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Abstract
We prove that the set A/ of all nonzero generalized nonagonal numbers is an additive
uniqueness set. If a multiplicative function f satisfies the equation

fla+b) = f(a) + f(b)

for all a,b € NV, then f is the identity function.

1. Introduction

In 1992, C. Spiro [11] introduced the notion of an additive uniqueness set, briefly
AU set, E C N of a subset S of arithmetic functions, which means f € S is uniquely
determined by the condition f(a +b) = f(a) + f(b) for all a,b € E. She showed
that the set of primes is an additive uniqueness set for the set

S ={f|f is multiplicative and f(pg) # 0 for some prime pg},

where f is multiplicative if f(1) = 1 and f(ab) = f(a)f(b) for all a and b with
ged(a,b) = 1. Since her paper was published, many mathematicians have been
studying the k-additive uniqueness, briefly k-AU, of various sets of natural numbers
with the condition

flar +ag +---+ap) = flar) + flaz) + - - + f(ax).

In 1999, Chung and Phong [2] showed that the set of triangular numbers is an
AU set for the set of multiplicative functions. This set is also a k-AU set with k& > 3
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[9]. However, the set of squares is not a 2-AU set for multiplicative functions [1]
and it is a k-AU set for k > 3 [8].

Let us consider the additive uniqueness of polygonal numbers for multiplicative
functions to generalize the above results. The author and colleagues [6] proved that
the set P = {w |n € Z,n # 0} of generalized pentagonal numbers is an AU
set for multiplicative functions. This is also a k-AU set for k£ > 3 [3, 10].

It is much more difficult to consider the set Pt = {w |n € Z,n > 1} of
ordinary pentagonal numbers. This set is also a 2-AU set, which was proved in [7].
The set H* = {n(2n — 1)|n € Z,n > 1} of ordinary hexagonal numbers is also a
2-AU set [7]. In [5], it is proved that H™ is also a k-AU set for all k£ > 3. Recently,
Hasanalizade and the author [4] showed that the set O = {n(n — 2)|n € Z,n # 0}
of generalized octagonal numbers is not a 2-AU set and is not a 3-AU set, but it is
a k-AU set for k > 4.

In this article we prove the additive uniqueness of the set

N:{ann(ﬁg_{a) nEZ,n#O}

= {1,6,9,19,24, 39,46, 66, 75,100, 111, 141,154, ... }

of generalized nonagonal numbers. The following theorem holds.

Theorem 1. If a multiplicative function f satisfies

fla+b) = fla)+ f(b)

for all nonzero generalized nonagonal numbers a and b, then f is the identity func-
tion.

2. Strategy

We use induction to prove the main theorem. That is, assuming f(n) = n for all
n < N, we show that f(N) = N. If N = ab with a,b > 2 and ged(a,b) = 1, then
f(N) = f(a) f(b) = ab = N by the induction hypothesis. So we may check whether
f(p") = p" or not for primes p.

In proving we use f(N, + Np) = f(No) + f(IVp) for suitable a and b. Since two
factors n and Tn — 5 of 2N,, = n(7n — 5) can have a common divisor 5, we cannot
split f(N,,) into f(n) f(7n — 5) for the case.

The proof is done in a few steps. First, we evaluate f(n) for some n’s in Lemma 1.
Using this evaluation, in Sections 3-5, we prove that f(p") = p” for p = 3,5,7. In
Section 6 we prove that f(2") = 2". Finally, in Section 7, we prove that f(p") = p"
for other primes p.
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For convenience, we introduce a notation for relatively prime factors. If n = ab
and ged(a,b) = 1, then we write n = a x b. For example, n = 2-2-3-5 can be
written as

4x3:-5=4-3x5=3x4-5,

which means
ged(4,3-5) = ged(4-3,5) =ged(3,4-5) = 1.

Lemma 1. f(n) =n forn < 11.
Proof. We have f(2) = 2. Note that
FB)f(4)=f(2-3+2:-3)=F(2)f3)+ f(2) f(3) =4[ (3).
If f(3) = 0, then we cannot determine f(4) yet. In this case, we have f(9) = 0 from
fFB)F(B) = f(9)+f(2) f(3)

and f(5) = 3 from f(2) f(5) = f(1) + f(9).

Also, f(7) = f(1) + f(2) f(3) = 1 and, thus, f(4) = f(19) by f(4) f(7) =
£(9) + f(19). Then f(4) = f(19) = —2 from

f(4) f(5) = f(1) + f(19)
and f(23) = 1 from
F(2) 1) f(7) = f(3) f(8) + f(2) f(23).
A contradiction occurs in solving
f(4) £(23) = f(2) £(23) + f(2) £(23)

and we can conclude that f(3) # 0.

