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Abstract

This paper describes Wythoff’s game with a pass, which is a variant of the classical

Wythoff’s game. The classical form is played with two piles of stones, from which

two players take turns to remove stones from one or both piles. When removing

stones from both piles, an equal number must be removed from each pile. The

player who removes the last stone or stones wins. In Wythoff’s game with a pass,

we modify the standard rules to allow for a one-time pass, that is, a pass move that

may be used at most once in a game but not from the terminal position. Once

either player uses a pass, it is no longer available We denote the position of the

game by (x, y, p), where x and y are the numbers of stones in the two piles, p = 1

if a pass is available, and p = 0 otherwise. The authors prove that for (x, y, 1) with

x ≥ 9 or y ≥ 9, (x, y, 1) is a P-position (the previous player’s winning position) if

and only if the Grundy number of (x, y, 0) is 1. They also prove, using the result

of U. Blass and A.S. Fraenkel, that the Euclidean distance between each previous

player’s winning position in Wythoff’s game with a pass and a nearby previous

player’s winning position in Wythoff’s game without a pass is within
√
20.

1. Introduction

Let Z≥0 and N be the sets of non-negative integers and natural numbers, respec-

tively. An interesting but challenging question in combinatorial game theory has
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been determining what happens when standard game rules are modified to allow

a one-time pass. This pass move may be used at most once in the game and not

from the terminal position. Once either player has used a pass, it is no longer

available for use. In the case of classical Nim, the introduction of the pass alters

the mathematical structure of the game, considerably increasing its complexity, and

finding the formula that describes the set of previous players’ positions remains an

important open question that has defied traditional approaches to solving it.

The late mathematician David Gale offered a monetary prize to the first person

who developed a solution for the three-pile classical Nim with a pass. In [9] (p.

370), Morrison, Friedman, and Landsberg conjectured that “solvable combinatorial

games are structurally unstable to perturbations, while generic, complex games will

be structurally stable.”One way to introduce such a perturbation is to allow a pass.

However, the authors of the present article reported some games as counterexamples

to this conjecture in [5], [7], and [8]. These games are solvable because there are

simple formulas for the Grundy numbers, and even when we introduce a pass move

to the games, there are simple formulas for P-positions. Based on the research in

[5], [7], and [8], the authors of the present article propose the following view on the

combinatorial game with a pass.

Some games have specific mathematical structures that prevent the perturbation

caused by the pass from spreading to other positions, and these games have formulas

for P-positions, even if a pass is introduced. However, the mathematical structures

of some games permit the perturbation caused by the pass to spread all over the

positions.

Here, we present research on Wythoff’s game with a pass. Wythoff’s game with

a pass presents a perfect example of specific mathematical structures that prevent

the perturbation caused by the pass from spreading to other positions.

For other research on combinatorial games with a pass, see [3], [4], and [6]. In [3]

and [6], Chan, Low, Locke, and Wong described the set of previous players’ positions

of Nim with a pass when the number of stones in each pile is at most four. This

study shows that the impact of perturbation is small when the number of stones

in each pile is small. In [4], it was proven that the arithmetic periodicity of the

G-sequence can occur when we add a single pass move to precisely one pile in finite

octal games, although finite octal games are not arithmetic periodic. Therefore, in

this case, regularity, not perturbation, occurs by adding a single pass to the finite

octal games.

For completeness, we briefly review some of the necessary concepts in combina-

torial game theory by referring to [1] and [10].

Definition 1. Let x and y be non-negative integers. We represent them in base

2, so that x =
∑n

i=0 xi2
i and y =

∑n
i=0 yi2

i with xi, yi ∈ {0, 1}. We define the
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nim-sum x⊕ y by

x⊕ y =

n∑
i=0

wi2
i,

where wi = xi + yi (mod 2).

Wythoff’s game is an impartial game without drawings; only two outcome classes

are possible.

Definition 2. A position is referred to as a P-position if it is the winning position

for the previous player (the player who has just moved), as long as the player plays

correctly at each stage. A position is referred to as an N-position if it is the winning

position for the next player, as long as they play correctly at each stage.

