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Abstract

Chocolate-bar games are variants of Chomp. A two-dimensional (2D) chocolate
bar is a rectangular array of squares with some squares removed. There is a bitter
square in a given position, and two players take turns breaking the bar along a
horizontal or vertical line into two parts and eating the part that does not contain
the bitter square. The player who leaves the opponent with a single bitter square
wins the game. A three-dimensional (3D) chocolate bar is a generalization of a 2D
chocolate bar into three dimensions. In this study, we generalize our previous study
to new 2D and 3D chocolate problems. The first generalization is a 2D chocolate
bar with height, width, and depth, and we study the condition under which the
Grundy number of the chocolate can be expressed as a Nim-sum (BitXor) of the
height, width, and depth. We also present 3D chocolate bars with depth. The
second generalization is a chocolate bar with more than three dimensions, which
is closely related to the game of Nim with a pass move. We modify the standard
rules of the game to allow a one-time pass, that is, a pass move that may be used
at most once in the game and not from a terminal position. Once either player
uses a pass, it is no longer available. In classical Nim, the introduction of a pass
alters the underlying structure of the game, significantly increasing its complexity.
For a positive integer s, we can create an s + 1-dimensional chocolate bar that is
mathematically equivalent to s-pile Nim with a pass. Studies on multidimensional
chocolate games can present a perspective on the complexity of the game of Nim
with a pass.

DOI: 10.5281/zenodo.15756122
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1. Introduction

A two-dimensional (2D) chocolate bar is a rectangular array of squares from which

some of the squares are removed, and a bitter square is included in some parts of

the bar. Figures 1, 3, and 4 show examples of 2D chocolate bars. The players take

turns cutting the bar in a straight line along the grooves into two parts and eat the

part without the bitter square. The player who leaves the opponent with a single

bitter square wins the game. A bitter square is printed in black.

A three-dimensional (3D) chocolate bar is a 3D array of cubes that includes a

bitter cube printed in black. Figures 5, 7, and 8 show examples of 3D chocolate

bars. The players take turns cutting the bar on a plane, that is horizontal or vertical

along the grooves into two parts, and eat the part without the bitter cube. The

player who leaves their opponent with a single bitter cube is the winner. Examples

of cut chocolate bars are shown in Figures 9, 10, 11, and 12.

We now present some examples of chocolate bars. Figures 1 - 4 provide examples

of 2D chocolate bars and a two-pile Nim, and Figures 5 - 12 provide examples of

three-dimensional chocolate bars and a three-pile Nim.

Figure 1. Figure 2.

Figure 3. Figure 4.

Figure 5. Figure 6.
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Figure 7. Figure 8.

Figure 9. Figure 10.

Figure 11. Figure 12.

In the remainder of this article, Z≥0 and N will denote the set of nonnegative

integers and the set of positive integers, respectively.

Definition 1. (i) A function f of Z≥0 into itself is monotonically increasing if

f(u) ≤ f(v) for u, v ∈ Z≥0, with u ≤ v.

(ii) A function F of Z≥0 × Z≥0 into Z≥0 is monotonically increasing if F (w, x) ≤
F (u, v) for w, x, u, v ∈ Z≥0, with w ≤ u and x ≤ v.

The chocolate bars are defined using monotonically increasing functions.

Definition 2. Let g and h be monotonically increasing functions of (i) in Definition

1. A 2D chocolate bar is a rectangular array of squares with some squares removed.

A bitter square exists at the position of (0, 0). For x, y, z ∈ Z≥0, the chocolate bar

has z+1 columns, the height of the i-th column is min(g(i), x)+1, and the depth is

min(h(i), y)+1 for i = 0, 1, . . . , z. We denote this chocolate bar by CB(g, h, x, y, z).
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Definition 3. Let G and H be monotonically increasing functions of (ii) in Defi-

nition 1. A 3D chocolate bar comprises a set of cubes of size 1× 1× 1 with a bitter

cube at (0, 0, 0). For u, v ∈ Z≥0 such that u ≤ w and v ≤ x, the height of the

column at position (u, v) is min(G(u, v), y)+1 and the depth is min(H(u, v), z)+1.

We denote this chocolate bar by CB(G,H,w, x, y, z).

Remark 1. Note that in Definition 2, the first and second coordinates represent

the height and depth of the chocolate bar, respectively, whereas in Definition 3, the

third and fourth coordinates represent the height and depth, respectively.

Example 1. Let g(t) =
⌊
t
2

⌋
and h(t) =

⌊
t
3

⌋
+ 1, where = ⌊ ⌋ denotes the floor

function. The chocolate bar CB(g, h, x, y, z) is shown in Figure 13. Figure 14 shows

the same chocolate bar with coordinates x, y, z. Note that the functions g and h

define the shape of the bar, and the three coordinates x, y, and z denote the number

of grooves above, below, and to the right of the bitter square, respectively.

Figure 13. Figure 14: CB(g, h, 4, 4, 9)

The original 2D chocolate bar introduced by Robin [8] was rectangular with a

bitter square, as shown in Figure 1. Because the horizontal and vertical grooves are

independent, an m× n rectangular chocolate bar is structured similar to the game

of Nim, which includes heaps of m − 1 and n − 1 stones. Therefore, the chocolate

bar game (Figure 1) is mathematically equivalent to Nim, which includes heaps of 5

and 3 stones (Figure 2). Because the Grundy number of the Nim game with heaps

of m− 1 and n− 1 stones is (m− 1)⊕ (n− 1), that of the m× n rectangular bar is

(m− 1)⊕ (n− 1).

Robin [8] proposed the use of a cubic chocolate bar, for instance, see Figure 5. It

can easily be determined that the 3D chocolate bar in Figure 5 is mathematically

equivalent to Nim with heaps of 5, 3, and 5 stones (Figure 6). Hence, the Grundy

number of this 6× 4× 6 cuboid bar is 5⊕ 3⊕ 5.

Therefore, it is natural to search for a necessary and sufficient condition under

which a chocolate bar may have a Grundy number calculated using the Nim-sum

of the height and width of 2D chocolate bars, and the Nim-sum of the length,

height, and width of 3D chocolate bars. We presented the necessary and sufficient

conditions in [3] and [7] when the depth of the chocolate bar was zero.
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In this study, chocolate bars are investigated with non-zero depth, as shown in

Figures 4 and 8. When the depth is not zero, the situation is significantly different

from that without depth. Then, we investigate the chocolate bar with more than

three dimensions and apply it to study the game of Nim with a pass move.

Example 2. From a comparison of the chocolate bar in Figure 15 with the three-

pile Nim in Figure 16, we can observe some characteristics of the chocolate bar. If

the chocolate bar is cut vertically as shown in Figure 15, its width is reduced by

two, and its height and depth are reduced by one. In the traditional three-pile Nim,

the stones are removed from one pile, whereas in Wythoff’s Nim, the number of

stones removed from the two piles must be equal. Therefore, the chocolate bar in

Figure 15 represents a new type of Nim.

Figure 15. Figure 16.

This study aims to answer the following three questions.

Question 1. What is a necessary and sufficient condition under which a 2D

chocolate bar may have a Grundy number (x − 1) ⊕ (y − 1) ⊕ (z − 1), where x, y,

and z denote the height, depth, and width of the bar, respectively?

