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Abstract

This paper describes Wythoff’s game with a pass, which is a variant of the classical
Wythoft’s game. The classical form is played with two piles of stones, from which
two players take turns to remove stones from one or both piles. When removing
stones from both piles, an equal number must be removed from each pile. The
player who removes the last stone or stones wins. In Wythoff’s game with a pass,
we modify the standard rules to allow for a one-time pass, that is, a pass move that
may be used at most once in a game but not from the terminal position. Once
either player uses a pass, it is no longer available We denote the position of the
game by (z,y,p), where = and y are the numbers of stones in the two piles, p =1
if a pass is available, and p = 0 otherwise. The authors prove that for (x,y, 1) with
x>9o0ry>9, (x,y,1) is a P-position (the previous player’s winning position) if
and only if the Grundy number of (x,y,0) is 1. They also prove, using the result
of U. Blass and A.S. Fraenkel, that the Euclidean distance between each previous
player’s winning position in Wythoff’s game with a pass and a nearby previous
player’s winning position in Wythoff’s game without a pass is within v/20.

1. Introduction

Let Z>o and N be the sets of non-negative integers and natural numbers, respec-
tively. An interesting but challenging question in combinatorial game theory has
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been determining what happens when standard game rules are modified to allow
a one-time pass. This pass move may be used at most once in the game and not
from the terminal position. Once either player has used a pass, it is no longer
available for use. In the case of classical Nim, the introduction of the pass alters
the mathematical structure of the game, considerably increasing its complexity, and
finding the formula that describes the set of previous players’ positions remains an
important open question that has defied traditional approaches to solving it.

The late mathematician David Gale offered a monetary prize to the first person
who developed a solution for the three-pile classical Nim with a pass. In [9] (p.
370), Morrison, Friedman, and Landsberg conjectured that “solvable combinatorial
games are structurally unstable to perturbations, while generic, complex games will
be structurally stable.” One way to introduce such a perturbation is to allow a pass.
However, the authors of the present article reported some games as counterexamples
to this conjecture in [5], [7], and [8]. These games are solvable because there are
simple formulas for the Grundy numbers, and even when we introduce a pass move
to the games, there are simple formulas for P-positions. Based on the research in
[5], [7], and [8], the authors of the present article propose the following view on the
combinatorial game with a pass.

Some games have specific mathematical structures that prevent the perturbation
caused by the pass from spreading to other positions, and these games have formulas
for P-positions, even if a pass is introduced. However, the mathematical structures
of some games permit the perturbation caused by the pass to spread all over the
positions.

Here, we present research on Wythoff’s game with a pass. Wythoff’s game with
a pass presents a perfect example of specific mathematical structures that prevent
the perturbation caused by the pass from spreading to other positions.

For other research on combinatorial games with a pass, see [3], [4], and [6]. In [3]
and [6], Chan, Low, Locke, and Wong described the set of previous players’ positions
of Nim with a pass when the number of stones in each pile is at most four. This
study shows that the impact of perturbation is small when the number of stones
in each pile is small. In [4], it was proven that the arithmetic periodicity of the
G-sequence can occur when we add a single pass move to precisely one pile in finite
octal games, although finite octal games are not arithmetic periodic. Therefore, in
this case, regularity, not perturbation, occurs by adding a single pass to the finite
octal games.

For completeness, we briefly review some of the necessary concepts in combina-
torial game theory by referring to [1] and [10].

Definition 1. Let z and y be non-negative integers. We represent them in base
2, so that x = Y1 (22" and y = Y. y;2" with z;,y; € {0,1}. We define the



nim-sum x & y by
n
TDyY = Z wiQi,
i=0
where w; = x; + y; (mod 2).

Wythoff’s game is an impartial game without drawings; only two outcome classes
are possible.

Definition 2. A position is referred to as a P-position if it is the winning position
for the previous player (the player who has just moved), as long as the player plays
correctly at each stage. A position is referred to as an N-position if it is the winning
position for the next player, as long as they play correctly at each stage.