Definition 3. The disjunctive sum of the two games, denoted by G+H, is a super

game in which a player may move either in G or H but not in both.

Definition 4. For any position p in game G, a set of positions can be reached by

a single move in G, which we denote as move(p).

Definition 5. Theminimum excluded value (mex) of a set S of nonnegative integers

is the least nonnegative integer that is not in S.

Definition 6. Let p be a position in the impartial game. The associated Grundy

number is denoted by G(p) and is recursively defined by G(p) = mex({G(h) : h ∈
move(p)}).

The next result demonstrates the usefulness of the Sprague–Grundy theory for

impartial games.

Theorem 1 ([1]). Let G and H be impartial rulesets, and GG and GH be the

Grundy numbers of game g played under the rules of G and game h played under

those of H. Then, we obtain the following:

(i) for any position g in G, we have that GG(g) = 0 if and only if g is the P-

position;

(ii) the Grundy number of positions {g,h} in game G+H is GG(g)⊕GH(h).

Using Theorem 1, we can determine the P-position by calculating the Grundy

numbers and the P-position of the sum of the two games by calculating the Grundy

numbers of the two games.

2. Wythoff’s Game

In this section, we review some of the theorems of Wyhoff’s game for later use. For

the details of Wythoff’s game, see [11].
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Definition 7. Wythoff’s game is played with two piles of stones. Two players take

turns removing stones from one or both piles. When removing stones from both

piles, the number of stones removed from each pile should be equal. The player

who removes the last stone or stones wins. An equivalent description of the game

is that a single chess queen is placed somewhere on a large grid of squares, and

each player can move the queen towards the upper-left corner of the grid, either

vertically, horizontally, or diagonally, for any number of steps. The winner is the

player who moves the queen to the upper-left corner.

Figure 1 shows the grid of squares, and we denote by (x, y) the number of stones

in the first and second piles or the position of the queen, where the horizontal and

vertical coordinates are denoted by x and y. Figure 2 shows the moves that the

queen can make in Wythoff’s game.

Figure 1 Figure 2

Theorem 2 ([11]). The set of P-positions of the game in Definition 7 is

{(⌊nϕ⌋, ⌊nϕ⌋+ n) : n ∈ Z≥0} ∪ {(⌊nϕ⌋+ n, ⌊nϕ⌋) : n ∈ Z≥0},

where ϕ = 1+
√
5

2 .

Theorem 2 is a well-known fact in Wythoff’s game.

Theorem 3 ([2]). Let {(an, bn) : n ∈ Z≥0}= {(x, y) : G(x, y) = 1}. Here, we

assume that an is increasing. Then, we obtain

| bn − (⌊nϕ⌋+ n) |≤ 4

and

⌊nϕ⌋ − 1 ≤ an ≤ ⌊nϕ⌋+ 2.

Theorem 3 is Corollary 5.14 of [2].

Corollary 1. For any position (x, y) with G(x, y) = 1, there exists a position (v, w)

such that G(v, w) = 0 and
√

(x− v)2 + (y − w)2 ≤
√
20.

Proof. This follows directly from Theorems 2 and 3.
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3. Wythoff’s Game with a Pass and the Sum of Wythoff’s Game and a
Pile of One Stone

In this section, we define a new variant of Wythoff’s game and compare it to the

sum of Wythoff’s game and a pile of one stone.

Definition 8. Wythoff’s game with a pass is played like the ordinary Wythoff’s

game, with the option of a single pass that can be used by exactly one player. Once

a pass is used, it cannot be used again. The pass can be used at any time up to the

penultimate move, but it cannot be used at the end of the game. The player who

cannot make a move loses. We denote by G1 the Grundy number of this game.

Here, we introduce the sum of the traditional Wythoff’s game and a pile of one

stone. We need this game to study P-positions of Wythoff’s Game with a Pass.

Definition 9. Applying Definition 3, we define the sum of the classical Wythoff’s

game without a pass and the game of a pile of one stone. We denote by G2 the

Grundy number of this game.