Question 2. What is a necessary and sufficient condition under which a 3D

chocolate bar may have a Grundy number (w−1)⊕ (x−1)⊕ (y−1)⊕ (z−1), where

w, x, y, and z denote the length, width, height, and depth of the bar, respectively?

Question 3. Can we apply the answer of Question 2 to chocolate bars with more

than three dimensions?

The remainder of this paper is organized as follows. In Section 2, we briefly review

the concepts necessary for combinatorial game theory. In Section 3, we present a

summary of the research results of 2D and 3D chocolate bar games published in

[3] and [7]. In Section 4, we investigate 2D and 3D chocolate bars with depth such

as those shown in Figures 4 and 8, and provide an answer to the aforementioned

research question. Because we introduce depth into the definition of chocolate bars,
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we cannot use the proof of the sufficient condition in Lemma 6 of [7]. Therefore, we

generalize the proof of Lemma 6 in [7] and apply it to Lemmas 2, 3, 5, and Theorem

4. This generalized proof is simpler than that for Lemma 6 in [7]. To prove the

necessary conditions for chocolate bars with depth, we use the results presented in

[7].

In Section 5, we investigate multidimensional chocolate bar games in which the

chocolate bar dimensions are greater than or equal to three. For multidimensional

chocolate bars, the proof of the necessary conditions used in [3] cannot be applied.

Therefore, we provide a new proof for Theorem 7. The proof of the necessary condi-

tion in Theorem 7 is simpler than that of the necessary condition in [7]. Because the

proof of Theorem 7 is a generalization of the proof of the necessary conditions used

in [3], the present study is a self-contained presentation of the results, including

those of [3] and [7] as special cases.

In Section 6, we apply the theory of multidimensional chocolate bars to that

of Nim with a pass move. Because a three-pile Nim with a pass move is a four-

dimensional chocolate bar with a fourth dimension for the pass move, the general-

ization to the case of multidimensional chocolate bars is meaningful.

2. Combinatorial Game Theory Definitions and Theorems

For completeness, we briefly review some of the necessary concepts in combinatorial

game theory by referring to [1] and [9].

Definition 4. Let x and y be nonnegative integers. Expressing them in base 2,

x =
∑n

i=0 xi2
i and y =

∑n
i=0 yi2

i with xi, yi ∈ {0, 1}. We define Nim-sum, x ⊕ y,

as follows:

x⊕ y =

n∑
i=0

wi2
i,

where wi = xi + yi (mod 2).

Because chocolate bar games are impartial games without drawings, only two

outcome classes are possible.

Definition 5. (a) A position is referred to as a P-position if it is the winning

position for the previous player (the player who has just moved), as long as they

play correctly at each stage.

(b) A position is referred to as an N -position if it is the winning position for the

next player, as long as they play correctly at each stage.

Definition 6. The disjunctive sum of the two games, denoted by G+H, is a super

game in which a player may move either in G or H but not in both.
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Definition 7. For any position p in game G, a set of positions can be reached by

a single move in G, which we denote as move(p).

Definition 8. (i) The minimum excluded value (mex) of a set S of nonnegative

integers is the least nonnegative integer that is not in S.

(ii) Let p be a position in the impartial game. The associated Grundy number is

denoted by G(p) and is recursively defined by G(p) = mex({G(h) : h ∈ move(p)}).

The next result demonstrates the usefulness of the Sprague-Grundy theory for

impartial games.

Theorem 1 ([1]). Let G and H be impartial rulesets, and GG and GH be the

Grundy numbers of game g played under the rules of G and game h played under

those of H. Then, we obtain the following:

(i) For any position g in G, GG(g) = 0 if and only if g is the P-position.

(ii) The Grundy number of positions {g,h} in game G+H is GG(g)⊕GH(h).

Using Theorem 1, we can determine the P-position by calculating the Grundy

numbers and the P-position of the sum of the two games by calculating the Grundy

numbers of the two games.

3. Some Theorems on Two- and Three-Dimensional Chocolate Bars

Here, we describe the cutting of chocolates using coordinates. We use 2D chocolate

bars in Example 3 because they are easier to understand. The case of cutting 3D

chocolate bars can be understood as a generalization of the case of 2D chocolate

bars. Subsequently, some theorems on chocolate bar games are presented. These

are Theorems 2 and 3 published by the first author of the present article.

We fix the functions h and g for the chocolate bar CB(h, g, x, y, z) and refer

to x, y and z as the coordinates of CB(h, g, x, y, z). For fixed functions h and g,

we define moveh,g for each position (x, y, z) of the chocolate bar CB(h, g, x, y, z).

We set moveh,g(x, y, z) to represent the positions of the chocolate bar obtained by

cutting the chocolate bar CB(h, g, x, y, z), and moveh,g represents a special case of

move as defined by Definition 7.

Definition 9. For x, y, z ∈ Z≥0, we define

moveh,g(x, y, z) = {(u, y, z) : u < x} ∪ {(x, v, z) : v < y}
∪ {(min(x, h(w)),min(y, g(w)), w) : w < z},

where u, v, w ∈ Z≥0.

Remark 2. For fixed functions h and g, we usemove(x, y, z) instead ofmoveh,g(x, y, z).
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Example 3. Let h(t) =
⌊
t
2

⌋
and g(t) =

⌊
t
3

⌋
+ 1, where = ⌊ ⌋ denotes the floor

function. Here, we present examples of CB(h, g, x, y, z)-type chocolate bars. Note

that the functions h and g define the shape of the bar and the three coordinates

x, y, and z represent the number of grooves above, below, and to the right of the

bitter squares, respectively. When we use fixed functions h and g, we represent the

chocolate bar positions using the coordinates x, y and z.

Figure 17. Figure 18: (4, 4, 9)

Figure 19: (4, 2, 9) Figure 20: (3, 3, 7)

Here, we explain moveh,g when h(t) =
⌊
t
2

⌋
and g(t) =

⌊
t
3

⌋
+ 1. We start with

the position (x, y, z) = (4, 4, 9) in Figure 18 and reduce y = 4 to y = 2. Thus,

we obtain (4, 2, 9) ∈ moveh,g(4, 4, 9). See Figure 19. If we start with the position

(x, y, z) = (4, 4, 9) in Figure 18 and reduce z = 9 to z = 7, the x-coordinate (first

coordinate) is min(4,
⌊
7
2

⌋
) = min(4, 3) = 3 and the y-coordinate (second coordinate)

is min(4,
⌊
7
3

⌋
+1) = min(4, 3) = 3. Then, (3, 3, 7) ∈ moveh,g(4, 4, 9). See Figure 20.

According to Definitions 8 and 9, we define the Grundy number of a 2D chocolate

bar in Definition 10.

Definition 10. For x, y, z ∈ Z≥0, we define

Gh,g(x, y, z) = mex({Gh,g(u, y, z) : u < x, u ∈ Z≥0}
∪ {Gh,g(x, v, z) : v < y, v ∈ Z≥0}
∪ {Gh,g(min(x, h(w)),min(y, g(w)), w) : w < z,w ∈ Z≥0}).
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The NS property of the function is defined in Definition 11. Here, NS denotes

necessity and sufficiency. We use this NS property to describe the necessary and

sufficient condition for a chocolate bar game whose Grundy number equals that of

Nim-sum.