Definition 3. The disjunctive sum of the two games, denoted by G+ H, is a super
game in which a player may move either in G or H but not in both.

Definition 4. For any position p in game G, a set of positions can be reached by
a single move in G, which we denote as move(p).

Definition 5. The minimum excluded value (mez) of a set S of nonnegative integers
is the least nonnegative integer that is not in S.

Definition 6. Let p be a position in the impartial game. The associated Grundy
number is denoted by G(p) and is recursively defined by G(p) = mez({G(h) : h €
move(p)}).

The next result demonstrates the usefulness of the Sprague—Grundy theory for
impartial games.

Theorem 1 ([1]). Let G and H be impartial rulesets, and Gg and Gu be the
Grundy numbers of game g played under the rules of G and game h played under
those of H. Then, we obtain the following:

(i) for any position g in G, we have that Gg(g) = 0 if and only if g is the P-
position;

(#4) the Grundy number of positions {g,h} in game G + H is Ga(g) ® Gu(h).

Using Theorem 1, we can determine the P-position by calculating the Grundy
numbers and the P-position of the sum of the two games by calculating the Grundy
numbers of the two games.

2. Wythoff’s Game

In this section, we review some of the theorems of Wyhoff’s game for later use. For
the details of Wythoft’s game, see [11].



Definition 7. Wythoff’s game is played with two piles of stones. Two players take
turns removing stones from one or both piles. When removing stones from both
piles, the number of stones removed from each pile should be equal. The player
who removes the last stone or stones wins. An equivalent description of the game
is that a single chess queen is placed somewhere on a large grid of squares, and
each player can move the queen towards the upper-left corner of the grid, either
vertically, horizontally, or diagonally, for any number of steps. The winner is the
player who moves the queen to the upper-left corner.

Figure 1 shows the grid of squares, and we denote by (z,y) the number of stones
in the first and second piles or the position of the queen, where the horizontal and
vertical coordinates are denoted by z and y. Figure 2 shows the moves that the
queen can make in Wythoff’s game.
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Figure 1 Figure 2

Theorem 2 ([11]). The set of P-positions of the game in Definition 7 is
{(lng], [nd] +n) : n € Zxo} U{([n@] +n, [n¢]) : n € Z>o},
where ¢ = 1+T\/g

Theorem 2 is a well-known fact in Wythoff’s game.

Theorem 3 ([2]). Let {(an,bn) : n € Z>o}= {(z,y) : G(z,y) = 1}. Here, we
assume that a, is increasing. Then, we obtain

| bn = ([ng] +n) <4

and
[ng| —1<a, < |nd|+2.

Theorem 3 is Corollary 5.14 of [2].

Corollary 1. For any position (x,y) with G(x,y) = 1, there exists a position (v, w)
such that g(v,w) =0 and \/(Jf — U)2 + (y _ ’U))2 < m

Proof. This follows directly from Theorems 2 and 3. O




3. Wythoff’s Game with a Pass and the Sum of Wythoff’s Game and a
Pile of One Stone

In this section, we define a new variant of Wythoff’s game and compare it to the
sum of Wythoff’s game and a pile of one stone.

Definition 8. Wythoff’s game with a pass is played like the ordinary Wythoff’s
game, with the option of a single pass that can be used by exactly one player. Once
a pass is used, it cannot be used again. The pass can be used at any time up to the
penultimate move, but it cannot be used at the end of the game. The player who
cannot make a move loses. We denote by G; the Grundy number of this game.

Here, we introduce the sum of the traditional Wythoff’s game and a pile of one
stone. We need this game to study P-positions of Wythoff’s Game with a Pass.

Definition 9. Applying Definition 3, we define the sum of the classical Wythoft’s
game without a pass and the game of a pile of one stone. We denote by Gs the
Grundy number of this game.

