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Abstract

We prove that the set N of all nonzero generalized nonagonal numbers is an additive
uniqueness set. If a multiplicative function f satisfies the equation

f(a+ b) = f(a) + f(b)

for all a, b ∈ N , then f is the identity function.

1. Introduction

In 1992, C. Spiro [11] introduced the notion of an additive uniqueness set, briefly

AU set, E ⊂ N of a subset S of arithmetic functions, which means f ∈ S is uniquely

determined by the condition f(a + b) = f(a) + f(b) for all a, b ∈ E. She showed

that the set of primes is an additive uniqueness set for the set

S = {f | f is multiplicative and f(p0) ̸= 0 for some prime p0},

where f is multiplicative if f(1) = 1 and f(ab) = f(a)f(b) for all a and b with

gcd(a, b) = 1. Since her paper was published, many mathematicians have been

studying the k-additive uniqueness, briefly k-AU, of various sets of natural numbers

with the condition

f(a1 + a2 + · · ·+ ak) = f(a1) + f(a2) + · · ·+ f(ak).

In 1999, Chung and Phong [2] showed that the set of triangular numbers is an

AU set for the set of multiplicative functions. This set is also a k-AU set with k ≥ 3
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[9]. However, the set of squares is not a 2-AU set for multiplicative functions [1]

and it is a k-AU set for k ≥ 3 [8].

Let us consider the additive uniqueness of polygonal numbers for multiplicative

functions to generalize the above results. The author and colleagues [6] proved that

the set P = {n(3n−2)
2 |n ∈ Z, n ̸= 0} of generalized pentagonal numbers is an AU

set for multiplicative functions. This is also a k-AU set for k ≥ 3 [3, 10].

It is much more difficult to consider the set P+ = {n(3n−2)
2 |n ∈ Z, n ≥ 1} of

ordinary pentagonal numbers. This set is also a 2-AU set, which was proved in [7].

The set H+ = {n(2n − 1) |n ∈ Z, n ≥ 1} of ordinary hexagonal numbers is also a

2-AU set [7]. In [5], it is proved that H+ is also a k-AU set for all k ≥ 3. Recently,

Hasanalizade and the author [4] showed that the set O = {n(n− 2) |n ∈ Z, n ̸= 0}
of generalized octagonal numbers is not a 2-AU set and is not a 3-AU set, but it is

a k-AU set for k ≥ 4.

In this article we prove the additive uniqueness of the set

N =

{
Nn =

n(7n− 5)

2

∣∣∣∣ n ∈ Z, n ̸= 0

}
= {1, 6, 9, 19, 24, 39, 46, 66, 75, 100, 111, 141, 154, . . . }

of generalized nonagonal numbers. The following theorem holds.

Theorem 1. If a multiplicative function f satisfies

f(a+ b) = f(a) + f(b)

for all nonzero generalized nonagonal numbers a and b, then f is the identity func-

tion.

2. Strategy

We use induction to prove the main theorem. That is, assuming f(n) = n for all

n < N , we show that f(N) = N . If N = ab with a, b ≥ 2 and gcd(a, b) = 1, then

f(N) = f(a) f(b) = ab = N by the induction hypothesis. So we may check whether

f(pr) = pr or not for primes p.

In proving we use f(Na +Nb) = f(Na) + f(Nb) for suitable a and b. Since two

factors n and 7n− 5 of 2Nn = n(7n− 5) can have a common divisor 5, we cannot

split f(Nn) into f(n) f(7n− 5) for the case.

The proof is done in a few steps. First, we evaluate f(n) for some n’s in Lemma 1.

Using this evaluation, in Sections 3-5, we prove that f(pr) = pr for p = 3, 5, 7. In

Section 6 we prove that f(2r) = 2r. Finally, in Section 7, we prove that f(pr) = pr

for other primes p.



INTEGERS: 25 (2025) 3

For convenience, we introduce a notation for relatively prime factors. If n = ab

and gcd(a, b) = 1, then we write n = a × b. For example, n = 2 · 2 · 3 · 5 can be

written as

4× 3 · 5 = 4 · 3× 5 = 3× 4 · 5,

which means

gcd(4, 3 · 5) = gcd(4 · 3, 5) = gcd(3, 4 · 5) = 1.

Lemma 1. f(n) = n for n ≤ 11.

Proof. We have f(2) = 2. Note that

f(3) f(4) = f(2 · 3 + 2 · 3) = f(2) f(3) + f(2) f(3) = 4f(3).