Definition 11. Let h be a monotonically increasing function as defined by Def-

inition 1. Function h is said to have the NS property if h satisfies the following

condition: if ⌊ z

2i

⌋
=

⌊
z′

2i

⌋
for some z, z′ ∈ Z≥0, and a positive integer i, then⌊

h(z)

2i−1

⌋
=

⌊
h(z′)

2i−1

⌋
.

Lemma 1. Let z ∈ Z≥0. Let h(x) be a function defined for x ∈ Z≥0 such that

x ≤ z. Suppose that h possesses the NS property in Definition 11. If we define

ĥ(x) as

ĥ(x) =

{
h(x) if x ≤ z,

h(z) if x > z,

then the function ĥ has the NS property.

Proof. This is directly derived from Definition 11.

Theorem 2 ([7]). Let f be a monotonically increasing function and 0 be a function

that is constantly 0. Let Gf,0 be the Grundy number of CB(f, 0, x, 0, z). Then, f

has the NS property according to Definition 11 if and only if Gf,0({x, 0, z}) = x⊕z.

In Definition 1.2 of [7], a chocolate bar is described by one function and two

coordinates, where the first coordinate represents the height. In this study, accord-

ing to Definition 2, the same chocolate bar can be defined using two functions and

three coordinates, where one of the functions is constantly 0, the first coordinate

represents the height, the second coordinate represents the depth 0, and the third

coordinate represents the width.

Theorem 3 ([3]). Let F (w, x) be a monotonically increasing function and 0 be a

function that is constantly 0, and let gn(x) = F (n, x) and hm(w) = F (w,m) for

n,m ∈ Z≥0. Then, gn and hm satisfy the NS property for any fixed n,m ∈ Z≥0 if

and only if the Grundy number of chocolate bars CB(F, 0, w, x, y, 0) is

GF,0({w, x, y, 0}) = w ⊕ x⊕ y.

Note that in Definition 4.2 of [3], a chocolate bar is denoted by CB(F, x, y, z)

with function F and three coordinates x, y and z, where the second coordinate



INTEGERS: 25 (2025) 10

represents the height. In this study, according to Definition 3, the same chocolate

bar can be defined by two functions and four coordinates, where the second function

is constantly 0, the fourth coordinate for depth is 0, and the third coordinate denotes

the height.

The sufficient part in Theorem 4 is a generalization of the sufficient part in

Theorems 2 and 3, and the necessary part of Theorem 7 is a generalization of the

necessary part in Theorems 2 and 3. Because Theorems 4 and 7 are proved in

the present article without using the results of other articles, all the results in the

present article are self-contained.

4. Grundy Numbers of Chocolate Bars with Depth

In a previous study, the first author of the present article studied a chocolate bar

similar to that shown in Figure 3. See [7]. However, in this study, we investigate

chocolate in terms of height and depth, as shown in Figure 4, which is a natural

generalization of the chocolate in Figure 3. We use the functions h(z) and g(z) to

describe the height and depth of a bar of two-dimensional chocolate, respectively,

where z denotes its width. We assume that functions h(z) and g(z) have the NS

property, and prove Theorem 4, which is a generalization of Theorem 2. To prove

Theorem 4, we generalize the method of proof used for Theorem 2, which requires

some lemmas. We must also generalize the proof method used in Theorem 3 to

prove Theorem 6.

Lemma 2. (i) If ⌊ a

2k

⌋
=

⌊
b

2k

⌋
(1)

for a, b, k ∈ Z≥0, then, for any c ∈ Z≥0,⌊
min(a, c)

2k

⌋
=

⌊
min(b, c))

2k

⌋
. (2)

(ii) Let h have the NS property, and if⌊ z

2k

⌋
=

⌊
z′

2k

⌋
(3)

for z, z′ ∈ Z≥0 and k ∈ N, then, for any y ∈ Z≥0, we obtain⌊
min(h(z), y)

2k−1

⌋
=

⌊
min(h(z′), y)

2k−1

⌋
. (4)

Proof. (i) It is sufficient to prove the result in the case where

a < c < b. (5)
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Let

a =

n∑
i=0

ai2
i. (6)

Then, from Equation (1) and Inequality (5), we obtain

b =

n∑
i=k

ai2
i + b′

and

c =

n∑
i=k

ai2
i + c′ (7)

with
k−1∑
i=0

ai2
i < c′ < b′ < 2k−1. As min(b, c) = c and min(a, c) = a, from Equations

(6) and (7), we obtain Equation (2).

(ii) Because h has the NS property, from Equation (3) and Definition 11, we have⌊
h(z)

2k−1

⌋
=

⌊
h(z′)

2k−1

⌋
.

Subsequently, Equation (4) is directly derived from (i).

Lemma 3. Let g and h be functions that satisfy the NS property. Suppose that

x ≤ g(z) (8)

and

y ≤ h(z). (9)

Then, we obtain the following.

(a) If

c < x⊕ z

for c, x, z ∈ Z≥0, then at least one of the following statements is true:

(i) c = u⊕ z for some u ∈ Z≥0 such that u < x;

(ii) c = min(g(w), x)⊕ w for some w ∈ Z≥0 such that w < z.

(b) If

c < x⊕ y ⊕ z (10)

for c, x, y, z ∈ Z≥0, then at least one of the following statements is true:

(i) c = u⊕ y ⊕ z for some u ∈ Z≥0 such that u < x;

(ii) c = x⊕ v ⊕ z for some v ∈ Z≥0 such that v < y;

(iii) c = min(g(w), x)⊕min(h(w), y)⊕ w for some w ∈ Z≥0 such that w < z.
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Proof. It is sufficient to prove (b). We express nonnegative integers c, x, y and z

with base 2 as c =
n∑

i=0

ci2
i, x =

n∑
i=0

xi2
i, y =

n∑
i=0

yi2
i, and z =

n∑
i=0

zi2
i, where

ci, xi, yi, zi ∈ {0, 1} and n ∈ Z≥0. From Inequality (10), there exists s ∈ Z≥0 that

satisfies

s ≤ n,

ci = xi + yi + zi (mod 2) (11)

for i = s+ 1, s+ 2, . . . , n and

cs = 0 < 1 = xs + ys + zs (mod 2). (12)

Thus, we have three cases.

Case 1: Suppose that xs = 1. Then, let

x′
i = ci + xi + zi (mod 2)

for i = s, s − 1, . . . , 0 and u =
n∑

i=s+1

xi2
i +

s∑
i=0

x′
i2

i. Then, c = u ⊕ x ⊕ z and we

obtain (i).

Case 2: Assume that ys = 1. Then, by using a method similar to that used in (i),

we obtain (ii).

Case 3: Suppose that xs = 0, ys = 0, and zs = 1. Let

z′s = cs + xs + ys = 0 (mod 2) (13)

and z(s) =
n∑

i=s+1

zi2
i + z′s2

s. Hereafter, we define z′j for j = s, s− 1, . . . , 0 to obtain

z(j) for j = s, s− 1, . . . , 0 stepwise. Because⌊ z

2s+1

⌋
=

⌊
z(s)

2s+1

⌋
,

using Inequalities (8), (9), and (ii) in Lemma 2, we have⌊ x

2s

⌋
=

⌊
min(g(z), x)

2s

⌋
=

⌊
min(g(z(s)), x)

2s

⌋
(14)

and ⌊ y

2s

⌋
=

⌊
min(h(z), y)

2s

⌋
=

⌊
min(h(z(s)), y)

2s

⌋
. (15)
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By Equation (14), x and min(g(z(s)), x) have the same place value of 2k for k =

s, s + 1, . . . , n, and by Equation (15), y and min(g(z(s)), y) have the same place

value of 2k for k = s, s+ 1, . . . , n.

