)

=
∑
P

uk deg(P )(1− udeg(P ))

(1− udeg(P ) + uh deg(P )) + (z − 1)uk deg(P )(1− udeg(P ))
,

and thus

∂
∂zBk,Nh

((q
1
h ξjh)

−1, 1)

Bk,Nh
((q

1
h ξjh)

−1, 1)
=
∑
P

|P |(q 1
h ξjh)

−k deg(P )(1− (q
1
h ξjh)

− deg(P ))

|P |(1− (q
1
h ξjh)

− deg(P )) + 1
. (47)
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Applying the above results to Equation (45) gives the first moment Equation (10).

We proceed to compute the second moment. Differentiating Equation (44), mul-

tiplying by z, differentiating again, and setting z = 1, we have

∑
f∈Nh∩Mn

ωk(f)
2 =

q
n
h

h

h−1∑
j=0

ξjnh

(
∂2

∂z2
Bk,Nh

((q
1
h ξjh)

−1, 1) +
∂

∂z
Bk,Nh

((q
1
h ξjh)

−1, 1)

)
+Oε

(
q

n
h+1+εn

)
. (48)

For the second derivative we have

∂2

∂z2
Bk,Nh

((q
1
h ξjh)

−1, 1)

=
∂

∂z
Bk,Nh

((q
1
h ξjh)

−1, 1)
∑
P

|P |(q 1
h ξjh)

−k deg(P )(1− (q
1
h ξjh)

− deg(P ))

|P |(1− (q
1
h ξjh)

− deg(P )) + 1

− Bk,Nh
((q

1
h ξjh)

−1, 1)
∑
P

(
|P |(q 1

h ξjh)
−k deg(P )(1− (q

1
h ξjh)

− deg(P ))

|P |(1− (q
1
h ξjh)

− deg(P )) + 1

)2

=
∏
P

(
1− 1

|P |

)(
1 +

1

|P |(1− (q
1
h ξjh)

− deg(P ))

)

×

(∑
P

|P |(q 1
h ξjh)

−k deg(P )(1− (q
1
h ξjh)

− deg(P ))

|P |(1− (q
1
h ξjh)

− deg(P )) + 1

)2

−
∑
P

(
|P |(q 1

h ξjh)
−k deg(P )(1− (q

1
h ξjh)

− deg(P ))

(|P |(1− (q
1
h ξjh)

− deg(P )) + 1)

)2
 .

Combining this with Equations (46) and (47) in Equation (48), we get the desired

result.

4.3. Normal Order and an Erdős–Kac Result for h-Full Polynomials

The goal of this section is to prove Theorems 6 and 8. We start by proving Theorems

6, which in particular implies that ωh has normal order over the h-full polynomials.

Proof of Theorem 6. Our argument follows very closely the proof of Theorem 2 and

[11, Theorem 1.6]. We will prove that, as n → ∞,

1

|Nh ∩Mn|
∑

f∈Nh∩Mn

ωh(f)− log
(
n
h

)√
log
(
n
h

)
v

→ Cv,

where Cv is given by Equation (27).
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As before we will consider the moment generating function evaluated at z = et,

Ch,Nh
(u, et) =

∑
f∈Nh∩M

etωk(f)udeg(f) =
∏
P

(1 + etuh deg(P ) + u(h+1) deg(P ) + · · · ),

and we extract the singularities at uh = 1
q as

Bh,Nh
(u, et) = Zq(u

h)−etCh,Nh
(u, et).

By applying Theorem 11 we get∑
f∈Nh∩Mn

eω1(f)t =
q

n
h net−1

het

h−1∑
s=0

ξsnh
Γ(et)

Bh,Nh

(
(q

1
h ξsh)

−1, et
)
+OA(q

n
h nRe(et)−2).

By considering the moment generating function, and combining with Equation (30),

we have, as in the h-free case,

E
(
ωℓ
h

)
=

(
h−1∑
s=0

ξsnh Bh,Nh

(
(q

1
h ξsh)

−1, 1
))−1 ℓ∑

j=0

(
ℓ

j

)
hjTj

(
log
(n
h

))
(49)

×
h−1∑
s=0

ξsnh

Bh,Nh

(
(q

1
h ξsh)

−1, et
)

Γ(et)

(ℓ−j)
∣∣∣∣∣∣∣
t=0

+Oε

(
1

n1−ε

)
.

Notice that

1

|Nh ∩Mn|
∑

f∈Nh∩Mn

ωh(f)− log
(
n
h

)√
log
(
n
h

)
v

=
1(

log
(
n
h

)) v
2

v∑
ℓ=0

(
v

ℓ

)
E(ωℓ

h)(−1)v−ℓ
(
log
(n
h

))v−ℓ

.

