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Abstract

Ramsey theory is the study of the preservation of structure under finite partitions (called colorings). Ramsey
theory on the integers studies particular structures (families of subsets of Z+) that are preserved under
colorings of the integers (functions χ : Z+ → {1, 2, . . . , r} for some r ∈ Z+). A brief survey of Ramsey theory
(focusing on its application to the integers) is presented, as well as several new results.

One such result is based on a theorem of R. Rado, which states that there exists a minimum integer N such
that any 2-coloring of {1, 2, . . . , N} admits a monochromatic solution to any linear homogenous equation
E with at least 3 variables and mixed-sign coefficients. Such an N is investigated for x + y + kz = `w for
k, ` ∈ Z+, where N depends on k and `. The exact such N is determined for `− k ∈ {0, 1, 2, 3, 4, 5}, for all
k, ` for which 1

2 ((`− k)2 − 2)(`− k + 1) ≤ k ≤ `− 4, as well as for arbitrary k when ` = 2.

Another result is that that, given two linear homogenous equations E0, E1, each with at least three variables
and coefficients not all the same sign, any 2-coloring of Z+ admits monochromatic solutions of color 0 to E0

or monochromatic solutions of color 1 to E1. The 2-color off-diagonal Rado number RR(E0, E1) is defined to
be the smallest N such that [1, N ] must admit such solutions. A lower bound for RR(E0, E1) is determined
in certain cases when each Ei is of the form a1x1 + · · ·+ anxn = z, as is the exact value of RR(E0, E1) when
each is of the form x1 + a2x2 + · · ·+ anxn = z.



0. Ramsey Theory

In Ramsey theory, combinatorics in general, and others branches of mathematics, there is
a simple theorem that has proven to be an essential building block in several fundamental
or important results: the pigeonhole principle. We first define an r-coloring of a set S as a
function χ : S → [r] = {1, 2, . . . , r} for r ∈ Z+. Two elements s1, s2 of S are monochromatic
when χ(s1) = χ(s2) (this definition extends in the obvious way to more than two elements
of S). We state the principle as follows:

Theorem 0.1 (The Pigeonhole Principle): For any set S, for any r-coloring of S where r < |S|,
there are two monochromatic elements of S.

Proof: Consider, for contradiction, that r < |S| but that some coloring χ does not give any
color class with 2 elements. Then:

r < |S| = |χ−1(1)|+ |χ−1(2)|+ · · ·+ |χ−1(r)| ≤ 1 + 1 + · · ·+ 1 = r

This contradiction immediately confirms the principle. Note that here χ−1(i) denotes the ith

color class (elements of S assigned to the color i). 2

While stated here in terms of a coloring (as suits a Ramsey theoretic context), it can be
rephrased in other ways. For example, no function f : [n] → [m] can be injective if n > m.
It is also immediately generalized so that rn < |S| gives n+1 elements of the same color for
any n ∈ Z+. The pigeonhole principle is attributed to Dirichlet [D]. The principle may also
be used more generally. For example, if there are a + b − 1 elements of S to be 2-colored,
either a are color 1 or b are color 2. Otherwise, there would be only |χ−1(1)| + |χ−1(2)| ≤
a− 1 + b− 1 = a + b− 2 things in S.

0.1 Ramsey’s Theorem

The pigeonhole principle is the key step in proving what is called Ramsey’s theorem. We first
introduce the concept of a graph. A graph is a set V of vertices and a set of pairs E ⊆ V 2

called edges. A graph is typically represented as points for V with segments between two
points v1, v2 if {v1, v2} ∈ V . We say that a graph is complete on n vertices if |V | = n and
E = V 2−{(i, i) : i ∈ V } (it contains all possible edges between distinct vertices). Ramsey’s
theorem states:

Theorem 0.2 (Ramsey’s theorem): For any k, ` ∈ Z+ there exists an n ∈ Z+ such that for
any 2-coloring of the edges of Kn, there is a monochromatic Kk of color 0 inside this Kn, or
a monochromatic K` of color 1. Furthermore, the minimum such n, denoted R(k, `).

This theorem was proven by Frank Ramsey in 1930 [Ram], and was the origin of this new
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branch of combinatorics. The canonical example of Ramsey’s theorem is phrased as follows:

Theorem 0.2a (The party problem): If there are six guests at a party, and any pair of guests
is either friends or strangers, then there is either a group of three who are mutual friends or
a group of three who are mutual strangers.

Proof: We proceed by translating this into the
language of graph theory. We define a graph
on 6 vertices, each representing a person at
the party. We have an edge between each
pair, so the graph in question is K6. Color
an edge red between mutual friends and blue
between mutual strangers (we often use red
and blue instead of elements of [2]={1,2} for
convenience). We seek a monochromatic K3

(triangle).
Choose some vertex and apply the pigeonhole
principle. Because there are 5 edges from this
vertex, three must be the same color (without
loss of generality, say red). Then consider the
three vertices to which those edges connect.
If any edge between the two is red, then we
have a red K3. Otherwise, they are all blue
and we have a blue K3. 2 Two cases in this proof.

Proof of Theorem 0.2: The proof proceeds inductively on k+` (with the case k+` = 4 trivial).
Fix k, ` ∈ Z+ and consider a complete graph on R(k− 1, `) + R(k, `− 1) vertices with some
coloring χ. Choose some vertex v and consider the subgraphs B = {x ∈ V : χ(x, v) = 1}
(points with blue edges to v) and R = V \B (points with red edges to v). By the pigeonhole
principle, either |B| ≥ R(k − 1, `) or |R| ≥ R(k, `− 1). If the former is true, then either B
contains a red K` or a blue Kk−1 (and by the definition of B, B ∪ {v} contains a blue Kk).
The latter case is completely similar. 2

Notice that our general proof involves finding a pre-existing Kk−1. This is hidden inside
Theorem 0.2a; to construct our K3 we find a pre-existing K2 (note that K2 is a single edge).
Also be aware that Ramsey theory proofs almost universally make use of the well-ordering
principle without stating it. Here, we’ve simply shown that some number exists such that
Kn contains a blue Kk or a red K`. However, we did not mention that such a minimal n
exists. It does, by the well-ordering principle (the set of all such n is a subset of Z+, which
is well-ordered, and thus there is a minimal such n).

Ramsey’s theorem is generalized naturally to allow for more than 2 colors, and to allow each
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color to have its own objective Kk. Precisely, we state:

Theorem 0.3 (Multicolored Ramsey’s Theorem): For any r integers k1, k2, . . . , kr ∈ Z+, there
is a number N such that any r-coloring of KN admits a monochromatic Kki

of the color ki

for some i ∈ [r].

The implication is that structure is preserved. Under any coloring of the complete graph Kn

we find smaller complete graphs with edges of the same color. We can find monochromatic
Kk of any size k, provided we look in Kn for n sufficiently large.

This preservation of structure may run counter to intuition. Could there not be a way to
achieve disorder on such a scale that monochromatic complete graphs are avoided? Indeed,
this preservation of structure under colorings is prevalent in many mathematical contexts.
There are a great many structures that simply cannot be avoided, or, in the words of T.
Motzkin, “complete disorder is impossible” [JNR].

0.2 Ramsey Numbers

While Ramsey’s theorem gives a constructive proof, it does so by using a graph that is taken
to be purposely large. While we know that the Ramsey number R(k, `) exists, it is not given
by the theorem (the theorem gives an overestimate). So, although Ramsey’s theorem tells
us such a number exists, computing it precisely is a different matter, although it is a matter
of particular interest.