We denote the position of the game in Definition 8 and the game in Definition
9 by three coordinates {x,y,p}. The coordinates z,y define the number of stones
in the first and second piles, or, if we use a queen in the game, the position of the
queen on the chessboard. For the game in Definition 8, the additional parameter p
denotes whether the pass is still available (p = 1) or has already been used (p = 0).
For the game in Definition 9, the parameter p = 1 if there is a stone in the third
pile, and p = 0 if there is no stone in the third pile. Note that when p = 0, the
games in Definitions 8 and 9 are the classical Wythoff’s game.

Definition 10. For any z,y € Z>¢ and p =0, 1, let

Ml(xvyap) = {(U,y,p) u<zx and u € ZZO}v

My (z,y,p) = {(z,v,p) : v <y and v € Z>p},
Ms(z,y,p) ={(x —t,y —t,p) : 1 <t <min(x,y) and t € Z>¢},

{(z,y,0)} (ifz4+y>0andp=1),

M ) ) =
1@, y.p) {(D (ifz4+y=0o0rp=0),

and
{(z,9,0)} (ifp=1),

Mi(z’y’p):{w (ifp=0).



The sets My (x,y,p), Ma(z,y,p), and Ms(x,y,p) are the sets of horizontal, verti-
cal, and diagonal moves, respectively. Set My(x,y,p) is the set of the pass move of
Wythoft’s game with a pass in Definition 8, and Set M (x,y,p) is the set of moves
in the third pile of the game in Definition 9. Note that My(z,y,p) is empty if and
only if x +y =0 or p =0, and M} (z,y,p) is empty if and only if p = 0.

Next, we define move; and moves, which are moves of the games in Definitions
8 and 9, respectively.

Definition 11. For any z,y € Z>¢ and p = 0,1, let

movel(SE,y,p) = Ml(xvyap) U MZ(x7y7p) U Mg(l’,y,p) U M4(aﬂ,y,p)

and

movesy(x,y,p) = My (z,y,p) U Ma(z,y,p) U M3(z,y,p) U My(x,y,p).

4. The Positions (x,y, p) such that z,y < 8

This section aims to determine P-positions and A -positions in the set {(z,y,p) :
z,y < 8} in Lemma 1. We now define three sets, A, B, and C, and study them.
These sets have mathematical structures that prevent the perturbation caused by
the pass from spreading to other positions. In Figures 3, 4, 5, 6, 7, 8, 9, the Grundy
numbers of each point are printed, but these Grundy numbers have nothing to do
with the argument in this section.

Definition 12. Let
A ={(0,0,0),(1,2,0),(2,1,0),(3,5,0), (4,7,0),(5,3,0), (7,4,0) },
B ={(0,0,1),(1,3,1),(3,1,1),(2,5,1),(5,2,1),(4,8,1),(8,4,1),(6,7,1),(7,6,1) },
and
C ={(0,1,1),(1,0,1),(2,2,1),(3,6,1),(6,3,1),(4,8,1),(8,4,1),(5,7,1),(7,5,1) }.

In Figures 3, 4, and 5, we have the sets of Grundy numbers {G; (z,y,0) : z,y < 8},
{G1(z,y,1) : 2,y < 8}, and {Ga(x,y,1) : x,y < 8}, respectively. Here, sets A, B,
and C' are printed in red.
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Lemma 1. (i) The set A in Definition 12 is the set of P-positions (x,y,0) of the
game in Definition 8 such that x,y < 8 and the pass is not available.

(it) The set B in Definition 12 is the set of P-positions (x,y,1) of the game in
Definition 8 such that x,y < 8 and the pass is available.

(#it) The set C in Definition 12 is the set of P-positions (z,y,1) of the game in
Definition 9 such that x,y < 8 and the third coordinate is 1.

Proof. (i) Since the pass is not available, by using Theorem 2 for z,y < 8 we obtain
Set A.