Combining with Equation (49), we then have

1(
log
(
n
h

)) v
2

v∑
ℓ=0

(
v

ℓ

)
E(ωℓ

h)(−1)v−ℓ
(
log
(n
h

))v−ℓ

=

(∑h−1
s=0 ξsnh Bh,Nh

(
(q

1
h ξsh)

−1, 1
))−1

(
log
(
n
h

)) v
2

v∑
ℓ=0

(
v

ℓ

) ℓ∑
j=0

(
ℓ

j

)
Tj

(
log
(n
h

))
(50)

×
h−1∑
s=0

ξsnh

Bh,Nh

(
(q

1
h ξsh)

−1, et
)

Γ(et)

(ℓ−j)
∣∣∣∣∣∣∣
t=0

(−1)v−ℓ
(
log
(n
h

))v−ℓ

+Oε

(
1

n1−ε

)
.
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Consider the change of variables u = v − ℓ, m = v − ℓ+ j. Then the main term in

Equation (50) becomes(∑h−1
s=0 ξsnh Bh,Nh

(
(q

1
h ξsh)

−1, 1
))−1

(
log
(
n
h

)) v
2

×
v∑

m=0

h−1∑
s=0

ξsnh

Bh,Nh

(
(q

1
h ξsh)

−1, et
)

Γ(eht)

(v−m)
∣∣∣∣∣∣∣
t=0

×
m∑

u=0

(
v

u

)(
v − u

m− u

)
Tm−u

(
log
(n
h

))
(−1)u

(
log
(n
h

))u

=

(∑h−1
s=0 ξsnh Bh,Nh

(
(q

1
h ξsh)

−1, 1
))−1

(
log
(
n
h

)) v
2

×
v∑

m=0

(
v

m

) h−1∑
s=0

ξsnh

Bh,Nh

(
(q

1
h ξsh)

−1, et
)

Γ(eht)

(v−m)
∣∣∣∣∣∣∣
t=0

×
m∑

u=0

(
m

u

)
Tm−u

(
log
(n
h

))
(−1)u

(
log
(n
h

))u
.

Similarly to the h-free case we get, for v even, that the main term should come from

setting m = v, which leads to

1(
log
(
n
h

)) v
2

v∑
ℓ=0

(
v

ℓ

)
E(ωh(f)

ℓ)(−1)v−ℓ
(
log
(n
h

))v−ℓ

=

(∑h−1
s=0 ξsnh Bh,Nh

(
(q

1
h ξsh)

−1, 1
))−1

(
log
(
n
h

)) v
2

h−1∑
s=0

ξsnh

Bh,Nh

(
(q

1
h ξsh)

−1, 1
)

Γ(1)


×

v∑
u=0

(
v

u

)
Tv−u

(
log
(n
h

))
(−1)u

(
log
(n
h

))u
+O

(
1

log n

)
=

v!

2
v
2

(
v
2

)
!
+O

(
1

log n

)
,

while for v odd we get

O

(
1√
log n

)
.

Before proceeding to the proof of Theorem 8 we need the following auxiliary

result.
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Lemma 5. Let n ≥ ℓ > h > 0 be integers. Then

|Nh ∩Mn ∩ Sℓ| =
q

n
h

h

h−1∑
j=0

ξjnh HNh,Sℓ

(
(q

1
h ξjh)

−1
)
+Oε

(
q

n
h+1+εn

)
, (51)

where HNh,Sℓ
(u) is defined below by Equation (53). In addition, let P0 ∈ P be fixed.

Then ∑
f∈Nh∩Mn∩Sℓ

(f,P0)=1

1 =
q

n
h

h

h−1∑
j=0

ξjnh HNh,Sℓ

(
(q

1
h ξjh)

−1
)

×

(
1− (q

1
h ξjh)

− deg(P0)

1− (q
1
h ξjh)

− deg(P0) + (q
1
h ξjh)

−h deg(P0) − (q
1
h ξjh)

−ℓ deg(P0)

)
+Oε

(
q

n
h+1+εn

)
.

(52)

Proof. We consider the generating series for the polynomials that are simultaneously

h-full and k-free,

GNh,Sℓ
(u) :=

∑
f∈Nh∩Sℓ∩M

udeg(f) =
∏
P

(
1 + uh deg(P ) + · · ·+ u(ℓ−1) deg(P )

)
=
∏
P

(
1 +

uh deg(P ) − uℓ deg(P )

1− udeg(P )

)
.

We extract the poles at uh = 1
q as follows,

HNh,Sℓ
(u) =Zq(u

h)−1GNh,Sℓ
(u)

=
∏
P

(
1 +

u(h+1) deg(P ) − uℓ deg(P ) − u2h deg(P ) + u(h+ℓ) deg(P )

1− udeg(P )

)
, (53)

where HNh,Sℓ
(u) is absolutely convergent for |u| < q−

1
h+1 .