0.3 Ramsey Theory

Ramsey theory is the study of the preservation of structure under colorings. This is a very
general formulation, of course, so to give an idea of what Ramsey Theory encompasses,
Graham, Rothschild, and Spencer (in their seminal work on Ramsey Theory [GRS]) gives
the following list of 6 important Ramsey theoretic results:

Theorem 0.3 (Ramsey’s theorem): As above.

Theorem 0.4 (van der Waerden’s theorem): For any `, r ∈ Z+, there is an N such that for
all n ≥ N , any r-coloring of [n] contains a monochromatic arithmetic progression of length
`.

Theorem 0.4 (Schur’s theorem): For any r ∈ Z+, there is an N such that for all n ≥ N , any
r-coloring of [n] contains a monochromatic solution (x, y, z) to x + y = z.
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Theorem 0.6 (Rado’s theorem for a single equation): For a homogeneous linear equation
c1x1 + c2x2 + · · · + cnxn = 0 and r ∈ Z+, there is an N such that for any n ≥ N any
r-coloring of [n] contains a monochromatic solution if and only if some (nonempty) subset
of the coefficients ci sums to zero.

Theorem 0.7 (Hales-Jewett theorem): For all r, k ∈ Z+, there is an N such that for n ≥ N ,
and for any r-coloring of the elements of the n-dimensional cube of side-length k, written:

{(x1, x2, . . . , xn) : xi ∈ [k], i ∈ [n]}

the coloring admits a monochromatic “line.”

For n = 2, r = 2, and k = 3 we are looking at a filled tic-tac-toe board and hoping to find
a winning “line” - although n = 2 is too small for such r, k, which is why tic-tac-toe ends
in ties so frequently. In general, a “line” in this sense is a sequence of length k of the word
w(x) with letters from [k], which contains some variable letter x taken to range over [k].
For example, if w(x) = 1x, then our line is 11,12,13. Note that this means the antidiagonal
solution in tic-tac-toe (31,22,13) is not a “line” although the regular diagonal (11,22,33) is
for w(x) = xx.

Theorem 0.8 (Graham-Leeb-Rothschild theorem): For a finite field F of q elements, and for
any k, `, r ∈ Z+, there exists an N such that for all n ≥ N , we have the following:

For any n-dimensional vector space over F , any r-coloring of the k-dimensional subspaces of
V with r colors contains an ` dimensional subspace of V whose k-dimensional subspaces are
monochromatic.
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1. Ramsey theory meets the integers

Ramsey theory has applications to many mathematical structures: graphs, hypergraphs,
groups, fields, vector spaces, and the integers. The focus of this thesis will be the integers.

1.1 Van der Waerden’s Theorem

A seminal theorem in Ramsey theory on the integers is van der Waerden’s theorem, con-
jectured by I. Schur and proven by B. L. van der Waerden [V]. It states that arithmetic
progressions are one of the structures that are preserved under colorings.

Theorem 1.1 (van der Waerden’s theorem): For any k, r ∈ Z+, there is an N such that for
all n ≥ N , any r-coloring of [n] contains a monochromatic arithmetic progression of length
k. The minimal such N is denoted w(k, r).

The proof of this theorem ([GR]), like that of Ramsey’s theorem, provides an upper bound on
w(k, r). This bound is exceedingly large - well beyond known values and open to substantial
improvement. Gowers, for example, has improved these bounds [Go]. It is reasonable to say
that while an arithmetic progression must exist within the interval [w(k, r)], it is easier to
prove that an arithmetic progression exists in an interval [N ] much longer than [w(k, r)],
hence the abundance of large upper bounds in such problems.

1.2 Equation Regularity and Schur’s Theorem

Besides geometrically defined structures (graphs of particular shapes, arithmetic progres-
sions, etc.), the family of solutions to a particular equation may (or may not) be preserved
under colorings. For r ∈ Z+, an equation E is said to be r-regular (resp. regular) if it
contains monochromatic solutions under any r-coloring (resp. any finite coloring) of Z+.

An obvious observation tells us that an r-regular equation E must have infinitely many
solutions. However, this is not sufficient. For example x = 2y is not regular or even 2-regular.
To see this, let d2(n) be the number of times 2 evenly divides n. Coloring each integer n
based on the parity of d2(n) provides a coloring admitting no monochromatic solutions to
x = 2y. Note that regularity implies r regularity for any r, as does (r + 1)-regularity

The question becomes “which equations are regular or r-regular?” This question is, for
the most part, completely unknown. Indeed, many diophantine equations are themselves
not well understood. We will discover that the regularity of simple diophantine equations
(particularly those that are linear) is open to fruitful investigation. This question has been
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considered for some time, since the 1940s-1950s, however there are many results predating
Ramsey theory that are relevant.

Schur’s theorem is simply the statement that the equation x+y = z is regular. It is arguably
the first Ramsey theoretic result, having been proven in 1916 (predating Ramsey’s theorem).
However, the simplest proof of this theorem makes use of Ramsey’s theorem as follows.

Theorem 1.2 (Schur’s theorem): The equation x + y = z is regular.

Proof [GRS]: Fix r ∈ Z+ and take n + 1 ≥ R(

r︷ ︸︸ ︷
3, 3, . . . , 3) (recall that this is a Ramsey

number for r colors). Then an r-coloring χ of [n] induces an r-coloring χ∗ of the graph Kn+1

on {0, 1, . . . , n} where the color of an edge is χ∗(i, j) = χ(|i − j|). Then there must be a
monochromatic triangle (i, j), (j, k), (k, i). This corresponds to the monochromatic solution
(x, y, z) = (i− j, j − k, i− k) (x, y, z > 0 without loss of generality). 2

Schur proved his theorem in a paper on solutions to the equation xm+ym ≡ zm (mod p), and
he did not explore the possible generalizations of this theorem. His student, Richard Rado,
would do so, but neither Schur nor Rado would phrase their results in terms of Ramsey theory.
As a field of study, Ramsey theory came about later, years after Ramsey originally proved
his theorem. Schur’s theorem was motivated by an investigation into Fermat’s conjecture (as
one might guess), and the Ramsey theoretic implications were not obvious and only more
recently received thorough investigation.

Rado, in continuing Schur’s work, would characterize the regularity of any homogeneous
linear equation (indeed, any system of such equations) as follows.

Theorem 1.3a (Rado’s theorem, single equation) [Rad]: A homogeneous linear equation c1x1+
· · ·+ cnxn = 0 is regular if and only if some subset of its coefficients sum to 0.

Theorem 1.3b (Rado’s theorem) [Rad]: A system L of linear equations written Ax = 0 is
regular if and only if A meets the columns condition. The columns condition requires that
the columns of A can be partitioned into sets of columns C1, . . . , Cn such that the sum over
C1 is 0, and the sum over each subsequent Ci is in the span of C1, . . . , Ci−1.