(ii) Let U = {(z,y,1) : 2,y < 8}. Since we need to prove that the set P-positions
of the game in Definitions 8 in U is B when a pass is available, we need to prove
that

movey (z,y,1)N(AUB) =0 (1)

for any (z,y,1) € B and
movey(z,y,1) N (AU B) # 0 (2)

for any (z,y,1) € U — B.

First, we prove Relation (1). Suppose that we start with the position (7,6, 1).
Then, the horizontal, vertical, and diagonal moves from this position are described
in Figure 6, and it is easy to see that M;(7,6,1) N B = 0, Mx(7,6,1) N B = 0,
and M;5(7,6,1) N B = ). Since My(7,6,1) = {(7,6,0)} and (7,6,0) ¢ A, we obtain
My(7,6,1) N A = (. Therefore, move;(7,6,1) N (AU B) = (). Similarly, for any
(z,y,1) € B, it is easy to show that My(z,y,1) N B =0, Ms(x,y,1) N B = (), and
M;s(x,y,1)NB = (. By comparing Figure 3 and Figure 4, we obtain My (z,y,1)NA =
(). Therefore, we obtain Relation (1).

Next, we prove Relation (2). Let (x,y,1) € U— B. For (8,y,1) withy =0,1,2,3
and y = 5,6,7,8, it is clear that M;(z,y,1) N B # (. In this way, for all blue
positions (z,y, 1) in Figure 7, we obtain M;(z,y,1) N B # (. Similarly, for all blue
positions (z,y, 1) in Figure 8, we obtain Ms(x,y, 1)NB # () and for all blue positions
(z,y,1) in Figure 9, we obtain M3(z,y,1) N B # (. The positions in U — B that do
not belong to the set of blue positions in Figures 7, 8, and 9 are (1,2,1) and (2,1, 1).
Since (1,2,0) and (2,1,0) belong to the set A in Figure 3, M4(1,2,1) N A # @ and
M4(2,1,1) N A # 0. Therefore, we obtain Relation (2).

(iii) By a method that is very similar to the one used in (ii), we can prove (iii).
Therefore, the details are omitted. O

5. The Set of P-positions of Wythoff’s Game with a Pass

In this section, we determine the set of P-positions of Wythoff’s game with a pass.
We use the similarity between the set of P-positions of Wythoff’s game with a pass
and the set of P-positions of the game in Definition 9.

Let Py = {(z,9,0) : Gi(z,y,0) = 0}, P, = {(z,y,1) : Gi(x,y,1) = 0}, and
Py ={(z,y,1) : Go(x,y,1) = 0}.

Lemma 2. Let x,y € Z>¢ such thatx > 9 ory > 9. Then, we obtain the following:
(i) if y <8, then My(z,y,1)N B # 0, My(z,y,1) NC # 0, and Ma(z,y,1)NC =
Ms(x,y,1)N B = 0;
(i) if x < 8, then Ma(x,y,1) N B # 0, My(z,y,1)NC # 0, and M;(x,y,1)NC =
Mi(x,y,1)N B = 0;



(15i) if v <y—+4 and y <z + 4, then M3(z,y,1)N B # 0 and M3(z,y,1) N C # (;
(iv) ifv >y+5ory>az+5, then Ms(z,y,1)N B = Mz(x,y,1) NC = 0.

Proof. (i) Suppose that z > 9 and y < 8. Then, by Definition 12, there exist
u, v € Zxo such that 1 < u,v’ <8, (u,y,1) € B, and (v,y,1) € C. Then, we
obtain (u,y,1) € Mi(x,y,1) N B and (v/,y,1) € My(z,y,1) N C. Since = > 9,
My (z,y,1) C {(z,v,1) : v € Z>o} C (BUC), where (B U C)® is the complement
of the set BUC. Hence, Ma(z,y,1) N C = My(z,y,1) N B = 0.

(i) Suppose that y > 9 and « < 8. Then, (ii) follows directly from (i), because this
game is symmetrical with respect to the first and second coordinates.