If f(3) = 0, then we cannot determine f(4) yet. In this case, we have f(9) = 0 from

f(3) f(5) = f(9) + f(2) f(3)

and f(5) = 1
2 from f(2) f(5) = f(1) + f(9).

Also, f(7) = f(1) + f(2) f(3) = 1 and, thus, f(4) = f(19) by f(4) f(7) =

f(9) + f(19). Then f(4) = f(19) = −2 from

f(4) f(5) = f(1) + f(19)

and f(23) = 1
2 from

f(2) f(5) f(7) = f(3) f(8) + f(2) f(23).

A contradiction occurs in solving

f(4) f(23) = f(2) f(23) + f(2) f(23)

and we can conclude that f(3) ̸= 0.

Then f(4) = 4 from f(3) f(4) = f(2) f(3) + f(2) f(3). Note that

f(7) = f(2) f(3) + f(1) ⇐⇒ f(7) = 2f(3) + 1

f(2) f(5) = f(9) + f(1) ⇐⇒ f(9) = 2f(5)− 1

f(4) f(5) = f(19) + f(1) ⇐⇒ f(19) = 4f(5)− 1

f(4) f(7) = f(19) + f(9) ⇐⇒ f(19) = 4f(7)− f(9).

We obtain

4f(5)− 1 = 4(2f(3) + 1)− (2f(5)− 1)

from the last two equations and thus

3f(5) = 4f(3) + 3.
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Then, since

f(3) f(5) = f(9) + f(2) f(3) = 2f(5)− 1 + 2f(3),

we can find two solutions:

f(3) = 3, f(5) = 5, f(7) = 7, f(9) = 9, f(19) = 19;
f(3) = − 1

4 , f(5) = 2
3 , f(7) = 1

2 , f(9) = 1
3 , f(19) = 5

3 .

Next, we deduce that f(8) = 8 or f(8) = − 2
3 from

f(2) f(3) f(5) = f(3) f(8) + f(2) f(3).

The second solution set cannot satisfy

f(3) f(11) = f(3) f(8) + f(9)

f(8) f(9) = f(2) f(3) f(11) + f(2) f(3).

So, f(n) is determined to be n up to 11.

3. Proof for f(3r) = 3r

The basic idea of the proof is to use induction under the assumption f(n) = n for

all n < 3r. This assumption is too loose. In Section 7 we use f(3r) = 3r to prove

f(ps) = ps for all primes p > 7. In this case we need to check f(3r) for some 3r > ps

with the induction hypothesis that f(n) = n for all n < pr. To do this we need the

stronger induction hypothesis for f(3r). That is, we should find a function α(x)

such that f(n) = n for all n < α(3r) < pr.

Theorem 2. Let α(x) = 14
17 · 2

3 · x − 12
17 . If f(n) = n for all n < α(3r), then

f(3r) = 3r

Proof. The weird coefficients of α(x) are determined by the extremal inequality of

Case I of Section 7.

If r = 2s, then we can show easily f(32s) = 32s by using

N−m +Nm = m× 7m+ 5

2
+m× 7m− 5

2
= 7×m2

with m = 3s. Note the a × b notation and that f(32) = 32 was already showed in

Lemma 1 and

max

{
m,

7m+ 5

2
,
7m− 5

2

}
=

7m+ 5

2
< α(m2) =

14

17
· 2
3
m2 − 12

17

when m ≥ 9.
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Now assume that r = 2s + 1. We have that 32s+1 ≡ 3, 13, 5 (mod 14). We

consider it in three cases.

Case I: 32s+1 ≡ 3 · 1 (mod 14). We let 32s+1 = 3(14m+ 1) and use

N4m+1 +N−10m = (4m+ 1)(14m+ 1) + 25m(14m+ 1)

= (14m+ 1)(29m+ 1).

Note that m ≡ 1 (mod 3) and, in the first term (4m+ 1)(14m+ 1),

gcd(4m+ 1, 14m+ 1) = gcd(5,m− 1) = 1 or 5.

Since 14m + 1 = 32s, we have that m − 1 is not divisible by 5 and N4m+1 =

(4m+ 1)× (14m+ 1) by the a× b notation. Similarly, N−10m = 25m× (14m+ 1).

For the second term 25m(14m+ 1), if m = 5k, then 14 · 5k + 1 = 32s. However,

this is impossible by comparing both sides modulo 8. Thus, m has a divisor d such

that d ̸= 1, 5 and gcd(m/d, d) = 1.