Therefore, there exist x′
s−1, y

′
s−1 ∈ {0, 1}, as−1 and bs−1 such that 0 ≤ as−1, bs−1

< 2s−1,

min(g(z(s)), x) =

n∑
i=s

xi2
i + x′

s−12
s−1 + as−1

and

min(h(z(s)), y) =

n∑
i=s

yi2
i + y′s−12

s−1 + bs−1.

Therefore, from Equation (11), Inequality (12), and Equation (13),

ci = min(g(z(s)), x)i +min(h(z(s)), y)i + (z(s))i (16)

for i = s, s+ 1, . . . , n. We use mathematical induction. Suppose there exists j ∈ N
such that j < s and

ci = min(g(z(j)), x)i +min(h(z(j)), y)i + (z(j))i

for i = j, j + 1, . . . , n. By using a method similar to that used to obtain Equation

(16) from Equation (13), we obtain z(j−1) such that

ci = min(g(z(j−1)), x)i +min(h(z(j−1)), y)i + (z(j))i

for i = j − 1, j, . . . , n.

We continue this process until we obtain z(0) such that

ci = min(g(z(0)), x)i +min(h(z(0)), y)i + (z(0))i

for i = 0, 1, . . . , n , and we obtain (iii) for w = z(0).

Lemma 4. Let m ∈ N, and for t = 1, 2, . . . ,m, let ft be functions that satisfy the

NS property. Suppose that

xt ≤ ft(z),

and

c < x1 ⊕ x2 ⊕ · · · ⊕ xm ⊕ z

for c, x1, x2, . . . , xm ∈ Z≥0. Then, at least one of the following statements is true:

(i) c = ⊕
1≤t≤m,t̸=i

xt ⊕ u⊕ z for some u ∈ Z≥0 such that u < xi;

(ii) c =
m
⊕
t=1

,min(xt, ft(w))⊕ w for some w ∈ Z≥0 such that w < z.
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Proof. We can prove this lemma by demonstrating the generalization of Lemma

3. We must use functions ft for t = 1, 2, . . . ,m instead of the two functions g

and h; however, we omit the proof of this lemma because the method of the proof

is practically apparent, and the use of functions ft for t = 1, 2, . . . ,m makes the

description of the proof excessively complicated.

Lemma 5. Let g and h be functions that satisfy the NS property. Suppose that

x ≤ g(z) (17)

and

y ≤ h(z). (18)

Then, we obtain equations

{x⊕ y ⊕ w : w ∈ Z≥0 and w < z}
= {min(g(w′), x)⊕min(h(w′), y)⊕ w′ : w′ ∈ Z≥0 and w′ < z} (19)

and

{x⊕w : w ∈ Z≥0 and w < z} = {min(g(w′), x)⊕w′ : w′ ∈ Z≥0 and w′ < z}. (20)

Proof. First, we prove Equation (19). Let w ∈ Z≥0 and m ∈ N such that w < z

and

x, y, z < 2m. (21)

If 2m does not belong to the domains of functions g and h, we can make the domains

of each function using Lemma 1 sufficiently large to include 2m. From Inequality

(21), we obtain

x⊕ y ⊕ w < x⊕ y ⊕ 2m.

From Lemma 3, we obtain

x⊕ y ⊕ w = u⊕ y ⊕ 2m (22)

for u such that u < x or

x⊕ y ⊕ w = x⊕ v ⊕ 2m (23)

for v such that v < y or

x⊕ y ⊕ w = min(x, g(w′))⊕min(y, h(w′))⊕ w′ (24)

for w′ such that w′ < 2m. Equations (22) and (23) contradict Inequality (21).

Therefore, we have Equation (24). If w′ ≥ z, then from Inequalities (17) and (18),

min(x, g(w′)) = x and min(y, h(w′)) = y. Subsequently, from Equation (24), we

obtain

x⊕ y ⊕ w = x⊕ y ⊕ w′,
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which contradicts the assumption that w < z ≤ w′. Therefore, we obtain w′ < z

and

{x⊕ y ⊕ w : w < z} ⊂ {min(g(w′), x)⊕min(h(w′), y)⊕ w′ : w′ < z}. (25)

The number of elements in {x⊕ y ⊕ w : w < z} is z and those in {min(g(w′), x)⊕
min(h(w′), y) ⊕ w′ : w < z} are less than or equal to z. Therefore, from Relation

(25), we obtain Equation (19).

Next, we prove Equation (20). Let y = 0 and h(t) = 0 for any t ∈ Z≥0 in

Equation (19). Then, we have Equation (20).

Lemma 6. Let m ∈ N, and for t = 1, 2, . . . ,m, let ft be functions that satisfy the

NS property. Suppose that

xt ≤ ft(z).

Then,

{
m
⊕

t=1j ̸=i
xj ⊕ w : w < z} = {

m
⊕
t=1

min(xt, ft(w))⊕ w : w < z}.

Proof. We can prove this lemma by a proof that is a generalization of the proof of

Lemma 5 using functions ft for t = 1, 2, . . . ,m instead of two functions g and h.

The proof is straightforward; therefore, details are omitted.

Theorem 4. Let g and h be monotonically increasing functions, and Gg,h(x, y, z)

be the Grundy number of CB(g, h, x, y, z). Then, g and h satisfy the NS property,

if and only if Gg,h(x, y, z) = x⊕ y ⊕ z.

Proof. Let x, y, z ∈ Z≥0 such that x ≤ g(z) and y ≤ h(z). We assume that g

and h satisfy the NS property and prove that Gg,h(x, y, z) = x ⊕ y ⊕ z through

mathematical induction, and assume that Gg,h(u, v, w) = u⊕ v⊕w for any u, v and

w such that u ≤ x, v ≤ y, w ≤ z, u+ v + w < x+ y + z, u ≤ g(w), and v ≤ h(w).

From the definition of the Grundy number in Definition 8,

Gg,h(x, y, z) = mex({Gg,h(u, v, w) : (u, v, w) ∈ moveg,h(x, y, z)})
= mex({Gg,h(u, y, z) : u < x} (26)

∪ {Gg,h(x, v, z) : v < y} (27)

∪ {Gg,h(min(g(w), x),min(h(w), y), w) : w < z}). (28)

Based on the hypothesis of mathematical induction, we obtain

{Gg,h(u, y, z) : u < x} = {u⊕ y ⊕ z : u < x} (29)

and

{Gg,h(x, v, z) : v < y} = {x⊕ v ⊕ z : v < y}. (30)
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From the mathematical induction hypothesis and Lemma 5

{Gg,h(min(g(w), x),min(h(w), y), w) : w < z}
= {min(g(w), x)⊕min(h(w), y)⊕ w : w < z}
= {x⊕ y ⊕ w : w < z}. (31)

From Relations (26), (27), and (28) and Equations (29), (30), and (31), we obtain:

Gg,h(x, y, z)

= mex({u⊕ y ⊕ z : u < x} ∪ {x⊕ v ⊕ z : v < y} ∪ {x⊕ y ⊕ w : w < z})
= x⊕ y ⊕ z.