For example, consider the system:

x− y + 2w + 3v = 0

−2x + y + z − 3w − 3v = 0

x + y − 2z − 2w − v = 0

This system meets the column’s condition. The first three columns sum to zero:

[1,−2, 1] + [−1, 1, 1] + [0, 1,−2] = [0, 0, 0]
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The sum of the other two columns is in the span of the first three:

[2,−3,−2] + [3,−3,−1] = [5,−6,−3]

2[1,−2, 1]− 3[−1, 1, 1] + [0, 1,−2] = [5,−6,−3]

It is clear that Theorem 1.3b is a generalization of 1.3a, since the subset C1 that sums to
zero corresponds to the subset mentioned in 1.3a, and for a single equation, columns are
simply integers, any of which are in the span of C1.

Rado proved the general case first; the single-equation version is just a simpler special case.
The reader is directed to [GRS] for proof of either version. The ambitious reader is directed
to [R] for the original proof of theorem 1.3b (in German).

Rado’s theorem leads us to new questions. What other kinds of equations are regular? What
kinds of equations are 2-regular (or r regular for some r ∈ Z+) but not regular? What are
the Ramsey-type numbers associated with particular equations (called, unsurprisingly, Rado
numbers). This paper will now focus on determining the Rado numbers for particular sorts
of linear equations, and will also prove that off-diagonal Rado numbers exist for those same
equations (and subsequently, investigate these off-diagonal Rado numbers). For a broad
survey of Ramsey theoretic results on the integers, the reader is directed to [LR]. Other
results are documented in [Gr2] and [KL].

1.3 The Compactness Principle

Within this paper (as elsewhere), we will often transition between two types of Ramsey theo-
retic statements: the finitary and infinitary versions of theorems. For example, we may state
van der Waerden’s theorem as above (referring to some N such that we find an arithmetic
progression of the required length), but we may also simply refer to a coloring of Z+ in its
entirety, which admits arbitrarily long (but not necessarily infinite) arithmetic progressions.
Certainly, making n ≥ N larger is required for larger k (i.e., w(k; r) is increasing in k,
clearly), but it is not so trivial to leap to the infinitary version (the converse, however, is
trivial).

Theorem 1.4 (The Compactness Principle): Let H = (V,E) be a hypergraph where members
of E are finite. Suppose for all finite W ⊆ V that χ(HW ) ≤ r for some r ∈ Z+ (HW is the
restriction of the graph H to the vertices in W ). Then χ(H) ≤ r.

Here χ represents the chromatic number of the graph. It is (in essence) the Ramsey-type
number from the hypergraph perspective. Often, the principle is phrased in terms of the
contrapositive: if χ(H) > r then there exists a finite W with χ(HW ) > r. In any event,
we may consider vertices of the hypergraph to be Z+, and edges to be the Ramsey-type
structure in question. Proof is omitted, but can be found in [GRS].
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2. 2-color Rado Numbers

In addition to his eponymous theorem, Rado also proved the following, lesser known, result.

Theorem 2.1 [Rad]: Let E = 0 be a linear homogeneous equation with integer coefficients.
Assume that E has at least 3 variables with both positive and negative coefficients. Then
any 2-coloring of Z+ admits a monochromatic solution to E = 0.

Theorem 2.1 cannot be extended to more than 2 colors, without further restriction on the
equation. For example, Fox and Radoičić [FR] have shown, in particular, that there exists
a 3-coloring of Z+ that admits no monochromatic solution to x + 2y = 4z. For more
information about equations that have finite colorings of Z+ with no monochromatic solution
see [AFG] and [FR]. This means that there is a fundamental difference between 2-regularity
and regularity or even between 2- and 3-regularity.

In essence, any (sensible) homogenous linear equation meets the conditions of this theorem.
Here, sensible essentially means that it has solution in Z+ (e.g., not x + y = 0) and that
its solutions are at least slightly interesting. The solutions to 5x − 7y = 0, for example,
can almost immediately be 2-colored to avoid admitting monochromatic solutions. Color
an integer red if 5 has even multiplicity in its prime factorization, and blue otherwise (this
is very similar to the example in Section 1.2). There are equations that are 2-regular that
don’t meet the conditions of the theorem (e.g., x− y = 0).

Proof [Rad]: Let
∑k

i=1 αixi =
∑`

i=1 βiyi be our equation, where k ≥ 2, ` ≥ 1, αi ∈ Z+ for
1 ≤ i ≤ k, and βi ∈ Z+ for 1 ≤ i ≤ `. By setting x = x1 = x2 = · · · = xk−1, y = xk, and
z = y1 = y2 = · · · = y`, we may consider solutions to

ax + by = cz,

where a =
∑k−1

i=1 αi, b = ck, and c =
∑`

i=1 βi. We will denote ax + by = cz by E .

Let m = lcm
(

a
gcd(a,b)

, c
gcd(b,c)

)
. Let (x0, y0, z0) be the solution to E with max(x, y, z) a

minimum, where the maximum is taken over all solutions of positive integers to E . Let
A = max(x0, y0, z0).

Assume, for a contradiction, that there exists a 2-coloring of Z+ with no monochromatic
solution to E . First, note that for any n ∈ Z+, the set {in : i = 1, 2, . . . , A} cannot be
monochromatic, for otherwise x = x0n, y = y0n, and z = z0n is a monochromatic solution,
a contradiction.

Let x = m so that bx
a
, bx

c
∈ Z+. Letting red and blue be our two colors, we may assume,

without loss of generality, that x is red. Let y be the smallest number in {im : i = 1, 2, . . . , A}
that is blue. Say y = `m so that 2 ≤ ` ≤ A.
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For some n ∈ Z+, we have that z = b
a
(y − x)n is blue, otherwise {i b

a
(y − x) : i = 1, 2, . . . }

would be red, admitting a monochromatic solution to E . Then w = a
c
z + b

c
y must be red,

for otherwise az + by = cw and z, y, and w are all blue, a contradiction. Since x and w are
both red, we have that q = c

a
w − b

a
x = b

a
(y − x)(n + 1) must be blue, for otherwise x,w,

and q give a red solution to E . As a consequence, we see that
{
i b
a
(y − x) : i = n, n + 1, . . .

}
is monochromatic. This gives us that

{
i b
a
(y − x)n : i = 1, 2, . . . , A

}
is monochromatic, a

contradiction. 2

In this thesis we study the equation x + y + kz = `w for positive integers k and `. As such,
we make the following notation.

Notation: For k a positive integer and j > −k an integer, let E(k, j) represent the equation

x + y + kz = (k + j)w.

2.1 A General Upper Bound

Definition: Let E be any equation that satisfies the conditions in Theorem 1. Denote by
RR(E) the minimum integer N such that any 2-coloring of [N ] admits a monochromatic
solution to E .

Our goal is to investigate these Rado numbers for the equations in question. Theorems to
this end most frequently come in two varieties: upper and lower bounds. To show that
some N is a lower bound, we find some particular coloring of [N − 1] that does not admit
monochromatic solutions. Conversely, to show that N ′ is an upper bound, we show that any
coloring of [N ′] must admit a monochromatic solution. If N = N ′, then the RR(E) = N .

Part of the following result is essentially a result due to Burr and Loo [BL] who show that,
for j ≥ 4, we have RR(x + y = jw) =

(
j+1
2

)
. This result was never published. Below is an

(independently derived) proof.

Theorem 2.2: Let k, j ∈ Z+ with j ≥ 4. Then RR(E(k, j)) ≤ (
j+1
2

)
. Furthermore, for all

k ≥ (j2−2)(j+1)
2

, we have RR(E(k, j)) =
(

j+1
2

)
.