Then f(4) =4 from f(3) f(4) = f(2) f(3) + f(2) f(3). Note that
f(7) = () B)+f(1) = f(T)=2f(3)+1
F2)fF(5) = f9)+f(1) = f(9) =2f(5) -1
) f(5) = (19)+f(1)<:>f(19)=4f(5)—1

@A) f(7) = f(19) + f(9) < f(19) = 4f(7) = f(9)

We obtain
4f(5) —1=42f(3)+1) - (2f(5) - 1)

from the last two equations and thus
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Then, since
fF3)F(5) = f(9)+ f(2) f(3) = 2f(5) — 1+ 2f(3),

we can find two solutions:

fB3)=3,  f(5)=5, f(O)=7, [f(9)=9, [f(19)=19;
Next, we deduce that f(8) =8 or f(8) = —2 from
F2)f3)f(5) = f(3) f(8) + £(2) f(3).
The second solution set cannot satisfy
f3)f(A1) = £(3) f(8) + £(9)
f8) f(9) = £(2) f3) fF(11) + f(2) f(3).
So, f(n) is determined to be n up to 11. O

3. Proof for f(3") = 3"

The basic idea of the proof is to use induction under the assumption f(n) = n for
all n < 3". This assumption is too loose. In Section 7 we use f(3") = 3" to prove
f(p®) = p® for all primes p > 7. In this case we need to check f(3") for some 3" > p*
with the induction hypothesis that f(n) =n for all n < p”. To do this we need the
stronger induction hypothesis for f(3"). That is, we should find a function «(z)
such that f(n) =n for all n < a(3") < p".

"

Theorem 2. Let a(x) = 2.2 .2 — 12 If f(n) = n for all n < a(3"), then
e =%
Proof. The weird coefficients of a(z) are determined by the extremal inequality of

Case I of Section 7.
If r = 2s, then we can show easily f(3%%) = 3%¢ by using

—_

™m +5 ™™m —5 9
+m X

N_,, + Ny =m X =7xXm

with m = 3°. Note the a x b notation and that f(32) = 32 was already showed in
Lemma 1 and

Tm+5 7m—5}_7m+5 4 2 , 12

2 = — s — —_——
max{m, 5 3 5 <a(m)—17 U

when m > 9.



INTEGERS: 25 (2025) )

Now assume that 7 = 2s + 1. We have that 32! = 3,13,5 (mod 14). We
consider it in three cases.
Case I:3%°*1=3.1 (mod 14). We let 325! = 3(14m + 1) and use

Nam+1 + N_ojom = (dm+1)(14m + 1) + 25m(14m + 1)
= (14m +1)(29m + 1).

Note that m =1 (mod 3) and, in the first term (4m + 1)(14m + 1),
ged(dm +1,14m + 1) = ged(b,m — 1) =1 or 5.

Since 14m + 1 = 32, we have that m — 1 is not divisible by 5 and Nym+1 =
(4m +1) x (14m + 1) by the a x b notation. Similarly, N_1¢,, = 25m x (14m + 1).
For the second term 25m(14m + 1), if m = 5%, then 14 - 5¥ 4 1 = 3%¢. However,
this is impossible by comparing both sides modulo 8. Thus, m has a divisor d such
that d # 1,5 and ged(m/d, d) = 1.
Now consider (14m + 1)(29m + 1). Since 3| (m — 1), 51 (m — 1) and

ged(14m +1,29m + 1) = ged(14m + 1,m — 1) = ged(15,m — 1),

we have that ged(14m + 1,29m + 1) = 3. Thus,

S (Nam41) + f(N-10m) = f(4m +1) f(L4m + 1) + £ (25 22} f(d) f(14m + 1)

and
29m +1
J(Nams1 + N_1om) = f<3(14m +1) x 3)
) 29 1
= g (20,
3
Then, since
2 1
max{4m+ L m+1,25- 2 d, gm;}
=14dm+1
14 2 12
<aB3(ldm+1) == = . 3(14m+1) — —

T 17 3 17’
we can deduce that f(3271) = 32571 by the induction hypothesis.
Case II: 32°*1=3.9 (mod 14). For this case, 32**! = 3(14m + 9) and we use

3
N3pto+ N_jom—7 = 5(3m + 2)(7m + 3) + 3(12m + 7)(14m + 9)

= g(7m +4)(17m + 11).
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Note that m is a multiple of 9, since 14m + 9 = 32%. Also, comparing both
sides of 14m 4+ 9 = 32 modulo 8, we have that m is a multiple of 4. Similarly, we
deduce that ged(3m + 2, 7m + 3) = ged(5,m — 1) = 1 by comparing both sides of
14m +9 = 32° modulo 5. Thus, the first term can be written as 3% x w X %
Since 14m + 9 = 3%, we have that ged(12m + 7,14m +9) = 1 and thus the second
term can be written as (12m + 7) x 3(14m +9).