(iii) Suppose that x < y+4 and y < x + 4. By Definition 12, for any a € Z>( such
that —4 < a < 4, there exist u,u’,v,v" € Z>( such that u = v+ a, v = v + q,
(u,v,1) € B, and (u/,v',1) € C. Then, (u,v,1) € BN Ms(z,y,1) and (u/,v',1) €
C N Ms(x,y,1). Therefore, M3z(x,y,1) N B # () and M3(z,y,1)NC # 0.

(iv) We have two cases.

Case 1: Suppose that x > y 4 5. There is no u,v € Z>¢ such that v > v + 5 and
(u,v,1) € BUC. Hence, M3(z,y,1) N B = M3(z,y,1) N C = 0.

Case 2: Suppose that y > x + 5. Since this game is symmetrical with respect to

the first and the second coordinates, M3(z,y,1) N B = M3(z,y,1) N C = 0. O
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Figure 10: Set B and other positions Figure 11: Set C and other positions

Lemma 3. For z,y € Z>q such that x > 9 or y > 9, we obtain the following:
(1) Myi(z,y,1) N B # 0 if and only if My(z,y,1)NC # 0;

(i3) Ma(z,y,1) N B # 0 if and only if Ma(x,y,1) NC #£ 0;

(#5i) M3(z,y,1) N B # 0 if and only if Ms(z,y,1) NC # .

Proof. By Lemma 2, we obtain (i), (i), and (iii). O
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Theorem 4. For x,y € Z>o such that x > 9 or y > 9, we obtain the following
relation:

Gi(x,y,1) =0 if and only if Ga(z,y,1) = 0. (3)
Proof. Let Vg = {(z,y,1) : z,y < 8}. It is sufficient to prove that
P —Vg=P— V.
Let Uy = {(z,9,1) : ¢ +y < k}, and by mathematical induction we prove that
(Up—Vo)NPr=U,—Vz) NPy
for any natural number n. Since
(U7 — Vi) C {(u,v) :u>9 and v < 8} U {(u,v) : u < 8 and v > 9},
by () and (iz) of Lemma 2, any point in U7 — Vg is an A-position. Hence
Uiz =Vs)NPL=Uir —Vz)NPy=10.
For some natural number k& with k£ > 18, we suppose that
(Up —Vs) NPy = (U, — V3) N Ps. (4)

Let z,y € Z>o such that (z,y,1) € Ugy1 — Vs. Then, for ¢ = 1,2, 3, by Definition
10
Mi(gjaya 1) - Ukv

and hence we obtain
Ml('r7y71) mF)l = Ml(ﬂf,y,l) n ((Uk - ‘/8) U‘/S) mPl
= (M;(z,y,1) N (U — Vg) N P1) U (M;(z,y,1) N B) (5)

and

Mi(:c,y,l)ﬂPg :Ml(x,y,l)ﬁ((kaVg)UVg)ﬁPg
= (Ml(1'7y, 1) N (Uk - V8) N PZ) U (Mz(xvya 1) N Vé N P2)
= (M;(x,y,1) N (Up — V&) N Pp) U (M;(z,y,1) N C). (6)

By Lemma 3 and Equations (4), (5), and (6), we obtain
M;(x,y,1) N Py # 0 if and only if M;(z,y,1) N Py # () (7)

for i = 1,2,3. Since My(z,y,1) = Mj(x,y,1) = (z,y,0) for x,y such that © > 9 or
y > 9, we obtain

My(x,y,1) N Py # 0 if and only if Mj(x,y,1) N Py # 0. (8)
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By (7) and (8), for any x,y such that (z,y,1) € Up4+1 — Vs,
movey (z,y,1) N (Py U Py) # () if and only if moves(z,y,1) N (P U Py) # 0,
and hence,
(Ug41 —V3) N Py = (Ug41 — Vz) N Pa.