So to prove this theorem, we will establish
(

j+1
2

)
as an upper bound for any k, and then show

that it is also a lower bound for k sufficiently large.

Proof: Let F denote the equation x + y = jw. We will show that RR(F) ≤ (
j+1
2

)
. Since any

solution to F is also a solution to E(k, j) for any k ∈ Z+, the first statement will follow.

Assume, for a contradiction, that there exists a 2-coloring of
[
1,

(
j+1
2

)]
with no monochro-

matic solution to F . Using the colors red and blue, we let R be the set of red integers and
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B be the set of blue integers. We denote solutions of F by (x, y, w) where x, y, w ∈ Z+.

Since (x, y, w) = (j − 1, 1, 1) solves F , we may assume that 1 ∈ R and j − 1 ∈ B. We
separate the proof into two cases.

Case 1. j + 1 ∈ B. Assume i ≥ 1 is red. Considering (1, ij − 1, i) gives ij − 1 ∈ B. If
i ≤ ⌊

j+1
2

⌋
, this, in turn, gives us i + 1 ∈ R by considering (ij − 1, j + 1, i + 1). Hence

1, 2, . . . ,
⌊

j+1
2

⌋
+ 1 are all red. But then

(⌊
j
2

⌋
,
⌊

j+1
2

⌋
, 1

)
is a red solution, a contradiction.

Case 2. j + 1 ∈ R. This implies that j
(

j+1
2

) ∈ B. Note also that the solutions (1, j − 1, 1)

and
(
j
(

j−1
2

)
, j

(
j−1
2

)
, j − 1

)
give us j − 1 ∈ B and j

(
j−1
2

) ∈ R.

First consider the case when j is even. By considering
(

j
2
, j

2
, 1

)
we see that j

2
∈ B. Assume,

for i ≥ 1, that (2i−1)j
2

∈ B. Considering
(
j
(

j+1
2

)
, (2i−1)j

2
, j

2
+ i

)
we have j

2
+ i ∈ R. This, in

turn, implies that (2i+1)j
2

∈ B by considering
(
j
(

j−1
2

)
, (2i+1)j

2
, j

2
+ i

)
. Hence we have j

2
+ i

is red for 1 ≤ i ≤ j
2
. This gives us that j − 1 ∈ R (when i = j

2
− 1), a contradiction.

Now consider the case when j is odd. We consider two subcases.

Subcase i. j ∈ B. For i ≥ 1, assume that ij ∈ B. We obtain j+1
2

+ i ∈ R by

considering the solution
(
j
(

j+1
2

)
, ij, j+1

2
+ i

)
. This gives us (i + 1)j ∈ B by considering(

j
(

j−1
2

)
, (i + 1)j, j+1

2
+ i

)
Hence, we have that j, 2j, . . . ,

(
j+1
2

)
j are all blue, contradicting

the deduction that j
(

j−1
2

) ∈ R.

Subcase ii. j ∈ R. We easily have 2 ∈ B. Next, we conclude that j
(

j−3
2

) ∈ R by

considering
(
j
(

j+1
2

)
, j

(
j−3
2

)
, j − 1

)
. Then, the solution

(
j
(

j−3
2

)
, j

(
j−1
2

)
, j − 2

)
gives us

j − 2 ∈ B. We use
(
j
(

j−1
2

)
, j, j+1

2

)
to see that j+1

2
∈ B. From

(
j
(

j+1
2

)− 2, 2, j+1
2

)
we

have j
(

j+1
2

) − 2 ∈ R. To avoid
(
j
(

j−1
2

)
+ 2, j

(
j+1
2

)− 2, j
)

being a red solution, we have

j
(

j−1
2

)
+ 2 ∈ B. This gives us a contradiction; the solution

(
j
(

j−1
2

)
+ 2, j − 2, j+1

2

)
is blue.

This completes the proof of the first statement of the theorem.

For the proof of the second statement of the theorem, we need only provide a lower bound
of

(
j+1
2

)− 1. We first show that any solution to x + y + kz = (k + j)w with x, y, z, w <
(

j+1
2

)

must have z = w when k ≥ (j2−2)(j+1)
2

. Assume, for a contradiction, that z 6= w. If z < w,
then (k + j)w ≥ (k + j)(z + 1) > kz + k. However, x + y < j(j + 1) while k > j(j + 1) for
j ≥ 3. Hence, z 6< w. If z > w, then (k + j)w ≤ k(z − 1) + j

((
j+1
2

)− 1
)
. Since we have

x + y + kz = (k + j)w we now have 2 + kz ≤ x + y + kz ≤ k(z − 1) + j
((

j+1
2

)− 1
)
. Hence,

k ≤ j
((

j+1
2

)− 1
)− 2, contradicting the given bound on k. Thus, z = w.

Now, any solution to x + y + kz = (k + j)w with z = w is a solution to x + y = jw. From
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Burr and Loo’s result, there exists a 2-coloring of
[
1,

(
j+1
2

)− 1
]

with no monochromatic
solution to x + y = jw. This provides us with a 2-coloring with no monochromatic solution
to x + y + kz = (k + j)w, thereby finishing the proof of the second statement. 2

This tells us that for a fixed j = `−k ≥ 4, the Rado number for x+y+kz = `w is eventually
constant, which would follow along the diagonals of some table of k vs. ` (such as Table 1,
presented below). We turn to the exact Rado numbers for particular small values of j.

2.2 Some Specific Numbers

In this section we determine the exact values for RR(E(k, j)) for j ∈ {0, 1, 2, 3, 4, 5}, most
of which are cases not covered by Theorem 2.

Theorem 2.3: For k ≥ 2,

RR(E(2k, 0)) = 2k and RR(E(2k − 1, 0)) = 3k − 1.

Furthermore RR(E(2, 0)) = 5 and RR(E(1, 0)) = 11.

Proof: The cases RR(E(2, 0)) = 5, RR(E(4, 0)) = 4, and RR(E(3, 0) = 5 are easy calcula-
tions, as is RR(E(1, 0)) = 11, which first appeared in [BB]. Hence, we may assume k ≥ 3 in
the following arguments.

We start with RR(E(2k, 0)) = 2k. To show that RR(E(2k, 0)) ≥ 2k consider the 2-coloring
of [1, 2k − 1] defined by coloring the odd integers red and the even integers blue. To see
that there is no monochromatic solution to x + y + 2kz = 2kw, note that we must have
2k | (x + y). This implies that x + y = 2k since x, y ≤ 2k − 1. Thus, w = z + 1. However,
no 2 consecutive integers have the same color. Hence, any solution to E(2k, 0) is necessarily
bichromatic.

Next, we show that RR(E(2k, 0)) ≤ 2k. Assume, for a contradiction, that there exists a
2-coloring of [1, 2k] with no monochromatic solution to our equation. Using the colors red
and blue, we may assume, without loss of generality, that k is red. This gives us that k − 1
and k+1 are blue, by considering (x, y, z, w) = (k, k, k−1, k) and (k, k, k, k+1). Using these
in the solution (2k, 2k, k − 1, k + 1) we see that 2k must be red, which implies that k − 2 is
blue (using (2k, 2k, k−2, k)). However, this gives the blue solution (k−1, k+1, k−2, k−1),
a contradiction.