Since the last term can be written as 9 x 7% x (17m + 11),

max{973m2+2,7m3+3,12m+7,7m+4,17m+11}
=1mm+11
14 2 12
14 =__.2.3(14 _ 2z
< «a(3(14m +9)) 73 3(14m +9) T

and f(3%11) = 3251 by the induction.
Case III: 32°*1 = 3.11 (mod 14). In this case, 2s + 1 > 5 and we consider
3251 = 33(14m + 9) instead of the form 3(14m + 11). Note that

=9(5m + 3)(14m + 9)

and
ged(2m + 1, 21m + 13) = ged(5,m + 3
ged(3m +2,28m + 17) = ged(5,m — 1
ged(5m + 3,14m + 9) = ged(m, 3) = 3.

);
);

If m+3=0 (mod 5), then 14m+9 =2 (mod 5). We have 32— =2 (mod 5)
has no solution. So, ged(2m + 1,21m + 13) = 1. By the similar reasoning ged(3m +
2,28m + 17) = 1, too. Thus, we can write, by the a x b notation,

N_gm_3 =3 x (2m+1) x (21lm + 13)
N12m+8 =3 X 2(3m + 2) X (28m + 17)

5m+ 3 Sm+3
mt x27(14m+9)=%x326+1.

N_¢m—3 + Niomis =

Then, since the maximal factor 28m + 17 is smaller than «(3%(14m + 9)), we can
conclude that f(3%71) = 32571 by the induction hypothesis. O

4. Proof for f(5") = 5"

In the previous section we proved that f(3") = 3" by induction under the stronger
assumption that f(n) = n for all n < «(3") < 3". We need the similar condition
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for f(5"). That is, the assumption f(n) = n for all n < 5" is too loose to be used
in proving f(p®) = p® for other prime p > 7 and p = 2.

Theorem 3. Let B(z) = tz. If f(n) = n for all n < B(57) with r > 3, then
f(57) = 5.

Proof. The coefficient of 3(x) can be reduced to 1 by the extremal inequality of
Case I-ii of this proof. For convenience, it is enough to set 3(z) = ;.

When r is even, we set 7 = 2s and use

7 5 Tm—5
ﬂ;_; + 5m X 7; =7xm?

N_,. + Ny, = 5m x

with m = 5%, Then f(5%%) = 52° by the induction hypothesis, since the maximal
factor 5m = 5v/57 is smaller than 8(m?).
Now assume that r is odd. Then

5" =521 =513,17 (mod 28) and 5 '=5%=1,925 (mod 28).

We check f(5") = f(5-(28m +t)) with ¢ € {1,9, 25}.

Case I: 5%t =5(28m + 1) =5 (mod 28). In this case we have m =8 (mod 25).
We will consider two subcases.

I-i: m# 1 (mod 3). Note that

Nopm + Ngpe1 = m(14m — 5) + (8m + 1)(28m + 1)
=(14m+1)(17m+1).

Since ged(m, 14m —5) = 1 and ged(8m+1,28m + 1) = 5, we can write, by the a x b
notation,

f(Nam) + f(Nsm+1) = f(m x (14m —5)) + f(8m5+ L 5(28m + 1))
= fm) f(tam = 5)+ 7 (252 165

On the other hand, since ged(14m + 1,17m + 1) = ged(3,m — 1) =1,

f(Nam + Nsmy1) = f((14m + 1) x (17m + 1))
= f(1dm+1) f(17m + 1).
Thus, maximal factor 17m + 1 = %W + % is smaller than 8(5") = 1 - 5" and

F(57) = 5"

I-ii: m =1 (mod 3). For this case, we use

= (14m + 1)(34m + 1).



INTEGERS: 25 (2025) 8

We have that ged(m,14m + 5) = 1, ged(8m + 1,28m + 1) = 5, and ged(14m +
1,34m + 1) = ged(2m + 3,10) = 1. Thus,

8m+1
5

= s f(tam+5)+ 7 (2 5657
and
F(N_gm + Nems1) = f((14m + 1) x (34m + 1))
= f(14m +1) f(34m + 1).
The maximal factor 34m + 1 = 2557 — 2 is smaller than B(5") = 1 - 5" and
f(5")=5".