Therefore, by mathematical induction, we obtain
(Un_‘/é)mpl :(Un_VS)mP2
for any natural number n. O

By Theorem 4, a position (z,y, 1) is a P-position of the game in Definition 8 if
and only if it is a P-position of the game in Definition 9 when x > 9 or y > 9. The
mathematical structures of Sets A, B, and C prevent the perturbation caused by
the pass from spreading to other positions.

Corollary 2. For any x,y € Z>o such that x > 9 ory > 9,
Gi(z,y,1) =0 if and only if G1(x,y,0) = 1. 9)

Proof. By Theorem 1 and Definition 9, Ga(z,y,1) = Go(z,4,0) b1 = G (z,y,0) & 1.
By Theorem 4, Gy (x,y,1) = Ga(x,y,1). Hence, we obtain Relation (9). O

Theorem 5. For any position (z,y,1) such that Gi(z,y,1) = 0, there exists a
position (v, w,0) such that G1(v,w,0) = 0 and the Euclidean distance between (x,y)
and (v,w) is within v/20.

Proof. This follows directly from Corollaries 1 and 2. O

By Theorem 5, the graph of the set of P-positions in the classical Wythoff’s
game and the graph of P-positions in Wythoff’s game with a pass when the pass is
still available look very similar. See Figures 5.1 and 5.2.
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Figure 5.1. The graph of the set of P-positions in the classical Wythoff’s game.
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Figure 5.2. The graph of P-positions in Wythoff’s game with a pass when the

pass is still available.

6. Calculation of Grundy Numbers for Wythoff’s Game with a Pass by

Computers

Here, we have a table of the Grundy numbers in Figures 6.1 and 6.2. We used the
Combinatorial Game Suite, and in these tables, the symbol * denotes the number
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Figure 6.1. Table of Grundy numbers for Wythoff’s game without a pass.
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0 | %2 | « | x4 |3 |6 | 5 | +8 | «7 [«10| 9 [+12| 11|14 | 13|16
x2 | % [ 3] 0 | 6| <4 |8 | <7 | 5|9 |«12]+10|~14|+13|x11|x15

x3 | 2 | 6 | x4 | O | 7 | 5 | «8 |x12|x10| «9 |13 [x11 | <14 [<18
x4 | 0 |6 |3 | x| 2| 9 [«10|«11]=13| «7 | «5 | «8 | 12|15 |17
<3 [ 46 | x4 | x | 5 | 7 [«10] «2 | 0 [+14]=11]+13|«12|«15| «8 | <9
6 |4 | O |42 | 7 | <9 [«11] 3 | * | 5 |«13]+15|=10| <8 | 16«14
5 | x8 | 7 | x9 [«10|«11| x4 | 0 | +6 | «3 | = |x16 A7 (13
<8 | +7 | 5 [+10| 2 | «3 | 0 | 6 | x4 |+11|x14|x17 19+20
<7 | «5 | «8 [«11] 0 | * 10 [ 16 [ <15 | <18 | «3 |21
10| %9 [<12[13 [ <14 | «5 | «3 [«11[=16| <7 | «8 [«19[«15| «6 | 0 | =
<@ [<12[ 10| «7 [«11[13| = [<14[«15| «8 |<16|+20| «5 |17 |18 «4
«12[ 10| %9 | «5 | 13|15 |«16 [ +17 | =18 | «19| =20 | «8 |21 | «7 |22| =2
A1 [ 1413 [ <8 [<12[10| 2 | * | 0 [#15| «5 |+21|17|19|+20| «7
1413 [ <11 [<12[ 15| «8 | <18 <0 | 2 | 6 |«17| 7 |«19|+20| 5 |22
13 [11 [ <14 [«15| =8 [«16 <17 [+19| 3 | 0 |«18]=22|20| 5 | 12|10
16 [ 15 [ <18 [«17 | «@ [ <14 [«13[+20 21| * | 4 | «2 | 7 |+22|=10|+11

Figure 6.2. Table of Grundy numbers for Wythoff’s game with a pass.
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