Now consider (14m+ 1)(29m+ 1). Since 3 | (m− 1), 5 ∤ (m− 1) and

gcd(14m+ 1, 29m+ 1) = gcd(14m+ 1,m− 1) = gcd(15,m− 1),

we have that gcd(14m+ 1, 29m+ 1) = 3. Thus,

f(N4m+1) + f(N−10m) = f(4m+ 1) f(14m+ 1) + f
(
25 · m

d

)
f(d) f(14m+ 1)

and

f(N4m+1 +N−10m) = f

(
3(14m+ 1)× 29m+ 1

3

)
= f(32s+1) f

(
29m+ 1

3

)
.

Then, since

max

{
4m+ 1, 14m+ 1, 25 · m

d
, d,

29m+ 1

3

}
= 14m+ 1

< α(3(14m+ 1)) =
14

17
· 2
3
· 3(14m+ 1)− 12

17
,

we can deduce that f(32s+1) = 32s+1 by the induction hypothesis.

Case II: 32s+1 ≡ 3 · 9 (mod 14). For this case, 32s+1 = 3(14m+ 9) and we use

N3m+2 +N−12m−7 =
3

2
(3m+ 2)(7m+ 3) + 3(12m+ 7)(14m+ 9)

=
9

2
(7m+ 4)(17m+ 11).
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Note that m is a multiple of 9, since 14m + 9 = 32s. Also, comparing both

sides of 14m + 9 = 32s modulo 8, we have that m is a multiple of 4. Similarly, we

deduce that gcd(3m + 2, 7m + 3) = gcd(5,m − 1) = 1 by comparing both sides of

14m+9 = 32s modulo 5. Thus, the first term can be written as 32 × 3m+2
2 × 7m+3

3 .

Since 14m+ 9 = 32s, we have that gcd(12m+ 7, 14m+ 9) = 1 and thus the second

term can be written as (12m+ 7)× 3(14m+ 9).

Since the last term can be written as 9× 7m+4
2 × (17m+ 11),

max

{
9,

3m+ 2

2
,
7m+ 3

3
, 12m+ 7,

7m+ 4

2
, 17m+ 11

}
= 17m+ 11

< α(3(14m+ 9)) =
14

17
· 2
3
· 3(14m+ 9)− 12

17

and f(32s+1) = 32s+1 by the induction.

Case III: 32s+1 ≡ 3 · 11 (mod 14). In this case, 2s + 1 ≥ 5 and we consider

32s+1 = 33(14m+ 9) instead of the form 3(14m+ 11). Note that

N−6m−3 +N12m+8 = 3(2m+ 1)(21m+ 13) + 6(3m+ 2)(28m+ 17)

= 9(5m+ 3)(14m+ 9)

and

gcd(2m+ 1, 21m+ 13) = gcd(5,m+ 3),

gcd(3m+ 2, 28m+ 17) = gcd(5,m− 1),

gcd(5m+ 3, 14m+ 9) = gcd(m, 3) = 3.

If m+3 ≡ 0 (mod 5), then 14m+9 ≡ 2 (mod 5). We have 32(s−1) ≡ 2 (mod 5)

has no solution. So, gcd(2m+1, 21m+13) = 1. By the similar reasoning gcd(3m+

2, 28m+ 17) = 1, too. Thus, we can write, by the a× b notation,

N−6m−3 = 3× (2m+ 1)× (21m+ 13)

N12m+8 = 3× 2(3m+ 2)× (28m+ 17)

N−6m−3 +N12m+8 =
5m+ 3

3
× 27(14m+ 9) =

5m+ 3

3
× 32s+1.

Then, since the maximal factor 28m + 17 is smaller than α(33(14m + 9)), we can

conclude that f(32s+1) = 32s+1 by the induction hypothesis.

4. Proof for f(5r) = 5r

In the previous section we proved that f(3r) = 3r by induction under the stronger

assumption that f(n) = n for all n < α(3r) < 3r. We need the similar condition
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for f(5r). That is, the assumption f(n) = n for all n < 5r is too loose to be used

in proving f(ps) = ps for other prime p > 7 and p = 2.

Theorem 3. Let β(x) = 1
4x. If f(n) = n for all n ≤ β(5r) with r ≥ 3, then

f(5r) = 5r.