Conversely, we assume that Gg,h(x, y, z) = x⊕y⊕z. Subsequently, Gg,h(x, 0, z) =

x ⊕ 0 ⊕ z = x ⊕ z. Chocolate bar CB(g, h, x, 0, z) is the same as chocolate bar

CB(g, 0, x, 0, z), and by Theorem 2, g satisfies the NS property. Similarly, by using

Gg,h(0, y, z) = 0⊕ y ⊕ z = y ⊕ z, we prove that h has the NS property.

Lemma 7. Let m ∈ N and

f(x) =
⌊ x

2m

⌋
.

Then, f satisfies the NS property.

For the proof, see Lemma 4 on page 10 of [7].

Example 4. Let h(t) =
⌊
t
2

⌋
and g(t) =

⌊
t
4

⌋
, where = ⌊ ⌋ denotes the floor function.

Here, we present examples of the Grundy numbers of CB(h, g, x, y, z)-type chocolate

bars. Because we use fixed functions g and h, we represent the chocolate bar

positions using the coordinates x, y and z. By Lemma 7, g and h satisfy the NS

property. Hence, by Theorem 4, for chocolate bars in Figures 21 and 22, we have

Gg,h(4, 2, 9) = 4⊕ 2⊕ 9 = 15 and Gg,h(2, 2, 9) = 2⊕ 2⊕ 9 = 9.

Figure 21: (4, 2, 9) Figure 22: (2, 2, 9)

Next, we define a chocolate bar using the five coordinates in Definition 12. Figure

24 illustrates an example of this type of chocolate.
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Definition 12. Let f1, f2, f3 and f4 be monotonically increasing functions in (i)

of Definition 1. We define a chocolate bar with five coordinates: x1, x2, x3, x4, and

z. See the coordinates system in Figure 23. A 3D chocolate bar comprises a set

of cubes with a bitter cube at (0, 0, 0, 0, 0). The shape of the chocolate along the

xi-coordinates is determined by min(fi(z), xi) + 1. We denote this chocolate by

CB(f1, f2, f3, f4, x1, x2, x3, x4, z).

To describe the shape of the chocolate in Figure 24, five coordinates are required,

as shown in Figure 23. Using the bitter cube as the origin coordinate, x1, x2, x3,

x4, and z denote the width to the right of the origin, height, width to the left of

the origin, depth, and length of the chocolate, respectively.

Figure 23: five coordinates Figure 24: A chocolate bar with five co-
ordinates

Theorem 5. For t = 1, 2, 3, 4, let ft be a monotonically increasing function in Defi-

nition 1. Let Gf1,f2,f3,f4(x1, x2, x3, x4, z) be the Grundy number of CB(f1, f2, f3, f4,

x1, x2, x3, x4, z). Then, f1, f2, f3 and f4 satisfy the NS property if and only if

Gf1,f2,f3,f4(x1, x2, x3, x4, z) = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ z.

Proof. Using Lemma 6, we can prove this theorem in a manner similar to that used

for Theorem 4. The proof is straightforward; therefore, the details are omitted.

The first author of the present article studied a chocolate bar similar to that

shown in Figure 7 in [3]. However, the theory in [3] cannot address the chocolate in

Figure 8, which is a natural generalization of the chocolate in Figure 7. Therefore,

Theorem 6 is required.

Next, we study a 3D chocolate bar with depth CB(F,G,w, x, y, z). We need to

define moveF,G. We set moveF,G(w, x, y, z) as the set containing all positions that

can be reached from position (w, x, y, z) in one direct step.

Definition 13. For w, x, y, z ∈ Z≥0, we define:

moveF,G(w, x, y, z) ={(w′, x,min(F (w′, x), y),min(G(w′, x), z)) : w′ < w}
∪ {(w, u,min(F (w, u), y),min(G(w, u), z)) : u < x}
∪ {(w, x, v, z)} : v < y} ∪ {(w, x, y, z′)} : z′ < z},
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where w′, u, v, z′ ∈ Z≥0.

Theorem 6. Let gx(w) = F (w, x), hw(x) = F (w, x), g
x
(w) = G(w, x), hw(x)

= G(w, x). We suppose that GF,G(w, x, y, z) is the Grundy number of CB(F,G,w, x, y, z).

Then,

GF,G(w, x, y, z) = w ⊕ x⊕ y ⊕ z (32)

if and only if gx(w), hw(x), gx(w), and hw(x) satisfy the NS property.

Proof. We assume that functions gx(w), hw(x), gx(w), and hw(x) satisfy the NS

property. We prove Equation (32) through mathematical induction. By the math-

ematical induction hypothesis,

GF,G(w, x, y, z) =mex({GF,G(w
′, u, v, z′) : (w′, u, v, z′) ∈ move(w, x, y, z)})

=mex({GF,G(w
′, x,min(F (w′, x), y),min(G(w′, x), z)) : w′ < w}

∪ {GF,G(w, x
′,min(F (w, x′), y),min(G(w, x′), z)) : x′ < x}

∪ {GF,G(w, x, y
′, z) : y′ < y}

∪ {GF,G(w, x, y, z
′) : z′ < z})

=mex({w′ ⊕ x⊕min(gx(w
′), y)⊕min(g

x
(w′), z) : w′ < w}

∪ {w ⊕ x′ ⊕min(hw(x
′), y)⊕min(hw(x

′), z)) : x′ < x}
∪ {w ⊕ x⊕ y′, z) : y′ < y}
∪ {w ⊕ x⊕ y ⊕ z′) : z′ < z}). (33)

By Lemma 5,

{w′ ⊕ x⊕min(gx(w
′), y)⊕min(g

x
(w′), z) : w′ < w}

= {w′ ⊕ x⊕ y ⊕ z : w′ < w} (34)

and

{w ⊕ x′ ⊕min(hw(x
′), y)⊕min(hw(x

′), z)) : x′ < x}
= {w ⊕ x′ ⊕ y ⊕ z : x′ < x}. (35)

By Equations (33), (34), and (35), we obtain Equation (32).

Next, we assume Equation (32). Then,

GF,G(w, x, y, 0) = w ⊕ x⊕ y ⊕ 0.

Chocolate bar CB(F,G,w, x, y, 0) is the same as chocolate bar CB(F, 0, w, x, y, 0),

and from Theorem 3, gx(w) and hw(x) satisfy the NS property. Similarly, by

GF,G(w, x, 0, z) = w ⊕ x⊕ 0⊕ z,

we prove that g
x
(w) and hw(x) satisfy the NS property.
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5. Multidimensional Chocolate Bar

We investigate a multidimensional chocolate bar game in which the chocolate bar

dimensions are greater than or equal to three. In this section, we assume that s is

a fixed positive integer.

Definition 14. Suppose that F (x1, x2, . . . , xs) is a function with values in Z≥0

defined for variables xi ∈ Z≥0 for i = 1, 2, . . . , s. A function F is said to be

monotonically increasing if F (x1, x2, . . . , xs) ≤ F (x′
1, x

′
2, . . . , x

′
s) for xi, x

′
i ∈ Z≥0,

with xi ≤ x′
i for i = 1, 2, . . . , s.

In this section, we assume that F is a monotonically increasing function. Here,

we define a multi-dimensional chocolate bar. This type of chocolate bar can be

applied to the game of Nim with a pass move, as described in Section 6.