Case II: 521 =5(28m +9) =17 (mod 28). We have m = 22 (mod 25). We use

= (2m+1)(Tm + 3).

Note that
J(N—2m-1) + f(Nam~2)

2m + 1 2m + 1
- f(52 X m; X 7m5+6) +f( m; X 5(28m+9)>

and
f(N-am-1+ Namio) = f((2m +1) x (Tm+ 3))

Thus, f(5") = 5", since the maximal factor 7m + 3 = 5—}45’" + % is smaller than
87 =15
Case III: 5251 =5(28m + 25) =13 (mod 28). Note that m =0 (mod 25) and

Nemas + N_tam_10 = 3(6m + 5)(Tm + 5) + 3(6m + 5)(28m + 25)
= 15(6m + 5)(7m + 6).

Then

f(Nem+s) + f(N-12m-10)
- f<52 NP 3(7m+5)> +f(3 x Qm; L 5(28m+25))

5 5
and
J(Nem+s5 + No12m—10) = f((6m +5) x (Tm +6)).
Thus, f(5") = 5", since the maximal factor 7m + 6 = 5 - 5" — 1 is smaller than

B(5") = 54 5. O
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5. Proof for f(7") = 7"

We prove that f fixes 7". To do this we need to consider powers of 3 under some
assumption, which was proved to be fixed by f in Section 3.

Theorem 4. If f(n) =n for alln <77, then f(77) =1T".
Proof. If r = 2s + 1, then f(7?*1) = 725+1 by

m+ 5 ™m —5 9

N_,,+ N, =mx +m x 5 ="T7m~,

where m = 7°.
If r is even, note that 7" = 12m 4+ 1 for some m. Then m is divisible by 4 and
m = 0,4 (mod 5). Note that

Im + 2
N_19m-1+ Nomy2 = 6(7m + 1)(12m + ].) + 9(7m + 1) . 2
15 2
= 15(Tm+1) - mT"'

and each pair of linear factors is relatively prime. Thus, each factors can be split,
but we cannot split 3 and 7m + 1 yet.

If 7m + 1 = 3% x d for some d # 1,3, then d > 11, since ged(2,7m + 1) =
ged(5,7m 4+ 1) = 1. In this case,

1

Nosmoa=2x3- 0L 0 a2m+1)
Tm + 1 P

Nomia =9 md—i— ><d><9m2—&-

™™+ 1 d 15m + 2

N_19m— Nopmio =5 x3-
12m—1 + Nom+2 X p X d X 5

and each factor is smaller than 7" = 12m + 1. Hence, f(77) = 7".
Now assume 7m + 1 = 3¥. Then

3k —

1
=12 + 1 if and only if 771 =12 3% — 5.

This equation has a trivial solution r = k = 0. If r > 1, then we obtain k = 42¢418
by comparing both sides modulo 72.
Note that 3*2 =1 (mod 43) and ordss 7 = 6. Thus,

77t =12.3"% - 5=28 (mod 43).

However, it has no solution for r. Hence, 7m + 1 cannot be a power of 3 and we
can conclude that f(77) = 7". O
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6. Proof for f(2") = 2"

To prove 2" is fixed by f, we need to consider powers of 5.

Theorem 5. If f(n) =n for alln < 27, then f(27) = 2".

Proof. Note that 2" =1,2,4 (mod 7) holds. If 2" = 7m + 1, then m is odd and, by
a X b notation,

7 1 7 1
m+ + 25m - m

N75m + N75m =25m -
=925m x 271 4 95m x 271
=25m x 2.

Since 25m > 7m + 1 = 2", we are not sure yet if f fixes 25m.
Note that f(25) = f(3) f(8) + f(1) = 25. If ged(25,m) = 1, then we obtain
f2r)=2f(2""1) =2" by
f(N—5m + N_sm) = f(25) f(m) f(2")
= f(25) f(m) f(2771) + f(25) f(m) f(2"71).
Otherwise, we may not be able to split f(25m) into f(25) and f(m).
Assume that m = 5% x d with k > 1 and 5 d. Then

f(25m) = f(52d) = £(5°*2) f(d).

By Theorem 3 we have f(5%+2) = 58*2 gince
1 25
k42 _ 1 k42 _ 29 _or
B(5 )—45 = m<Tm+1=2"
Thus, we can deduce that f(27) = 2".