We denote the position of the game in Definition 8 and the game in Definition

9 by three coordinates {x, y, p}. The coordinates x, y define the number of stones

in the first and second piles, or, if we use a queen in the game, the position of the

queen on the chessboard. For the game in Definition 8, the additional parameter p

denotes whether the pass is still available (p = 1) or has already been used (p = 0).

For the game in Definition 9, the parameter p = 1 if there is a stone in the third

pile, and p = 0 if there is no stone in the third pile. Note that when p = 0, the

games in Definitions 8 and 9 are the classical Wythoff’s game.

Definition 10. For any x, y ∈ Z≥0 and p = 0, 1, let

M1(x, y, p) = {(u, y, p) : u < x and u ∈ Z≥0},

M2(x, y, p) = {(x, v, p) : v < y and v ∈ Z≥0},

M3(x, y, p) = {(x− t, y − t, p) : 1 ≤ t ≤ min(x, y) and t ∈ Z≥0},

M4(x, y, p) =

{
{(x, y, 0)} ( if x+ y > 0 and p = 1),

∅ ( if x+ y = 0 or p = 0),

and

M ′
4(x, y, p) =

{
{(x, y, 0)} ( if p = 1),

∅ ( if p = 0).
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The sets M1(x, y, p), M2(x, y, p), and M3(x, y, p) are the sets of horizontal, verti-

cal, and diagonal moves, respectively. Set M4(x, y, p) is the set of the pass move of

Wythoff’s game with a pass in Definition 8, and Set M ′
4(x, y, p) is the set of moves

in the third pile of the game in Definition 9. Note that M4(x, y, p) is empty if and

only if x+ y = 0 or p = 0, and M ′
4(x, y, p) is empty if and only if p = 0.

Next, we define move1 and move2, which are moves of the games in Definitions

8 and 9, respectively.

Definition 11. For any x, y ∈ Z≥0 and p = 0, 1, let

move1(x, y, p) = M1(x, y, p) ∪M2(x, y, p) ∪M3(x, y, p) ∪M4(x, y, p)

and

move2(x, y, p) = M1(x, y, p) ∪M2(x, y, p) ∪M3(x, y, p) ∪M ′
4(x, y, p).

4. The Positions (x, y, p) such that x, y ≤ 8

This section aims to determine P-positions and N -positions in the set {(x, y, p) :

x, y ≤ 8} in Lemma 1. We now define three sets, A, B, and C, and study them.

These sets have mathematical structures that prevent the perturbation caused by

the pass from spreading to other positions. In Figures 3, 4, 5, 6, 7, 8, 9, the Grundy

numbers of each point are printed, but these Grundy numbers have nothing to do

with the argument in this section.

Definition 12. Let

A = {(0, 0, 0), (1, 2, 0), (2, 1, 0), (3, 5, 0), (4, 7, 0), (5, 3, 0), (7, 4, 0)},

B = {(0, 0, 1), (1, 3, 1), (3, 1, 1), (2, 5, 1), (5, 2, 1), (4, 8, 1), (8, 4, 1), (6, 7, 1), (7, 6, 1)},

and

C = {(0, 1, 1), (1, 0, 1), (2, 2, 1), (3, 6, 1), (6, 3, 1), (4, 8, 1), (8, 4, 1), (5, 7, 1), (7, 5, 1)}.

In Figures 3, 4, and 5, we have the sets of Grundy numbers {G1(x, y, 0) : x, y ≤ 8},
{G1(x, y, 1) : x, y ≤ 8}, and {G2(x, y, 1) : x, y ≤ 8}, respectively. Here, sets A, B,

and C are printed in red.
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0 1 2 3 4 5 6 7 8