Definition 15. Let xi ∈ Z≥0 for i = 1, 2, . . . , s and y ∈ Z≥0. The (s + 1)-

dimensional chocolate bar comprises a set of 1 × 1 × 1 × · · · × 1-sized (s + 1)-

dimensional cubes. For ui ∈ Z≥0, such that ui ≤ xi, the length of the (s + 1)-th

dimension of the column at position (u1, u2, . . . , us) is min(F (u1, u2, . . . , us), y)+1.

A bitter cube exists at the position (0, 0, . . . , 0). We denote this chocolate bar by

CB(F, x1, x2, . . . , xs, y).

Definition 16. We define an (s+ 1)-dimensional chocolate bar game. The players

take turns cutting the bar on a hyperplane that is vertical to the xi-axis for some

i ∈ {1, 2, . . . , s} and eat the broken piece without the bitter cube. The player who

manages to leave the opponent with a bitter cube is the winner.

Lemma 8. Let i, z, z′ ∈ Z≥0. We obtain (a) and (b).

(a) For z < z′, ⌊ z

2i

⌋
=

⌊
z′

2i

⌋
,

if and only if there exists d ∈ Z≥0 such that

d× 2i ≤ z < z′ < (d+ 1)× 2i.

(b) Suppose that ⌊ z

2i

⌋
<

⌊
z′

2i

⌋
. (36)

Then, there exist c, s, t ∈ Z≥0 such that s ≥ i, 0 ≤ t < 2s, and

z = c× 2s+1 + t < c× 2s+1 + 2s ≤ z′. (37)

Proof. Let z =
∑n

i=0 zi2
i and z′ =

∑n
i=0 z

′
i2

i. The relationship in (a) follows

directly from the definition of the floor function. Next, we prove (b). According to

Inequality (36), two cases exist.
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Case 1: Suppose that z < 2n ≤ z′. Let c = 0 and t = z. Subsequently, we obtain

the following Inequality (37).

Case 2: Suppose there exists s ∈ Z≥0 such that s ≥ i and zk = z′k for k =

n, n − 1, ..., s + 1 and zs = 0 < 1 = z′s. Then, there exist c, t ∈ Z≥0 that satisfy

Inequality (37).

Next, we definemoveF (x1, x2, . . . , xs, y) as in Definition 17. We setmoveF (x1, x2,

. . . , xs, y) as the set containing all positions that can be reached from position

(x1, x2, . . . , xs, y) in a single step (directly).

Definition 17. For x1, x2, . . . , xs, y ∈ Z≥0, we define

moveF (x1, x2, . . . , xs, y)

= ∪n
i=1{(x1, x2, . . . , xi−1, u, xi+1, . . . , xs,

min(F (x1, x2, . . . , xi−1, u, xi+1, . . . , xs), y)) : u < xi}
∪ {(x1, x2, . . . , xs, v) : v < y},where u, v ∈ Z≥0.

Remark 3. For a fixed function F , we use move(x1, x2, . . . , xs, y) instead of

moveF (x1, x2, . . . , xs, y).

Definition 18. For a function F and k ∈ {1, 2, 3, . . . , s}, we fix variables x1, x2, . . . ,

xk−1, xk+1, . . . , xs, and define

Fx1,x2,...,xk−1,xk+1,...,xs(xk) = F (x1, x2, . . . , xk−1, xk, xk+1, . . . , xs)

for xk ∈ Z≥0.

Theorem 7. The function Fx1,x2,...,xi−1,xi+1,...,xs
satisfies the NS property for any

fixed variables x1, x2, . . . , xi−1, xi+1, . . . , xs ∈ Z≥0 if and only if the Grundy number

of chocolate bar CB(F, x1, x2, . . . , xs, y) is

G({x1, x2, . . . , xs, y}) = x1 ⊕ x2 ⊕ · · · ⊕ xs ⊕ y. (38)

Proof. Let gk(xk) = Fx1,x2,...,xk−1,xk+1,...,xs
(xk). We assume that functions g1, g2,

. . . , gs−1 and gs satisfy the NS property, and we prove Equation (38) through

mathematical induction. By the mathematical induction hypothesis,

G(x1, x2, . . . , xs, y)

= mex({G(u1, u2, . . . , us) : (u1, u2, . . . , us) ∈ moveF (x1, x2, . . . , xs, y)})
= mex(∪s

k=1{G(x1, x2, . . . , xk−1, w, xk+1, . . . , xs,

min(F (x1, x2, . . . , xk−1, w, xk+1, . . . , xs), y)) : w < xk}
∪ {G(x1, x2, . . . , xk−1, xk, xk+1, . . . , xs, v) : v < y})

= mex(∪s
k=1{x1 ⊕ · · ·xk−1 ⊕ w ⊕ xk+1 ⊕ · · · ⊕ xs⊕
min(F (x1, x2, . . . , xk−1, w, xk+1, . . . , xs), y) : w < xk}

∪ {x1 ⊕ · · ·xk−1 ⊕ xk ⊕ xk+1 ⊕ w : w < y}). (39)
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Because gk satisfies the NS property, using (ii) of Lemma 5, we obtain

{x1 ⊕ · · ·xk−1 ⊕ w ⊕ xk+1 ⊕ · · · ⊕ xs⊕
min(F (x1, x2, . . . , xk−1, w, xk+1, . . . , xs), y) : w < xk}
= {x1 ⊕ · · ·xk−1 ⊕ w ⊕ xk+1 ⊕ · · · ⊕ xs ⊕min(gk(w), y) : w < xk}
= {x1 ⊕ · · ·xk−1 ⊕ w ⊕ xk+1 ⊕ · · · ⊕ xs ⊕ y : w < xk}. (40)

By Equations (39) and (40), we obtain Equation (38).

Next, we assume that the Grundy number of chocolate bars CB(F, x1, x2, . . . , xs, y)

is

G({x1, x2, . . . , xs, y}) = x1 ⊕ x2 ⊕ · · · ⊕ xs ⊕ y. (41)

Let x2, . . . , xs ∈ Z≥0 and g(x1) = Fx2,...,xs
(x1) = F (x1, x2, . . . , xs) for x1 ∈ Z≥0.

It is sufficient to prove that g has the NS property. We assume that j ∈ N. It is

sufficient to prove ⌊
g(a)

2j−1

⌋
=

⌊
g(a+ 1)

2j−1

⌋
for a ∈ Z≥0 such that ⌊ a

2j

⌋
=

⌊
a+ 1

2j

⌋
. (42)

We prove this by contradiction; hence, we assume that⌊
g(a)

2j−1

⌋
<

⌊
g(a+ 1)

2j−1

⌋
(43)

for a ∈ Z≥0, satisfying Equation (42). Here, we assume that a ∈ Z≥0 is the smallest

integer that satisfies Equation (42) and Inequality (43). From Inequality (43) and

(b) in Lemma 8, there exist i, c ∈ Z≥0 and t ∈ R such that i ≥ j − 1,

0 ≤ t < 2i (44)

and

g(a) = c× 2i+1 + t < c× 2i+1 + 2i ≤ g(a+ 1). (45)

As i+ 1 ≥ j, according to Equation (42),⌊ a

2i+1

⌋
=

⌊
a+ 1

2i+1

⌋
.