Proof. The coefficient of β(x) can be reduced to 17
70 by the extremal inequality of

Case I-ii of this proof. For convenience, it is enough to set β(x) = 1
4x.

When r is even, we set r = 2s and use

N−m +Nm = 5m× 7m+ 5

2 · 5
+ 5m× 7m− 5

2 · 5
= 7×m2

with m = 5s. Then f(52s) = 52s by the induction hypothesis, since the maximal

factor 5m = 5
√
5r is smaller than β(m2).

Now assume that r is odd. Then

5r = 52s+1 ≡ 5, 13, 17 (mod 28) and 5r−1 = 52s ≡ 1, 9, 25 (mod 28).

We check f(5r) = f(5 · (28m+ t)) with t ∈ {1, 9, 25}.
Case I: 52s+1 = 5(28m+ 1) ≡ 5 (mod 28). In this case we have m ≡ 8 (mod 25).

We will consider two subcases.

I-i: m ̸≡ 1 (mod 3). Note that

N2m +N8m+1 = m(14m− 5) + (8m+ 1)(28m+ 1)

= (14m+ 1)(17m+ 1).

Since gcd(m, 14m−5) = 1 and gcd(8m+1, 28m+1) = 5, we can write, by the a× b

notation,

f(N2m) + f(N8m+1) = f
(
m× (14m− 5)

)
+ f

(
8m+ 1

5
× 5(28m+ 1)

)
= f(m) f(14m− 5) + f

(
8m+ 1

5

)
f(5r).

On the other hand, since gcd(14m+ 1, 17m+ 1) = gcd(3,m− 1) = 1,

f(N2m +N8m+1) = f
(
(14m+ 1)× (17m+ 1)

)
= f(14m+ 1) f(17m+ 1).

Thus, maximal factor 17m + 1 = 17
5·285

r + 11
28 is smaller than β(5r) = 1

4 · 5r and

f(5r) = 5r.

I-ii: m ≡ 1 (mod 3). For this case, we use

N−2m +N8m+1 = m(14m+ 5) + (8m+ 1)(28m+ 1)

= (14m+ 1)(34m+ 1).
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We have that gcd(m, 14m + 5) = 1, gcd(8m + 1, 28m + 1) = 5, and gcd(14m +

1, 34m+ 1) = gcd(2m+ 3, 10) = 1. Thus,

f(N−2m) + f(N8m+1) = f
(
m× (14m+ 5)

)
+ f

(
8m+ 1

5
× 5(28m+ 1)

)
= f(m) f(14m+ 5) + f

(
8m+ 1

5

)
f(5r)

and

f(N−2m +N8m+1) = f
(
(14m+ 1)× (34m+ 1)

)
= f(14m+ 1) f(34m+ 1).

The maximal factor 34m + 1 = 17
5·145

r − 3
14 is smaller than β(5r) = 1

4 · 5r and

f(5r) = 5r.

Case II: 52s+1 = 5(28m+ 9) ≡ 17 (mod 28). We have m ≡ 22 (mod 25). We use

N−2m−1 +N4m+2 = (2m+ 1)(7m+ 6) + (2m+ 1)(28m+ 9)

= (2m+ 1)(7m+ 3).

Note that

f(N−2m−1) + f(N4m+2)

= f

(
52 × 2m+ 1

5
× 7m+ 6

5

)
+ f

(
2m+ 1

5
× 5(28m+ 9)

)
and

f(N−2m−1 +N4m+2) = f
(
(2m+ 1)× (7m+ 3)

)
.

Thus, f(5r) = 5r, since the maximal factor 7m + 3 = 1
5·45

r + 3
4 is smaller than

β(5r) = 1
4 · 5r.

Case III: 52s+1 = 5(28m+ 25) ≡ 13 (mod 28). Note that m ≡ 0 (mod 25) and

N6m+5 +N−12m−10 = 3(6m+ 5)(7m+ 5) + 3(6m+ 5)(28m+ 25)

= 15(6m+ 5)(7m+ 6).

Then

f(N6m+5) + f(N−12m−10)

= f

(
52 × 6m+ 5

5
× 3(7m+ 5)

5

)
+ f

(
3× 2m+ 1

5
× 5(28m+ 25)

)
and

f(N6m+5 +N−12m−10) = f
(
(6m+ 5)× (7m+ 6)

)
.