We move on to RR(E(2k − 1, 0)). To show that RR(E(2k − 1, 0)) ≤ 3k − 1 consider the
following 2-colorings of [1, 3k − 2], dependent on k (we use r/b for red/blue, respectively):
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brrbbrrbb . . . bbr if k ≡ 0 (mod 4)

rrbbrrbb . . . bbr if k ≡ 1 (mod 4)

brrbbrrbb . . . rrb if k ≡ 2 (mod 4)

rrbbrrbb . . . rrb if k ≡ 3 (mod 4).

Since we need (2k − 1) | (x + y) and x, y ≤ 3k − 2, we have x + y ∈ {2k − 1, 4k − 2}. By
construction, if x+y = 2k−1, then x and y have different colors. Hence, the only possibility
is x + y = 4k − 2. But then w = z + 2 and we see that w and z must have different colors.

Next, we show that RR(E(2k − 1, 0)) ≤ 3k − 1. Assume, for a contradiction, that there
exists a 2-coloring of [1, 3k − 1] with no monochromatic solution to our equation. Using the
colors red and blue, we may assume, without loss of generality, that 2k − 1 is red. To avoid
(2k − 1, 2k − 1, z, z + 2) being a red solution, we see that 2k + 1 and 2k − 3 are blue (using
z = 2k − 1 and 2k − 3, respectively).

If 2k is red, then 2k−2 is blue (using (2k−2, 2k, 2k−2, 2k)). From (3k−1, 3k−1, 2k−2, 2k+1)
we see that 3k−1 is red. This, in turn, implies that 2k−4 is blue (using (3k−1, 3k−1, 2k−
4, 2k − 1)). So that (2k − 4, 2k + 2, 2k − 4, 2k − 2) is not a blue solution, we require 2k + 2
to be red. But then (2k − 1, 2k − 1, 2k, 2k + 2) is a red solution, a contradiction.

If 2k is blue, then 2k−2 must be red. So that (3k−1, 3k−1, 2k−3, 2k) is not a blue solution,
we have that 3k−1 is red. Also, 2k+2 must be red by considering (2k−3, 2k+1, 2k, 2k+2).
But this implies that (3k − 1, 3k − 1, 2k − 1, 2k + 2) is a red solution, a contradiction. 2

We proceed with a series of results for the cases j = 1, 3, 4, 5. When j = 2, the corresponding
number is trivially 1 for all k ∈ Z+.

Below, we will call a coloring of [1, n] valid if it does not contain a monochromatic solution
to E(k, j).

Theorem 2.4: For k ∈ Z+,

RR(E(k, 1)) =





4 for k ≤ 3

5 for k ≥ 4.

Proof: Assume, for a contradiction, that there exists a 2-coloring of [1, 5] with no monochro-
matic solution to x + y + kz = (k + 1)w. We may assume that 1 is red. Considering the
solutions (1, 1, 2, 2), (2, 2, 4, 4), (1, 3, 4, 4), and (2, 3, 5, 5), in order, we find that 2 is blue, 4 is
red, 3 is blue, and 5 is red. But then (1, 4, 5, 5) is a red solution, a contradiction. Hence,
RR(E(k, 1)) ≤ 5 for all k ∈ Z+.
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We see from the above argument that the only valid colorings of [1, 3] (assuming, without
loss of generality, that 1 is red) are rbr and rbb (where we use r for red and b for blue).
Furthermore, the only valid coloring of [1, 4] is rbbr. We use these colorings to finish the
proof.

First consider the valid coloring rbr. The possible values of x+y+kz when x, y, z are all red
form the set {k + 2, k + 4, k + 6, 3k + 2, 3k + 4, 3k + 6}. The possible values when x, y, z are
all blue is 2k +4. The possible values of (k +1)w when w is red form the set {k +1, 3k +3};
when w is blue, 2k + 2 is the only possible value. We denote these results by:

Rx,y,z = {k + 2, k + 4, k + 6, 3k + 2, 3k + 4, 3k + 6}
Bx,y,z = {2k + 4}

Rw = {k + 1, 3k + 3}
Bw = {2k + 2}.

Next, we determine those values of k, if any, for which Rx,y,z ∩ Rw 6= ∅ or Bx,y,z ∩ Bw 6= ∅.
Clearly, there is no such k for these sets. Hence, we conclude that RR(E(k, 1)) ≥ 4 for all
k. (We need not consider the valid coloring rbb since we now know that RR(E(k, 1)) ≥ 4 for
all k.)

We move on to the valid coloring of [1, 4], which is rbbr. We find that

Rx,y,z = {k + 2, k + 5, k + 8, 4k + 2, 4k + 5, 4k + 8}
Bx,y,z = {2k + 4, 2k + 5, 2k + 6, 3k + 4, 3k + 5, 3k + 6}

Rw = {k + 1, 4k + 4}
Bw = {2k + 2, 3k + 3}.

We see that Bx,y,z∩Bw 6= ∅ when k = 1 (2k+4 = 3k+3), k = 2 (2k+5 = 3k+3), and k = 3
(2k + 6 = 3k + 3). For all other values of k, Bx,y,z ∩Bw = ∅ and Rx,y,z ∩Rw = ∅. Hence, we
conclude that RR(E(k, 1)) ≥ 5 for k ≥ 3, while, since rbbr is the only valid coloring of [1, 4],
RR(E(k, 1)) ≤ 4 for k = 1, 2, 3. This completes the proof of the theorem. 2

2.2a About FVR

The proofs below refer to the small Maple package FVR. We find our lower bounds by con-
sidering all valid colorings of [1, n] for some n ∈ Z+ and deducing the possible elements
that x + y + kz can be when x, y, and z are monochromatic and the possible elements that
(k+ j)w can be, i.e., determining Rx,y,z, Bx,y,z, Rw, and Bw. We then looked for intersections
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that would make (x, y, z, w) a monochromatic solution. The intersections are specific values
of k which show that the given coloring has monochromatic solutions for these values of k.

The Maple package FVR automates this process in, and is available from Aaron Robertson’s
webpage1. The input is a list of all valid colorings of [1, n]. The output is a list of values of
k for which we have monochromatic solutions. By increasing n we are able to determine the
exact Rado numbers for all k ∈ Z+. An example of this is explained in detail in the proof of
the next theorem.

Theorem 2.5: For k ∈ Z+,

RR(E(k, 3)) =





4 for k ≤ 5 and k = 7
6 for k = 8, 11
9 for k = 6, 9, 10 and k ≥ 12

Proof: The method of proof is the same as that for Theorem 4, but we will work it out in
some detail commenting on the use of the Maple package FVR.