0 0 1 2 3 4 5 6 7 8

1 1 2 0 4 5 3 7 8 6

2 2 0 1 5 3 4 8 6 7

3 3 4 5 6 2 0 1 9 10

4 4 5 3 2 7 6 9 0 1

5 5 3 4 0 6 8 10 1 2

6 6 7 8 1 9 10 3 4 5

7 7 8 6 9 0 1 4 5 3

8 8 6 7 10 1 2 5 3 4

Figure 3: Set A

0 1 2 3 4 5 6 7 8

0 0 2 1 4 3 6 5 8 7

1 2 1 3 0 6 4 8 7 5

2 1 3 2 6 4 0 7 5 8

3 4 0 6 3 1 2 9 10 11

4 3 6 4 1 5 7 10 2 0

5 6 4 0 2 7 9 11 3 1

6 5 8 7 9 10 11 4 0 6

7 8 7 5 10 2 3 0 6 4

8 7 5 8 11 0 1 6 4 10

Figure 4: Set B

0 1 2 3 4 5 6 7 8

0 1 0 3 2 5 4 7 6 9

1 0 3 1 5 4 2 6 9 7

2 3 1 0 4 2 5 9 7 6

3 2 5 4 7 3 1 0 8 11

4 5 4 2 3 6 7 8 1 0

5 4 2 5 1 7 9 11 0 3

6 7 6 9 0 8 11 2 5 4

7 6 9 7 8 1 0 5 4 2

8 9 7 6 11 0 3 4 2 5

Figure 5: Set C

Figure 6: From P not P

0 1 2 3 4 5 6 7 8

0 0 2 1 4 3 6 5 8 7

1 2 1 3 0 6 4 8 7 5

2 1 3 2 6 4 0 7 5 8

3 4 0 6 3 1 2 9 10 11

4 3 6 4 1 5 7 10 2 0

5 6 4 0 2 7 9 11 3 1

6 5 8 7 9 10 11 4 0 6

7 8 7 5 10 2 3 0 6 4

8 7 5 8 11 0 1 6 4 10

Figure 7: Horizontal

0 1 2 3 4 5 6 7 8

0 0 2 1 4 3 6 5 8 7

1 2 1 3 0 6 4 8 7 5

2 1 3 2 6 4 0 7 5 8

3 4 0 6 3 1 2 9 10 11

4 3 6 4 1 5 7 10 2 0

5 6 4 0 2 7 9 11 3 1

6 5 8 7 9 10 11 4 0 6

7 8 7 5 10 2 3 0 6 4

8 7 5 8 11 0 1 6 4 10

Figure 8: Vertical

0 1 2 3 4 5 6 7 8

0 0 2 1 4 3 6 5 8 7

1 2 1 3 0 6 4 8 7 5

2 1 3 2 6 4 0 7 5 8

3 4 0 6 3 1 2 9 10 11

4 3 6 4 1 5 7 10 2 0

5 6 4 0 2 7 9 11 3 1

6 5 8 7 9 10 11 4 0 6

7 8 7 5 10 2 3 0 6 4

8 7 5 8 11 0 1 6 4 10

Figure 9: Daiagonal

Lemma 1. (i) The set A in Definition 12 is the set of P-positions (x, y, 0) of the

game in Definition 8 such that x, y ≤ 8 and the pass is not available.

(ii) The set B in Definition 12 is the set of P-positions (x, y, 1) of the game in

Definition 8 such that x, y ≤ 8 and the pass is available.

(iii) The set C in Definition 12 is the set of P-positions (x, y, 1) of the game in

Definition 9 such that x, y ≤ 8 and the third coordinate is 1.

Proof. (i) Since the pass is not available, by using Theorem 2 for x, y ≤ 8 we obtain

Set A.
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(ii) Let U = {(x, y, 1) : x, y ≤ 8}. Since we need to prove that the set P-positions

of the game in Definitions 8 in U is B when a pass is available, we need to prove

that

move1(x, y, 1) ∩ (A ∪B) = ∅ (1)

for any (x, y, 1) ∈ B and

move1(x, y, 1) ∩ (A ∪B) ̸= ∅ (2)

for any (x, y, 1) ∈ U −B.

First, we prove Relation (1). Suppose that we start with the position (7, 6, 1).