Thus, f(5r) = 5r, since the maximal factor 7m + 6 = 1
5·4 · 5r − 1

4 is smaller than

β(5r) = 1
5·4 · 5r.
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5. Proof for f(7r) = 7r

We prove that f fixes 7r. To do this we need to consider powers of 3 under some

assumption, which was proved to be fixed by f in Section 3.

Theorem 4. If f(n) = n for all n < 7r, then f(7r) = 7r.

Proof. If r = 2s+ 1, then f(72s+1) = 72s+1 by

N−m +Nm = m× 7m+ 5

2
+m× 7m− 5

2
= 7m2,

where m = 7s.

If r is even, note that 7r = 12m + 1 for some m. Then m is divisible by 4 and

m ≡ 0, 4 (mod 5). Note that

N−12m−1 +N9m+2 = 6(7m+ 1)(12m+ 1) + 9(7m+ 1) · 9m+ 2

2

= 15(7m+ 1) · 15m+ 2

2

and each pair of linear factors is relatively prime. Thus, each factors can be split,

but we cannot split 3 and 7m+ 1 yet.

If 7m + 1 = 3k × d for some d ̸= 1, 3, then d ≥ 11, since gcd(2, 7m + 1) =

gcd(5, 7m+ 1) = 1. In this case,

N−12m−1 = 2× 3 · 7m+ 1

d
× d× (12m+ 1)

N9m+2 = 9 · 7m+ 1

d
× d× 9m+ 2

2

N−12m−1 +N9m+2 = 5× 3 · 7m+ 1

d
× d× 15m+ 2

2

and each factor is smaller than 7r = 12m+ 1. Hence, f(7r) = 7r.

Now assume 7m+ 1 = 3k. Then

7r = 12 · 3
k − 1

7
+ 1 if and only if 7r+1 = 12 · 3k − 5.

This equation has a trivial solution r = k = 0. If r ≥ 1, then we obtain k = 42ℓ+18

by comparing both sides modulo 72.

Note that 342 ≡ 1 (mod 43) and ord43 7 = 6. Thus,

7r+1 ≡ 12 · 318 − 5 ≡ 28 (mod 43).

However, it has no solution for r. Hence, 7m + 1 cannot be a power of 3 and we

can conclude that f(7r) = 7r.
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6. Proof for f(2r) = 2r

To prove 2r is fixed by f , we need to consider powers of 5.

Theorem 5. If f(n) = n for all n < 2r, then f(2r) = 2r.

Proof. Note that 2r ≡ 1, 2, 4 (mod 7) holds. If 2r = 7m+1, then m is odd and, by

a× b notation,

N−5m +N−5m = 25m · 7m+ 1

2
+ 25m · 7m+ 1

2

= 25m× 2r−1 + 25m× 2r−1

= 25m× 2r.

Since 25m > 7m+ 1 = 2r, we are not sure yet if f fixes 25m.

Note that f(25) = f(3) f(8) + f(1) = 25. If gcd(25,m) = 1, then we obtain

f(2r) = 2f(2r−1) = 2r by

f(N−5m +N−5m) = f(25) f(m) f(2r)

= f(25) f(m) f(2r−1) + f(25) f(m) f(2r−1).

Otherwise, we may not be able to split f(25m) into f(25) and f(m).

Assume that m = 5k × d with k ≥ 1 and 5 ∤ d. Then

f(25m) = f(5k+2d) = f(5k+2) f(d).

By Theorem 3 we have f(5k+2) = 5k+2 since

β(5k+2) =
1

4
· 5k+2 =

25

4d
·m < 7m+ 1 = 2r.

Thus, we can deduce that f(2r) = 2r.

Similarly, we can show that N = 2r is fixed by f when 2r ≡ 2, 4 (mod 7) by

using the equalities:

Nm+1 +Nm+1 = (m+ 1)× 7m+ 2

2
+ (m+ 1)× 7m+ 2

2

= (m+ 1)× 2r−1 + (m+ 1)× 2r−1

= (m+ 1)× 2r

and

N−3m−1 +N−3m−1 = 3× (3m+ 1)× 7m+ 4

2
+ 3× (3m+ 1)× 7m+ 4

2

= 3× (3m+ 1)× 2r−1 + 3× (3m+ 1)× 2r−1

= 3× (3m+ 1)× 2r.

Note that the above equalities are written by the a× b notation.
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7. Proof for f(pr) = pr

We prove that f(pr) = pr for primes p ≥ 11.