Similarly, we can show that N = 2" is fixed by f when 2" = 2,4 (mod 7) by
using the equalities:

7 2 7 2
m2+ S (mA1) X m2+

=(m+1)x2"" 4 (m+1)x 27!
=(m+1)x2"

Npt1+ Ny = (m + 1) X

and

m + 4 ™™+ 4

N_gm-1+N_3m-1=3xBm+1)x +3x(Bm+1)x 5

=3x(Bm+1)x2" +3xBm+1)x 27!
=3x (B3m+1)x2".

Note that the above equalities are written by the a x b notation. O
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7. Proof for f(p") = p"

We prove that f(p") = p” for primes p > 11.
Case I: p" = 14dm + 1 with m # 1 (mod 3) and m # 1 (mod 5). Assume that
f(n) =n for all n < 14m + 1. We use two equations according to the parity of m:

N_m+N4m+1:m~7m+5

+ (4m +1) x (14m + 1)

1Tm+1

=(Tm+2) x 5

when m is odd and

Nm+N4m+1:%-(7m—5)+(4m+1)><(14m+1)

1Tm + 2

=(Tm+1)- 5

when m is even.
Since ged(m, 7m + 5) = ged(m, 5),

52 x M x TMESif 5|y and 5 || (Tm £ 5)

5 5
m-(Tm=£5) = 2 x5(Tm+5) if 5| m and 5% | (Tm £ 5)
5m x TmES if 52 | m and 5| (7m +5)

and the maximal factor of m(7m £ 5) can be

5(7m +5)

5 or 5(7Tm—25)

when they are powers of 5. So, f fixes M and 5(7m — 5) by Theorem 3, since

6(5(7m+5)> _ 1(5(7m+5)

14 1
! 5 ) < tam e,

—

B(7Tm —5)) = 7-5(Tm —5) < 14m + 1.

For the last term (7m + 2) x WTH of the first equation is fixed by f by the in-
duction hypothesis. So, now, we check f((?m +1)- %) of the second equation.
Since ged(7m + 1,17m + 2) = ged(m + 1, 3), we can write

(Tm+1) x 282 if;m=0,1 (mod 3)
17m+2 | 3% x Ikl o 1Tmt2 if 3| (7m + 1) and 3 || (17m + 2)
C2 ) Imil o SUTmED) e 3 (7 4 1) and 32 | (17m + 2)

3(Tm+1) x T2 if 32 | (Tm 4+ 1) and 3 || (17m + 2).

(Tm+1)
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Thus, the maximal factor is when it is a power of 3. It is fixed by f by

Theorem 2 since

a<3awn+m) 14 2 3(17Tm+2) 12

3(17m+2)
2

_a 2 sS4l 12
2 17°3 3 17 St

Case II: p" = 14m + 3 with m Z 0 (mod 3) and m # 3 (mod 5). Assume that
f(n) =n for all n < 14m + 3. We use

3
N_3m—1+ Nemi2 = 5(3m +1)(Tm +4) +3(3m + 1)(14m + 3)
15

Since ged(3m + 1, 7m + 4) = ged(5,m + 2) = 1, we can write

3x 3t x (Tm+4) ifm=1 (mod 6)
3 (Bm+1) x 20 i =2 (mod 6)
“Bm+1)(Tm+4) = ?
2(m )(Tm +4) 3x (Bm+1)x I ifm=4 (mod 6)
% x 3(Tm 4+ 4) ifm=5 (mod 6).

The only case which we cannot apply the induction hypothesis is 3(7m + 4) when
7m + 4 is a power of 3. In this case, we can verify f(3(7m +4)) = 3(Tm + 4) by
Theorem 2 since

14 2 12
4) = 2.2 4)— 2 <14 .
a(3(7+4)) 173 3(Tm +4) T m+3
Case III: p" = 14m + 5 with m # 2 (mod 3) and m # 0 (mod 5). Assume that
f(n) =n for all n < 14m + 5. For this case we consider

1
Ny 4+ N_gp = 5m(7m —5)+m(1ldm +5)
5
= §m(7m +1).

Note that each pair of linear factors is relatively prime. Thus, the only factor we
should check is 5(7m+1) when 7m+1 is a power of 5. Since 8(5(7Tm+1)) = -5(7m+
1) < 14m+5, f should fix 5(7m + 1) by Theorem 3. Thus, f(14m +5) = 14m + 5.

Other cases of 14m —t with t = 1,3,5 can be treated in the same ways as Cases

r

I-I11. So, we can conclude that f(p") = p".
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