Then, the horizontal, vertical, and diagonal moves from this position are described

in Figure 6, and it is easy to see that M1(7, 6, 1) ∩ B = ∅, M2(7, 6, 1) ∩ B = ∅,
and M3(7, 6, 1) ∩B = ∅. Since M4(7, 6, 1) = {(7, 6, 0)} and (7, 6, 0) /∈ A, we obtain

M4(7, 6, 1) ∩ A = ∅. Therefore, move1(7, 6, 1) ∩ (A ∪ B) = ∅. Similarly, for any

(x, y, 1) ∈ B, it is easy to show that M1(x, y, 1) ∩ B = ∅, M2(x, y, 1) ∩ B = ∅, and
M3(x, y, 1)∩B = ∅. By comparing Figure 3 and Figure 4, we obtainM4(x, y, 1)∩A =

∅. Therefore, we obtain Relation (1).

Next, we prove Relation (2). Let (x, y, 1) ∈ U −B. For (8, y, 1) with y = 0, 1, 2, 3

and y = 5, 6, 7, 8, it is clear that M1(x, y, 1) ∩ B ̸= ∅. In this way, for all blue

positions (x, y, 1) in Figure 7, we obtain M1(x, y, 1) ∩B ̸= ∅. Similarly, for all blue

positions (x, y, 1) in Figure 8, we obtainM2(x, y, 1)∩B ̸= ∅ and for all blue positions

(x, y, 1) in Figure 9, we obtain M3(x, y, 1)∩B ̸= ∅. The positions in U −B that do

not belong to the set of blue positions in Figures 7, 8, and 9 are (1, 2, 1) and (2, 1, 1).

Since (1, 2, 0) and (2, 1, 0) belong to the set A in Figure 3, M4(1, 2, 1) ∩ A ̸= ∅ and

M4(2, 1, 1) ∩A ̸= ∅. Therefore, we obtain Relation (2).

(iii) By a method that is very similar to the one used in (ii), we can prove (iii).

Therefore, the details are omitted.

5. The Set of P-positions of Wythoff’s Game with a Pass

In this section, we determine the set of P-positions of Wythoff’s game with a pass.

We use the similarity between the set of P-positions of Wythoff’s game with a pass

and the set of P-positions of the game in Definition 9.

Let P0 = {(x, y, 0) : G1(x, y, 0) = 0}, P1 = {(x, y, 1) : G1(x, y, 1) = 0}, and

P2 = {(x, y, 1) : G2(x, y, 1) = 0}.

Lemma 2. Let x, y ∈ Z≥0 such that x ≥ 9 or y ≥ 9. Then, we obtain the following:

(i) if y ≤ 8, then M1(x, y, 1) ∩ B ̸= ∅, M1(x, y, 1) ∩ C ̸= ∅, and M2(x, y, 1) ∩ C =

M2(x, y, 1) ∩B = ∅;
(ii) if x ≤ 8, then M2(x, y, 1) ∩ B ̸= ∅, M2(x, y, 1) ∩ C ̸= ∅, and M1(x, y, 1) ∩ C =

M1(x, y, 1) ∩B = ∅;
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(iii) if x ≤ y + 4 and y ≤ x+ 4, then M3(x, y, 1) ∩B ̸= ∅ and M3(x, y, 1) ∩ C ̸= ∅;
(iv) if x ≥ y + 5 or y ≥ x+ 5, then M3(x, y, 1) ∩B = M3(x, y, 1) ∩ C = ∅.

Proof. (i) Suppose that x ≥ 9 and y ≤ 8. Then, by Definition 12, there exist

u, u′ ∈ Z≥0 such that 1 ≤ u, u′ ≤ 8, (u, y, 1) ∈ B, and (u′, y, 1) ∈ C. Then, we

obtain (u, y, 1) ∈ M1(x, y, 1) ∩ B and (u′, y, 1) ∈ M1(x, y, 1) ∩ C. Since x ≥ 9,

M2(x, y, 1) ⊂ {(x, v, 1) : v ∈ Z≥0} ⊂ (B ∪ C)c, where (B ∪ C)c is the complement

of the set B ∪ C. Hence, M2(x, y, 1) ∩ C = M2(x, y, 1) ∩B = ∅.
(ii) Suppose that y ≥ 9 and x ≤ 8. Then, (ii) follows directly from (i), because this

game is symmetrical with respect to the first and second coordinates.