Case I: pr = 14m + 1 with m ̸≡ 1 (mod 3) and m ̸≡ 1 (mod 5). Assume that

f(n) = n for all n < 14m+ 1. We use two equations according to the parity of m:

N−m +N4m+1 = m · 7m+ 5

2
+ (4m+ 1)× (14m+ 1)

= (7m+ 2)× 17m+ 1

2

when m is odd and

Nm +N4m+1 =
m

2
· (7m− 5) + (4m+ 1)× (14m+ 1)

= (7m+ 1) · 17m+ 2

2

when m is even.

Since gcd(m, 7m± 5) = gcd(m, 5),

m · (7m± 5) =


52 × m

5 × 7m±5
5 if 5 ∥m and 5 ∥ (7m± 5)

m
5 × 5(7m± 5) if 5 ∥m and 52 | (7m± 5)

5m× 7m±5
5 if 52 | m and 5 ∥ (7m± 5)

and the maximal factor of m(7m± 5) can be

5(7m+ 5)

2
or 5(7m− 5)

when they are powers of 5. So, f fixes 5(7m+5)
2 and 5(7m− 5) by Theorem 3, since

β

(
5(7m+ 5)

2

)
=

1

4

(
5(7m+ 5)

2

)
< 14m+ 1,

β(5(7m− 5)) =
1

4
· 5(7m− 5) < 14m+ 1.

For the last term (7m+ 2)× 17m+1
2 of the first equation is fixed by f by the in-

duction hypothesis. So, now, we check f
(
(7m+ 1) · 17m+2

2

)
of the second equation.

Since gcd(7m+ 1, 17m+ 2) = gcd(m+ 1, 3), we can write

(7m+ 1) · 17m+ 2

2
=


(7m+ 1)× 17m+2

2 if m ≡ 0, 1 (mod 3)

32 × 7m+1
3 × 17m+2

2·3 if 3 ∥ (7m+ 1) and 3 ∥ (17m+ 2)
7m+1

3 × 3(17m+2)
2 if 3 ∥ (7m+ 1) and 32 | (17m+ 2)

3(7m+ 1)× 17m+2
2·3 if 32 | (7m+ 1) and 3 ∥ (17m+ 2).
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Thus, the maximal factor is 3(17m+2)
2 when it is a power of 3. It is fixed by f by

Theorem 2 since

α

(
3(17m+ 2)

2

)
=

14

17
· 2
3
· 3(17m+ 2)

2
− 12

17
< 14m+ 1.

Case II: pr = 14m + 3 with m ̸≡ 0 (mod 3) and m ̸≡ 3 (mod 5). Assume that

f(n) = n for all n < 14m+ 3. We use

N−3m−1 +N6m+2 =
3

2
(3m+ 1)(7m+ 4) + 3(3m+ 1)(14m+ 3)

=
15

2
(3m+ 1)(7m+ 2).

Since gcd(3m+ 1, 7m+ 4) = gcd(5,m+ 2) = 1, we can write

3

2
(3m+ 1)(7m+ 4) =


3× 3m+1

2 × (7m+ 4) if m ≡ 1 (mod 6)

(3m+ 1)× 3(7m+4)
2 if m ≡ 2 (mod 6)

3× (3m+ 1)× 7m+4
2 if m ≡ 4 (mod 6)

3m+1
2 × 3(7m+ 4) if m ≡ 5 (mod 6).

The only case which we cannot apply the induction hypothesis is 3(7m + 4) when

7m + 4 is a power of 3. In this case, we can verify f
(
3(7m + 4)

)
= 3(7m + 4) by

Theorem 2 since

α(3(7 + 4)) =
14

17
· 2
3
· 3(7m+ 4)− 12

17
< 14m+ 3.

Case III: pr = 14m + 5 with m ̸≡ 2 (mod 3) and m ̸≡ 0 (mod 5). Assume that

f(n) = n for all n < 14m+ 5. For this case we consider

Nm +N−2m =
1

2
m(7m− 5) +m(14m+ 5)

=
5

2
m(7m+ 1).

Note that each pair of linear factors is relatively prime. Thus, the only factor we

should check is 5(7m+1) when 7m+1 is a power of 5. Since β
(
5(7m+1)

)
= 1

4 ·5(7m+

1) < 14m+ 5, f should fix 5(7m+ 1) by Theorem 3. Thus, f(14m+ 5) = 14m+ 5.

Other cases of 14m− t with t = 1, 3, 5 can be treated in the same ways as Cases

I-III. So, we can conclude that f(pr) = pr.
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