By Perron’s formula (Theorem 9), and by moving the integral to |u| = q−ε− 1
h+1 ,∑

f∈Nh∩Sℓ∩Mn

1 =
1

2πi

∮
HNh,Sℓ

(u)

1− quh

du

un+1

=−
h−1∑
j=0

Res
u=(q

1
h ξjh)

−1

HNh,Sℓ
(u)

(1− quh)un+1

+
1

2πi

∮
|u|=q

−ε− 1
h+1

HNh,Sℓ
(u)

1− quh

du

un+1

=
q

n
h

h

h−1∑
j=0

ξjnh HNh,Sℓ

(
(q

1
h ξjh)

−1
)
+Oε

(
q

n
h+1+εn

)
.
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This gives a proof of Equation (51). To prove Equation (52), we can proceed

similarly, but using the generating series

GP0

Nh,Sℓ
(u) :=

∑
f∈Nh∩Sℓ∩M

(f,P0)=1

udeg(f) =
∏

P ̸=P0

(
1 +

uh deg(P ) − uℓ deg(P )

1− udeg(P )

)

instead.

Proof of Theorem 8. As in the proof of Theorem 4, let G(f) be a nondecreasing

function G : Nh ∩M → R≥0. First assume that there is an f0 ∈ Nh ∩M such that

G(f0) > 0. Therefore G(f) > 0 for all f ∈ Nh ∩ M such that deg(f) > deg(f0).

Let n > deg(f0) and consider the following set:

ON ,0(n, h) := {f ∈ Nh ∩Mn : ωk(f) = 0}.

It can be seen that

Nh ∩Mn ∩ Sk ⊆ ON ,0(n, h),

and therefore

|ON ,0(n, h)| ≥ |Nh ∩Mn ∩ Sk| =
q

n
h

h

h−1∑
j=0

ξjnh HNh,Sk

(
(q

1
h ξjh)

−1
)
+Oε

(
q

n
h+1+εn

)
by Lemma 5.

Since h and k are fixed, this means that |ON ,0(n, h)| is ≫ q
n
h . As in the case

of the proof of Theorem 4, we conclude that ωk(f) does not have normal order G

when G is not the constant function 0.

Now, if G(f) = 0 for all f ∈ Nh ∩M we define

ON ,1(n, h) := {f ∈ Nh ∩Mn : ωk(f) = 1}.

Let P ∈ P1 be a fixed monic irreducible polynomial of degree 1. It can be seen

that:

|ON ,1(n, h)| ≥
∑

f∈Nh∩Mn, νP (f)=k
νQ(f)<k,∀Q∈P,Q̸=P

1

≥
∑

f∈Nh∩Mn−k∩Sk

(f,P )=1

1

=
q

n−k
h

h

h−1∑
j=0

ξ
j(n−k)
h HNh,Sk

(
(q

1
h ξjh)

−1
)

×

(
1− (q

1
h ξjh)

−1

1− (q
1
h ξjh)

−1 + (q
1
h ξjh)

−h − (q
1
h ξjh)

−k

)
+Oε

(
q

n−k
h+1 +εn

)
,
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where we have applied Lemma 5.

Since h and k are fixed, this means that |ON ,1(n, h)| is ≫ q
n
h . As in the case of

Theorem 4, we conclude that ωk(f) does not have normal order G when G is the

constant function 0.

5. Conclusion

This work represents a natural merging of questions from both [3] and [11]. Namely,

we have taken the functions ωk from [3], which are refinements of the number of

distinct prime factors function ω, and have considered them over the subfamilies of

h-free and h-full polynomials as in [11]. The current results support the findings

of the previous works. We recall from [11] that a motivation for studying and

comparing results in these two families of polynomials lies in the fact that the h-

free polynomials represent a positive proportion of the whole polynomial family,

while the h-full polynomials do not, as their size is of order q
n
h , while the size of the

full family is of order qn. It is therefore more surprising that the h-full polynomials

satisfy an Erdős-Kac type of result than the h-free polynomials satisfy such result.

From this work, we now conclude that the weight of this behaviour is carried by ω1

for the h-free polynomials, and by ωh for the h-full polynomials. This phenomenon

is not so surprising for ω1 and the h-free polynomials, since it is exactly as observed

in [3]. However, the case of ωh and the h-full polynomials is less immediate to

predict.

The most evident direction for extending this work is to consider the number

field case, naturally restricting the results of [7] to h-free and h-full numbers. Das,

Kuo, and Liu have informed us that they are pursuing this direction.

Other directions of future research could include the study of intersection sets of

the form Nh ∩Sk, as well as more general settings, such as considering polynomials

f satisfying that νP (f) belongs to a union of some fixed intervals.
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[11] M. Laĺın and Z. Zhang, The number of prime factors in h-free and h-full polynomials over
function fields, Publ. Math. Debrecen 104 (3-4) (2024), 377–421.
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