(iii) Suppose that x ≤ y + 4 and y ≤ x+ 4. By Definition 12, for any a ∈ Z≥0 such

that −4 ≤ a ≤ 4, there exist u, u′, v, v′ ∈ Z≥0 such that u = v + a, u′ = v′ + a,

(u, v, 1) ∈ B, and (u′, v′, 1) ∈ C. Then, (u, v, 1) ∈ B ∩M3(x, y, 1) and (u′, v′, 1) ∈
C ∩M3(x, y, 1). Therefore, M3(x, y, 1) ∩B ̸= ∅ and M3(x, y, 1) ∩ C ̸= ∅.
(iv) We have two cases.

Case 1: Suppose that x ≥ y + 5. There is no u, v ∈ Z≥0 such that u ≥ v + 5 and

(u, v, 1) ∈ B ∪ C. Hence, M3(x, y, 1) ∩B = M3(x, y, 1) ∩ C = ∅.
Case 2: Suppose that y ≥ x + 5. Since this game is symmetrical with respect to

the first and the second coordinates, M3(x, y, 1) ∩B = M3(x, y, 1) ∩ C = ∅.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 2 1 4 3 6 5 8 7

1 2 1 3 0 6 4 8 7 5

2 1 3 2 6 4 0 7 5 8

3 4 0 6 3 1 2 9 10 11

4 3 6 4 1 5 7 10 2 0

5 6 4 0 2 7 9 11 3 1

6 5 8 7 9 10 11 4 0 6

7 8 7 5 10 2 3 0 6 4

8 7 5 8 11 0 1 6 4 10

9

10

11

12

13

14

Figure 10: Set B and other positions

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 1 0 3 2 5 4 7 6 9

1 0 3 1 5 4 2 6 9 7

2 3 1 0 4 2 5 9 7 6

3 2 5 4 7 3 1 0 8 11

4 5 4 2 3 6 7 8 1 0

5 4 2 5 1 7 9 11 0 3

6 7 6 9 0 8 11 2 5 4

7 6 9 7 8 1 0 5 4 2

8 9 7 6 11 0 3 4 2 5

9

10

11

12

13

14

Figure 11: Set C and other positions

Lemma 3. For x, y ∈ Z≥0 such that x ≥ 9 or y ≥ 9, we obtain the following:

(i) M1(x, y, 1) ∩B ̸= ∅ if and only if M1(x, y, 1) ∩ C ̸= ∅;
(ii) M2(x, y, 1) ∩B ̸= ∅ if and only if M2(x, y, 1) ∩ C ̸= ∅;
(iii) M3(x, y, 1) ∩B ̸= ∅ if and only if M3(x, y, 1) ∩ C ̸= ∅.

Proof. By Lemma 2, we obtain (i), (i), and (iii).
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Theorem 4. For x, y ∈ Z≥0 such that x ≥ 9 or y ≥ 9, we obtain the following

relation:

G1(x, y, 1) = 0 if and only if G2(x, y, 1) = 0. (3)

Proof. Let V8 = {(x, y, 1) : x, y ≤ 8}. It is sufficient to prove that

P1 − V8 = P2 − V8.

Let Uk = {(x, y, 1) : x+ y ≤ k}, and by mathematical induction we prove that

(Un − V8) ∩ P1 = (Un − V8) ∩ P2

for any natural number n. Since

(U17 − V8) ⊂ {(u, v) : u ≥ 9 and v ≤ 8} ∪ {(u, v) : u ≤ 8 and v ≥ 9},

by (i) and (ii) of Lemma 2, any point in U17 − V8 is an N -position. Hence

(U17 − V8) ∩ P1 = (U17 − V8) ∩ P2 = ∅.