It is easy to check that the only valid 2-colorings (using r for red, b for blue, and assuming
that 1 is red) of [1, n] for n = 4, 5, . . . , 8 are as in the following table. The determinations of
Rx,y,z, Rw, Bx,y,z, and Bw are equally easy.

n coloring sets

4 rbrr Rx,y,z = {ik + j : i = 1, 3, 4; j = 2, 4, 5, 6, 7, 8}; Rw = {i(k + 3) : i = 1, 3, 4}
Bx,y,z = {2k + 2}; Bw = {2k + 6}

5 rbrrb Rx,y,z = {ik + j : i = 1, 3, 4; j = 2, 4, 5, 6, 7, 8}; Rw = {i(k + 3) : i = 1, 3, 4}
Bx,y,z = {ik + j : i = 2, 5; j = 2, 4, 7, 10};Bw = {2k + 6, 5k + 15}

6 rbrrbb Rx,y,z = {ik + j : i = 1, 3, 4; j = 4, 5, 6, 7, 8}; Rw = {i(k + 3) : i = 1, 3, 4}
Bx,y,z = {ik + j : i = 2, 5, 6; j = 4, 7, 8, 10, 11, 12}; Bw = {2k + 6, 5k + 15, 6k + 18}

7 rbrrbbr Rx,y,z = {ik + j : i = 1, 3, 4, 7; j = 4, . . . , 8, 10, 11, 14}; Rw = {i(k + 3) : i = 1, 3, 4, 7}
Bx,y,z = {ik + j : i = 2, 5, 6; j = 4, 7, 8, 10, 11, 12}; Bw = {2k + 6, 5k + 15, 6k + 18}

8 rbrrbbrb Rx,y,z = {ik + j : i = 1, 3, 4, 7; j = 4, . . . , 8, 10, 11, 14}; Rw = {i(k + 3) : i = 1, 3, 4, 7}
Bx,y,z = {ik + j : i = 2, 5, 6; j = 4, 7, 8, 10, . . . , 14, 16}; Bw = {i(k + 3) : i = 2, 5, 6, 8}

The sets Rx,y,z, Rw, Bx,y,z, and Bw are automatically found by FVR, which then gives us the
values of k that induce a nonempty intersection of either Rx,y,z ∩ Rw or Bx,y,z ∩ Bw. For
completeness, we give the details.

For the coloring rbrr, we have Rx,y,z ∩ Rw 6= ∅ when k = 1 (k + 3 = 3k + 5), k = 2
(3k +9 = 4k + 7), k = 3 (3k + 9 = 4k +6), k = 4 (3k +9 = 4k + 5), k = 5 (3k + 9 = 4k +4),

1http://math.colgate.edu/∼aaron/programs.html
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and k = 7 (3k + 9 = 4k + 2). Since rbrr is the only valid coloring of [1, 4], we have
RR(E(k, 3)) = 4 for k = 1, 2, 3, 4, 5, 7.

For the coloring rbrrb, we have no new additional elements in Rx,y,z ∩ Rw. Hence, any
possible additional intersection point comes from Bx,y,z ∩ Bw. However, Bx,y,z ∩ Bw = ∅ for
all k ∈ Z+. Hence, RR(E(k, 3)) ≥ 6 for k ∈ Z+ \ {1, 2, 3, 4, 5, 7}.

For rbrrbb, we again have no new additional elements in the red intersection. We do, however,
have additional elements in Bx,y,z ∩ Bw. When k = 8 (5k + 15 = 6k + 7) and k = 11
(5k + 15 = 6k + 4) we have a blue intersection. We conclude that RR(E(k, 3)) = 6 for
k = 8, 11 and RR(E(k, 3)) ≥ 7 for k ∈ Z+ \ {1, 2, 3, 4, 5, 7, 8, 11}.

Considering rbrrbbr, we have no new additional elements in Bx,y,z ∩ Bw. Furthermore, we
have no new additional intersection points in Rx,y,z ∩ Rw. Hence, RR(E(k, 3)) ≥ 8 for
k ∈ Z+ \ {1, 2, 3, 4, 5, 7, 8, 11}.

Lastly, we consider rbrrbbrb, which gives no new additional elements in Rx,y,z∩Rw. Further-
more, we have no new additional intersection points in Bx,y,z ∩ Bw. Thus, RR(E(k, 3)) ≥ 9
for k ∈ Z+ \ {1, 2, 3, 4, 5, 7, 8, 11}.

Analyzing the valid coloring of [1, 8] we see that we cannot extend it to a valid color-
ing of [1, 9]. Hence, RR(E(k, 3)) ≤ 9 for all k so that RR(E(k, 3)) = 9 for k ∈ Z+ \
{1, 2, 3, 4, 5, 7, 8, 11}. 2

Theorem 2.6: For k ∈ Z+,

RR(E(k, 4)) =





3 for k = 2, 3, 4
5 for k = 6, 7, 8, 10, 11, 14
6 for k = 5, 9, 12, 13, 15, 18
8 for k = 17, 19, 22
9 for k = 1, 23, 24

10 for k = 16, 20, 21 and k ≥ 25.

Proof: Use the Maple package FVR with the following valid colorings (which are easily ob-
tained):
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n valid colorings
3 rbb
4 rbbr
5 rbbrr
6 rbbrrr
7 rbbrrrr, rbbrrrb
8 rbbrrrrb, rbbrrrbb
9 rbbrrrrbr, rbbrrrbbr

10 none

Note that if [1, n] has more than one valid coloring, we can conclude that RR(E(k, 4)) ≤ n
for k = k̂ only if k̂ is an intersection point for all valid colorings. Otherwise, there exists a
coloring of [1, n] that avoids monochromatic solutions to E(k, 4) when k = k̂. 2

Theorem 2.7: For k ∈ Z+,

RR(E(k, 5)) =





4 for k = 1, 2, 3
6 for k = 4, 13, 14
7 for k = 16, 17, 18, 23
8 for 5 ≤ k ≤ 12 and k = 21

10 for k = 19, 24, 26, 27, 28, 29, 33
11 for k = 22, 30, 31, 32, 34, 36, 37, 38, 39, 41, 42, 43, 48
12 for k = 15, 35, 44, 46, 47, 53
13 for k = 51, 52
15 for k = 20, 25, 40, 45, 49, 50 and k ≥ 54.

Proof: Use the Maple package FVR with the following valid colorings (which are easily ob-
tained):
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n valid colorings
4 rrrb, rrbb, rbrb, rbbb
5 rrbbb, rbrbr, rbbbr
6 rrbbbr, rbrbrr, rbbbrr
7 rrbbbrr, rrbbbrb, rbrbrrr, rbrbrrb, rbbbrrr
8 rrbbbrrb, rbrbrrbr, rbbbrrrr
9 rrbbbrrbb, rbrbrrbrb, rbbbrrrrr.rbbbrrrrb

10 rrbbbrrbbr, rbbbrrrrbr, rbbbrrrrrr
11 rrbbbrrbbrr, rbbbrrrrrrr, rbbbrrrrbrr
12 rrbbbrrbbrrr, rbbbrrrrrrrr, rbbbrrrrbrrr
13 rrbbbrrbbrrrr, rrbbbrrbbrrrb
14 rrbbbrrbbrrrrr, rrbbbrrbbrrrrb, rrbbbrrbbrrrbr, rrbbbrrbbrrrbb
15 none.

2

2.3 A Formula for x + y + kz = 2w

In [HS] and [GS] a formula for, in particular, x+y +kz = w is given: RR(x+y +kz = w) =
(k + 1)(k + 4) + 1. In this section we provide a formula for the next important equation of
this form, namely the one in this section’s title. This appears to be the first formula given
for a linear homogeneous equation E of more than three variables with a negative coefficient
not equal to −1 (assuming, without loss of generality, at least as many positive coefficients
as negative ones) that does not satisfy Rado’s regularity condition.

Theorem 2.8: For k ∈ Z+,

RR(x + y + kz = 2w) =





k(k+4)
4

+ 1 if k ≡ 0 (mod 4)

(k+2)(k+3)
4

+ 1 if k ≡ 1 (mod 4)

(k+2)2

4
+ 1 if k ≡ 2 (mod 4)

(k+1)(k+4)
4

+ 1 if k ≡ 3 (mod 4).