Hence, from (a) in Lemma 8, for d ∈ Z≥0,

d× 2i+1 ≤ a < a+ 1 < (d+ 1)2i+1. (46)

From Inequality (46), if d× 2i+1 + 2i ≤ a+ 1 < (d+ 1)× 2i+1, then we obtain

d× 2i+1 ≤ a < a+ 1 = d× 2i+1 + 2i + e < (d+ 1)2i+1 (47)
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for e ∈ Z≥0 such that 0 ≤ e < 2i. From Inequality (46), if d × 2i+1 < a + 1 <

d× 2i+1 + 2i, then we obtain

d× 2i+1 ≤ a < a+ 1 = d× 2i+1 + e < (d+ 1)2i+1 (48)

for e ∈ Z≥0 such that 0 < e < 2i.

Case 1: If we have Inequality (47), then by Inequality (44)

(c× 2i+1 + 2i)⊕ (a+ 1) =(c× 2i+1 + 2i)⊕ (d× 2i+1 + 2i + e)

=(c⊕ d)2i+1 + e

<(c⊕ d)2i+1 + 2i + (t⊕ e)

=(c× 2i+1 + t)⊕ (d× 2i+1 + 2i + e)

=(c× 2i+1 + t)⊕ (a+ 1). (49)

Let g′(z) = min(g(z), c × 2i+1 + t). Because g(z) increases monotonically, by In-

equality (45) for z ≤ a,

g(z) ≤ g(a) = c× 2i+1 + t.

Hence, for z ≤ a

g′(z) = min(g(z), c× 2i+1 + t) = g(z). (50)

By Inequality (45) and the definition of g′,

g′(a+ 1) = min(g(a+ 1), c× 2i+1 + t) = c× 2i+1 + t. (51)

As a ∈ Z≥0 is the smallest integer satisfying Equation (42) and Inequality (43),

g′(z) satisfies the NS property for z ≤ a. From Equation (51),

g′(a+ 1) = g′(a).

Thus, g′(z) satisfies the NS property of z ≤ a+ 1. We use (a) in Lemma 3 for g′.

Then, we obtain

(a+ 1)⊕ (c× 2i+1 + 2i) = w ⊕min(g′(w), c× (2i+1 + t) = g′(w)⊕ w (52)

for some w < a+ 1 or

(a+ 1)⊕ (c× 2i+1 + 2i) = (a+ 1)⊕ v (53)

for some v < 2i+1 + t < 2i+1 + 2i. As Equation (53) is impossible, we obtain

Equation (52).

By Inequality (45),

c× 2i+1 + 2i ≤ g(a+ 1) = F (a+ 1, x2, x3, . . . , xs).
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Hence, (a+ 1, x2, . . . , xs, c× 2i+1 + 2i) is a position of chocolate bar

CB(F, x1, x2, . . . , xs, y). Therefore, from Equation (41) we obtain

G(a+ 1, x2, . . . , xs, c× 2i+1 + 2i) = (a+ 1)⊕ x2 ⊕ · · · ⊕ xs ⊕ (c× 2i+1 + 2i). (54)

From Relation (52),

(a+1)⊕x2⊕· · ·⊕xs⊕(c×2i+1+2i) ∈ {w⊕x2⊕· · ·⊕xs⊕g′(w) : 0 ≤ w ≤ a}. (55)

Subsequently, according to Equations (41) and (50) and the definition of g,

{w ⊕ x2 ⊕ · · · ⊕ xs ⊕ g′(w) : 0 ≤ w ≤ a}
= {w ⊕ x2 ⊕ · · · ⊕ xs ⊕ g(w) : 0 ≤ w ≤ a}
= {w ⊕ x2 ⊕ · · · ⊕ xs ⊕ F (w, x2, . . . , xs) : 0 ≤ w ≤ a}
= {G(w, x2, . . . , xs, F (w, x2, . . . , xs)) : 0 ≤ w ≤ a}. (56)

From Inequality (45), for w ≤ a, we have

F (w, x2, . . . , xs) ≤ F (a, x2, . . . , xs) = g(a) = c× 2i+1 + t < c× 2i+1 + 2i.

Hence,

{(w, x2, . . . , xs, F (w, x2, . . . , xs)) : 0 ≤ w ≤ a}
= {(w, x2, . . . , xs,min(c× 2i+1 + 2i, F (w, x2, . . . , xs))) : 0 ≤ w ≤ a}
= move(a+ 1, x2, . . . , xs, c× 2i+1 + 2i). (57)

From Equations (54) and (56), there exists w such that 0 ≤ w ≤ a and

G(w, x2, . . . , xs, F (w, x2, . . . , xs)) = (a+ 1)⊕ x2 ⊕ · · · ⊕ xs ⊕ (c× 2i+1 + 2i). (58)

Equations (54) and Relation (57) contradict the definition of the Grundy number.

Case 2: If we have Inequality (48), then, as 0 < e < 2i and 0 ≤ t < 2i,

a⊕ (c× 2i+1 + t) =(d× 2i+1 + e− 1)⊕ (c× 2i+1 + t)

= (d× 2i+1 + 2i + t⊕ (e− 1))⊕ (c× 2i+1 + 2i). (59)

Therefore, from Equations (41) and (59), we obtain

G(a, x2, . . . , xs, c×2i+1+t) = G(d×2i+1+2i+t⊕(e−1), x2, . . . , xs, c×2i+1+2i). (60)

From Inequalities (45) and (48), we obtain

c× 2i+1 + 2i ≤g(a+ 1)

=F (a+ 1, x2, . . . , xs)

≤F (a+ 1 + t⊕ (e− 1), x2, . . . , xs)

≤F (d× 2i+1 + 2i + t⊕ (e− 1), x2, . . . , xs);
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hence, {d×2i+1+2i+t⊕(e−1), x2, . . . , xs, c×2i+1+2i} is the position of chocolate

bar CB(F, x1 . . . , xs). By Inequality (45),

c× 2i+1 + t = g(a) = F (a, x2, . . . , xs). (61)

By Inequality (48),

a < d× 2i+1 + 2i + t⊕ (e− 1). (62)

From Equation (61) and Inequality (62), we obtain

(a, x2, . . . , xs, c×2i+1+t) ∈ move(d×2i+1+2i+t⊕(e−1), x2, . . . , xs, c×2i+1+2i),

and this relation and Equation (60) lead to a contradiction.

Example 5. Let F (x, y) = min(
⌊
x
2

⌋
,
⌊
y
4

⌋
). For fixed x1 and y1, by Lemmas 2

and 7, F (x1, y) = min(
⌊
x1

2

⌋
,
⌊
y
4

⌋
) and F (x, y1) = min(

⌊
x
2

⌋
,
⌊
y1

4

⌋
) satisfy the NS

property, and hence by Theorem 7, for chocolate bars in Figure 26 and Figure 26,

we have G(5, 9, 2) = 5⊕ 9⊕ 2 = 14 and G(3, 6, 1) = 3⊕ 6⊕ 1 = 4.

Figure 25: coordinates Figure 26: (5, 9, 2) Figure 27: (3, 6, 1)

6. Application to the Game of Nim with a Pass

In this section, we apply the results of the multidimensional chocolate bar games

to the game of Nim with a pass move in Definition 19. We assume that s denotes

a fixed positive integer. We define the game of Nim with a pass move.

Definition 19. There exist s piles of stones. Two players take turns to remove

stones from one of the piles. The player who removes the last stone wins the game.

Here, we modified the standard rules of the game of Nim to allow a one-time pass,

that is, a pass move that may be used at most once in the game and not from a

terminal position, that is, when there is no stone left. Once either player uses a

pass, it is no longer available.