For some natural number k with k ≥ 18, we suppose that

(Uk − V8) ∩ P1 = (Uk − V8) ∩ P2. (4)

Let x, y ∈ Z≥0 such that (x, y, 1) ∈ Uk+1 − V8. Then, for i = 1, 2, 3, by Definition

10

Mi(x, y, 1) ⊂ Uk,

and hence we obtain

Mi(x, y, 1) ∩ P1 = Mi(x, y, 1) ∩ ((Uk − V8) ∪ V8) ∩ P1

= (Mi(x, y, 1) ∩ (Uk − V8) ∩ P1) ∪ (Mi(x, y, 1) ∩ V8 ∩ P1)

= (Mi(x, y, 1) ∩ (Uk − V8) ∩ P1) ∪ (Mi(x, y, 1) ∩B) (5)

and

Mi(x, y, 1) ∩ P2 = Mi(x, y, 1) ∩ ((Uk − V8) ∪ V8) ∩ P2

= (Mi(x, y, 1) ∩ (Uk − V8) ∩ P2) ∪ (Mi(x, y, 1) ∩ V8 ∩ P2)

= (Mi(x, y, 1) ∩ (Uk − V8) ∩ P2) ∪ (Mi(x, y, 1) ∩ C). (6)

By Lemma 3 and Equations (4), (5), and (6), we obtain

Mi(x, y, 1) ∩ P1 ̸= ∅ if and only if Mi(x, y, 1) ∩ P2 ̸= ∅ (7)

for i = 1, 2, 3. Since M4(x, y, 1) = M ′
4(x, y, 1) = (x, y, 0) for x, y such that x ≥ 9 or

y ≥ 9, we obtain

M4(x, y, 1) ∩ P0 ̸= ∅ if and only if M ′
4(x, y, 1) ∩ P0 ̸= ∅. (8)
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By (7) and (8), for any x, y such that (x, y, 1) ∈ Uk+1 − V8,

move1(x, y, 1) ∩ (P1 ∪ P0) ̸= ∅ if and only if move2(x, y, 1) ∩ (P2 ∪ P0) ̸= ∅,

and hence,

(Uk+1 − V8) ∩ P1 = (Uk+1 − V8) ∩ P2.

Therefore, by mathematical induction, we obtain

(Un − V8) ∩ P1 = (Un − V8) ∩ P2

for any natural number n.

By Theorem 4, a position (x, y, 1) is a P-position of the game in Definition 8 if

and only if it is a P-position of the game in Definition 9 when x ≥ 9 or y ≥ 9. The

mathematical structures of Sets A, B, and C prevent the perturbation caused by

the pass from spreading to other positions.

Corollary 2. For any x, y ∈ Z≥0 such that x ≥ 9 or y ≥ 9,

G1(x, y, 1) = 0 if and only if G1(x, y, 0) = 1. (9)

Proof. By Theorem 1 and Definition 9, G2(x, y, 1) = G2(x, y, 0)⊕1 = G1(x, y, 0)⊕1.

By Theorem 4, G1(x, y, 1) = G2(x, y, 1). Hence, we obtain Relation (9).

Theorem 5. For any position (x, y, 1) such that G1(x, y, 1) = 0, there exists a

position (v, w, 0) such that G1(v, w, 0) = 0 and the Euclidean distance between (x, y)

and (v, w) is within
√
20.

Proof. This follows directly from Corollaries 1 and 2.

By Theorem 5, the graph of the set of P-positions in the classical Wythoff’s

game and the graph of P-positions in Wythoff’s game with a pass when the pass is

still available look very similar. See Figures 5.1 and 5.2.
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Figure 5.1. The graph of the set of P-positions in the classical Wythoff’s game.
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Figure 5.2. The graph of P-positions in Wythoff’s game with a pass when the

pass is still available.

6. Calculation of Grundy Numbers for Wythoff’s Game with a Pass by
Computers

Here, we have a table of the Grundy numbers in Figures 6.1 and 6.2. We used the

Combinatorial Game Suite, and in these tables, the symbol ∗ denotes the number

1.

Figure 6.1. Table of Grundy numbers for Wythoff’s game without a pass.
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Figure 6.2. Table of Grundy numbers for Wythoff’s game with a pass.
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