Proof: We begin with the lower bounds. Let Ni be one less than the stated formula for
k ≡ i (mod 4), with i ∈ {0, 1, 2, 3}. We will provide 2-colorings of [1, Ni], for i = 0, 1, 2, 3,
that admit no monochromatic solution to x + y + kz = 2w.

For i = 0, color all elements in
[
1, k

2

]
red and all remaining elements blue. If we assume x, y,

and z are all red, then x + y + kz ≥ k + 2 so that for any solution we have w ≥ k
2
+ 1. Thus,
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there is no red solution. If we assume x, y, and z are all blue, then x+y+kz ≥ k2

2
+2k+2 =

2
(

k(k+4)
4

+ 1
)

> 2N0, showing that there is no blue solution.

For i = 1, color N1 and all elements in
[
1, k+1

2

]
red. Color the remaining elements blue.

Similarly to the last case, we have no blue solution since x + y + kz > 2(N1 − 1). If we
assume x, y, z and w are all red, then we cannot have all of x, y, z in

[
1, k+1

2

]
. If we do, since

k is odd (so that we must have x+ y odd), then x+ y + kz ≥ 1+2+ k(1) = k +3 > 2
(

k+1
2

)
.

Thus, w must be blue. Now we assume, without loss of generality, that x = N1. In this
situation, we must have w = N1. Hence, since N1 + y + kz = 2N1 we see that y + kz = N1.
Hence, y, z ≤ k+1

2
. But then y + kz ≤ k2+2k+1

2
< N1, a contradiction. Hence, there is no red

solution under this coloring.

The cases i = 2 and i = 3 are similar to the above cases. As such, we provide the colorings
and leave the details to the reader. For i = 2, we color N2 and all elements in

[
1, k

2

]
red,

while the remaining elements are colored blue. For i = 3, color all elements in
[
1, k+1

2

]
red

and all remaining elements blue.

We now turn to the upper bounds. We let Mi be equal to the stated formula for k ≡
i (mod 4), with i ∈ {0, 1, 2, 3}. We employ a “forcing” argument to determine the color of
certain elements. We let R denote the set of red elements and B the set of blue elements. We
denote by a 4-tuple (x, y, z, w) a solution to x + y + kz = 2w. In each of the following cases
assume, for a contradiction, that there exists a 2-coloring of [1, Mi] with no monochromatic
solution to the equation. In each case we assume 1 ∈ R.

Case 1. k ≡ 0 (mod 4). We will first show that 2 ∈ R. Assume, for a contradiction, that
2 ∈ B. Then 2k + 2 ∈ R by considering (2, 2k + 2, 2, 2k + 2). Also, k + 1 ∈ B comes from
the similar solution (1, k + 1, 1, k + 1). Now, from (3k + 3, 1, 1, 2k + 2) we have 3k + 3 ∈ B.
As a consequence, we see that 3 ∈ R by considering (3, 3k + 3, 3, 3k + 3). From here we use
(3k + 1, 3, 1, 2k + 2) to see that 3k + 1 ∈ B. But then (3k + 1, k + 1, 2, 3k + 1) is a blue
solution, a contradiction. Hence, 2 ∈ R.

Now, since 1, 2 ∈ R, in order for
(
1, 1, 1, k

2
+ 1

)
not to be monochromatic, we have k

2
+ 1 ∈

B. Similarly,
(
2, 2, 1, k

2
+ 2

)
gives k

2
+ 2 ∈ B. Consequently, so that

(
k
2

+ 1, k
2

+ 1, k
2

+ 1,
k2

4
+ k + 1

)
is not monochromatic, we have k2

4
+ k + 1 ∈ R.

Our next goal is to show that k
2
∈ R. So that

(
k2+2k

4
+ 1, k2+2k

4
+ 1, 1, k2

4
+ k + 1

)
is not red,

we have k2+2k
4

+ 1 ∈ B. In turn, to avoid
(

k
2

+ 1, k
2

+ 1, k
2
, k2+2k

4
+ 1

)
being blue, we have

k
2
∈ R, as desired.

So that
(

k
2
, k

2
, 1, k

)
and

(
k
2
, k

2
, k

2
, k2+2k

4

)
are not red, we have k, k2+2k

4
∈ B. Using these in
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(
k, k, k

2
− 1, k2+2k

4

)
gives k

2
−1 ∈ R. Since k

2
and k

2
−1 are both red,

(
k
2
− 1, k

2
− 1, k

2
− 1, k2

4
− 1

)

gives us k2

4
− 1 ∈ B while

(
k
2
, k

2
, k

2
− 1, k2

4

)
gives us k2

4
∈ B. This, in turn, gives us k

4
∈ R by

considering
(

k2

4
, k, k

4
, k2+2k

4

)
.

Now, from
(

k2+4k
4

+ 1, 1, k
4

+ 1, k2+4k
4

+ 1
)

we have k
4

+ 1 ∈ B. We use this in the two

solutions
(

k2

4
− 1, k

2
+ 1, k

4
+ 1, k2+3k

4

)
and

(
k2

4
, k, k

4
+ 1, k2+4k

4

)
to find that k2+3k

4
, k2+4k

4
∈ R.

But this gives us the red solution
(

k2+4k
4

, k
2
, k

4
, k2+3k

4

)
, a contradiction.

Case 2. k ≡ 1 (mod 4). The argument at the beginning of Case 1 holds for this case, so we
have 2 ∈ R. We consider two subcases.

Subcase i. k+3
4
∈ R. From

(
k2+4k+3

4
, k+3

4
, k+3

4
, k2+4k+3

4

)
we have k2+4k+3

4
∈ B. This gives us

k+1
2
∈ R by considering

(
k + 1, k+1

2
, k+1

2
, k2+4k+3

4

)
(where k + 1 ∈ B comes from (1, 1, 2, k +

1)). We also have, from (1, 2, 1, k+3
2

), that k+3
2
∈ B. Consequently, k2+5k+6

4
∈ R so that(

k+3
2

, k+3
2

, k+3
2

, k2+5k+6
4

)
is not monochromatic.

We next have that k+5
2
∈ B so that

(
3, 2, 1, k+5

2

)
is not monochromatic (we may assume that

k ≥ 9). Hence, k2+5k+10
4

∈ R by considering
(

k+5
2

, k+5
2

, k+3
2

, k2+5k+10
4

)
. But this gives us the

monochromatic solution
(

k2+5k+10
4

, k+1
2

, k+3
4

, k2+5k+6
4

)
, a contradiction.

Subcase i. k+3
4
∈ B. Via arguments similar to those in Subcase i, we have k2+4k+3

4
, k2+5k+6

4
∈

R. From
(

k2+4k+3
4

, k2+2k+9
4

, 1, k2+5k+6
4

)
we have k2+2k+9

4
∈ B. This gives us k2+15

4
∈ R by

considering
(

k2+15
4

, k+3
4

, k+3
4

, k2+2k+9
4

)
.