In classical Nim, the introduction of a pass alters the underlying structure of the

game, significantly increasing its complexity. The formula for P-positions of the

three-pile Nim with pass is still unknown.

We generalize Nim using the pass move in Definition 20.
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Definition 20. Suppose that there are s stone piles. We describe the position

of this game with (x1, x2, . . . , xs, p), where xi denotes the number of stones in

the i-th pile for i = 1, 2, . . . , s, and we define p = 1 when a pass is not used,

and p = 0 when a pass has already been used. Let F (x1, x2, . . . , xs) ∈ Z≥0

be a function of x1, x2, . . . , xs ∈ Z≥0 such that F (x1, x2, . . . , xs) ≤ 1. For each

position (x1, x2, . . . , xs, p), the next player can use a pass move if and only if

F (x1, x2, . . . , xs) = 1 and p = 1.

Example 6. If we define

F (x1, x2, . . . , xs) =

{
0 if x1 + x2 + · · ·+ xs = 0,

1 if x1 + x2 + · · ·+ xs > 0,

then the game in Definition 20 is the same as that in Definition 19. Therefore, the

game in Definition 20 is a generalization of the game in Definition 19.

Definition 21. For m ∈ Z≥0, let

I[m,∞)(x) =

{
0 if x < m,

1 if x ≥ m.

Lemma 9. Suppose that f(x) is a monotonically increasing function of Z≥0 into

Z≥0 such that f(x) ≤ 1 for any x ∈ Z≥0 and f(x) = 1 for some x ∈ Z≥0. Then,

f(x) = I[m,∞)

for an even number m ∈ Z≥0 if and only if f has the NS property.

Proof. Let f be a monotonically increasing function of Z≥0 into Z≥0 such that f

has the NS property, f(x) ≤ 1 for any x ∈ Z≥0 and f(x) = 1 for some x ∈ Z≥0.

Then, there exists a number m ∈ Z≥0 such that f(x) = I[m,∞). If m is odd, then⌊
m− 1

2

⌋
=

⌊m
2

⌋
.

Therefore, by Definition 11, f(m − 1) = f(m). This contradicts f(x) = I[m,∞).

Therefore, m is even.

Suppose that f = I[m,∞) for an even number m. Then, it is easy to observe that

f satisfies the NS property.

Corollary 1. Let F be a monotonically increasing function such that

0 ≤ F (x1, x2, . . . , xs) ≤ 1. Then,

Fx1,x2,...,xi−1,xi+1,...,xs
(x) = I[mx1,x2,...,xi−1,xi+1,...,xs ,∞)(x)

for even numbers mx1,x2,...,xi−1,xi+1,...,xs ∈ Z≥0 if and only if the Grundy number of

chocolate bar CB(F, x1, x2, . . . , xs, y) is

G(x1, x2, . . . , xs, y) = x1 ⊕ x2 ⊕ · · · ⊕ xs ⊕ y.
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Proof. This theorem is derived directly from Lemma 9 and Theorem 7.

Lemma 10. Let mi ∈ Z≥0 for i = 0, 1, . . . , s, and let

F (x1, x2, . . . , xs) =

{
1 if xi ≥ mi for some i,

0 if xi < mi for all i.

Then, Fx1,x2,...,xi−1,xi+1,...,xs
(x) has the NS property for i = 1, 2, . . . , s if and only

if mi is even for i = 1, 2, . . . , s.

Proof. For any i ∈ N such that 1 ≤ i ≤ s,

Fx1,x2,...,xi−1,xi+1,...,xs(x) =


1 if xj ≥ mj for some j ∈ N such that

1 ≤ j ≤ s and j ̸= i,

I[mi,∞) if xj < mj for all j ∈ N such that

1 ≤ j ≤ s and j ̸= i.

Hence, by Lemma 9, we complete the proof of this lemma.

Corollary 2. Suppose there are s stone piles. Let mi be a nonnegative number for

i = 1, 2, . . . , s. The players take turns removing the stones from one of the piles.

The player who removes the last stone wins. We denote by xi the number of stones

in the i-th pile, and we define p = 1 when a pass is available and p = 0 when a

pass has been used. We assume that a pass move is allowed in this game only when

xi ≥ mi for some i and p = 1. Thus, the Grundy number of this game is

G(x1, x2, . . . , xs) = x1 ⊕ x2 ⊕ · · · ⊕ xs ⊕ p

if and only if mi is even for i = 1, 2, . . . , s.

Proof. This corollary is derived from Corollary 1, Definition 21, and Lemma 10.

Corollary 2 explains why the game of Nim with a pass of Definition 19 is difficult

to analyze. This is because the formula for the Grundy number is expressed as the

Nim-sum of the coordinates and p only when mi is even for i = 1, 2, . . . , s. Note

that mi = 1 for i = 1, 2, . . . , s in the game of Nim with a pass of Definition 19.

We can calculate the Grundy numbers of this game if we change the conditions

under which we use the pass move. However, this knowledge does not help us find

formulas for the P-position or Grundy number in the original three-pile Nim with

a pass.

In this study, we investigate the necessary and sufficient conditions under which a

chocolate bar may have a Grundy number expressed by the Nim-sum of the position

coordinates.

Another question needs to be answered.
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Question 4. What is the necessary and sufficient condition under which the Nim-

sum of the coordinates of the position is 0 if and only if the position is a P-position?

We have studied this question, but we have not found any answer. An easier

question is Question 5.

Question 5. Can you find a sufficient condition under which the Nim-sum of the

coordinates of the position is 0 if and only if the position is a P-position?

We answer Question 5 with the following theorem.

Theorem 8 ([5]). Let F (w, x) =
⌊
w+x
k

⌋
for k = 4m+3, where m is a nonnegative

integer. Then, the chocolate bar CB(F, 0, w, x, y, 0) is a P-position if and only if

w ⊕ x⊕ y = 0.

The above theorem is applicable to three-dimensional chocolate bars, and our

next aim is to generalize this theorem to the case of (s+ 1)-dimensional chocolate

bars, where s is larger than 2.

6.1. Two-pile Nim with a Pass

Here, we study some examples of two-pile Nim with a pass, because we can study

them as three-dimensional chocolates.

The following definition is a special case of Definition 20.

Definition 22. There are two stone piles. The players take turns removing as many

stones as they prefer from one pile. The player who removes the last stone wins.

We denote by x and y the numbers of stones in the piles, and let F (x, y) ∈ Z≥0 be

a function of x, y ∈ Z≥0 such that 0 ≤ F (x, y) ≤ 1. We assume that a pass move is

allowed only in the game when F (x, y) = 1 and p = 1.

Example 7. Let t1 and t2 be nonnegative integers. Here we suppose that

F (x, y) =

{
1 if x ≥ t1 or y ≥ t2,

0 if x < t1 and y < t2,

where the cases of the two-pile Nim with a pass are presented in Figures 28, 29, 30,

and 31. Here, the pass move is denoted by height. As observed, games of Nim with

a pass move are represented as 3D chocolate games.
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Figure 28: t1 = t2 = 1 Figure 29: t1 = 3, t2 = 2

Figure 30: t1 = 3, t2 = 3 Figure 31: t1 = 3, t2 = 4

For additional research on combinatorial games with passes, see [2], [4] and [6].
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