We now show that k−1
4
∈ R by showing that for any i ≤ k−1

4
we must have i ∈ R. To

this end, assume, for a contradiction, that i − 1 ∈ R but i ∈ B (where i ≥ 3). From
(i, ik + i, i, ik + i) we have ik + i ∈ R. In turn we have (i + 1)k + i ∈ B by considering
(ik+ i, ik+ i, 2, (i+1)k+ i). We next see from ((i+1)k+ i, i, i+1, (i+1)k+ i) that i+1 ∈ R.
Using our assumption that i − 1 ∈ R in (i − 1, i + 1, 2, k + i) we have k + i ∈ B. But then
((i + 1)k + i, k + i, i, (i + 1)k + i) is a blue solution, provided (i + 1)k + i ≤ M1, which by
the bound given on i is valid. By applying this argument to i = 3, 4, . . . , k−1

4
, in order, we

see that all positive integers less than or equal to k−1
4

must be red. In particular, k−1
4
∈ R.

Using k−1
4

∈ R in
(

k2+15
4

, k+15
4

, k−1
4

, k2+15
4

)
we have k+15

4
∈ B. This, in turn, gives us

k2+4k+15
4

∈ R by considering
(

k2+4k+15
4

, k+15
4

, k+3
4

, k2+4k+15
4

)
. For our contradiction, we see
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now that
(

k2+4k+15
4

, k2+15
4

, 1, k2+4k+15
4

)
is a red solution.

Case 3. k ≡ 2 (mod 4). From Case 1 we have k
2
, k2

4
+k +1 ∈ R and k

2
+1, k2

4
−1, k2+2k

4
∈ B.

From
(
1, 1, k

2
+ 2, k2

4
+ k + 1

)
we see that k

2
+ 2 ∈ B. This gives us k2

4
+ k + 2 ∈ R by con-

sidering
(

k
2

+ 2, k
2

+ 2, k
2

+ 1, k2

4
+ k + 2

)
. Using this fact in

(
k2

4
+ k + 2, k

2
, k+2

4
, k2

4
+ k + 1

)

we have k+2
4
∈ B. But then

(
k2

4
− 1, k

2
+ 1, k+2

4
, k2+2k

4

)
is a blue solution, a contradiction.

Case 4. k ≡ 3 (mod 4). Let i ∈ R. From Case 2 we may assume i ≥ 2 so that 1, 2, . . . , i
are all red, By considering (i, ik + i, i, ik + i) we have ik + i ∈ B so that we may assume
k +1, 2k +2, . . . , (i−1)k +(i−1), ik + i are all blue. Since (i+1, (i−1)k + i−1, i+1, ik + i)
is a solution, we have i + 1 ∈ R. Hence, i ∈ R for 1 ≤ i ≤ k+5

4
. In particular, k+5

4
∈ R.

From Case 2 we also have k+3
2

, k+5
2
∈ B. By considering

(
k+3
2

, k+5
2

, k+3
2

, k2+5k+8
4

)
we have

k2+5k+8
4

∈ R. But then
(

k2+5k+8
4

, 2, k+5
4

, k2+5k+8
4

)
is a red solution, a contradiction.

2.4 Concluding remarks on 2-color Rado numbers

The next important numbers to determine are in the first row of Table 1 (below). As such,
it would be nice to have a formula for RR(x + y + z = `w). One has not been discerned.

In analyzing Table 1 certain patterns emerge. The the following conjecture was put forth,
but has since been discovered to be incorrect.

Conjecture: For ` ≥ 2 fixed and k ≥ ` + 2, we have

RR(x + y + kz = `w) =

(⌊
k + ` + 1

`

⌋)2

+ O

(
k

`2

)
,

where the “O
(

k
`2

)
part” depends on the residue class of k modulo `2.

Saracino and Wynne [SW] found the precise Rado numbers for the equation x+y+kz = 3w,
which relies on the residue of k mod 27 (not 9).

We end with a table of calculated values of RR(E(k, j)) for small values of k and j. These
were calculated by a standard backtrack algorithm. The program can be downloaded as
RADONUMBERS at Aaron Robertson’s website2.

2http://math.colgate.edu/∼aaron/programs.html
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Table 1: Some Values of RR(x + y + kz = `w)

` = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
k= 1 11 4 1 4 9 4 10 12 14 16 18 20 22 24 26 38 40 43 48 50 53 59 62

2 19 5 4 1 4 3 4 5 7 8 9 9 17 18 20 21 23 24 26 27 32 33 35
3 29 8 5 4 1 4 3 4 9 6 7 10 9 10 9 13 14 15 16 16 26 27 28
4 41 9 4 4 5 1 4 3 6 5 6 4 10 8 11 10 11 9 13 14 14 15 16
5 55 15 8 6 8 5 1 4 6 8 5 6 4 10 11 11 11 13 12 14 10 14 15
6 71 17 9 5 6 6 5 1 9 5 8 5 11 4 9 10 11 15 13 12 16 10 12
7 89 23 10 7 6 7 11 5 1 4 5 8 6 11 7 10 12 12 13 13 14 15 10
8 109 25 15 8 6 9 8 8 5 1 6 5 8 5 10 7 10 9 11 12 16 17 15
9 131 34 15 9 9 9 9 7 14 5 1 9 6 8 10 10 12 12 9 11 15 12 14

10 155 37 16 10 10 9 8 7 8 10 5 1 9 5 8 10 10 9 8 9 12 11 12
11 181 46 22 15 10 11 8 11 9 10 17 5 1 6 5 8 6 11 9 8 11 16 11
12 209 49 24 16 11 9 10 10 12 8 10 12 5 1 9 6 8 9 11 9 12 10 12
13 239 61 26 17 10 11 13 13 10 10 13 10 20 5 1 9 6 6 9 11 7 10 13
14 271 65 34 18 14 11 14 11 12 13 8 9 11 14 5 1 9 5 6 9 14 7 9
15 305 77 36 24 15 13 13 15 14 15 12 14 12 12 23 5 1 9 6 12 9 10 7
16 341 81 38 24 16 11 14 12 14 13 12 12 11 10 12 16 5 1 9 10 8 9 12
17 379 96 45 24 17 14 15 15 17 12 19 15 14 13 17 14 26 5 1 9 8 8 9
18 419 101 47 25 18 15 14 15 18 15 12 12 16 10 12 11 15 18 5 1 9 6 8
19 461 116 49 32 24 17 14 17 18 18 16 20 15 14 15 13 15 15 29 5 1 9 8
20 505 121 60 34 25 15 16 16 18 15 14 20 17 19 15 14 14 12 15 20 5 1 9
21 551 139 63 36 26 18 19 16 15 20 20 17 19 18 18 14 14 17 21 16 32 5 1
22 599 145 65 37 27 18 17 15 17 19 18 19 15 17 15 17 16 14 14 13 18 22 5
23 649 163 78 45 28 23 18 18 19 19 23 22 17 22 17 21 14 18 16 16 17 18 35
24 701 169 ≥ 81 47 32 24 19 16 17 20 21 18 20 16 20 20 18 16 14 18 15 14 19
25 755 190 ≥ 84 49 35 25 19 20 16 20 23 21 25 16 28 23 19 18 21 18 16 17 25
26 811 197 ≥ 94 51 35 26 17 19 20 20 23 21 22 21 17 18 20 18 19 15 17 17 17
27 869 218 ≥ 97 62 35 27 23 22 27 22 21 20 23 26 20 21 22 27 19 17 21 19 19
28 929 225 ≥ 100 64 36 27 25 21 21 18 23 22 22 21 16 18 20 21 19 21 21 16 16
29 991 249 ≥ 115 66 44 35 26 22 21 23 22 24 27 25 26 19 30 21 23 25 17 21 19
30 1055 257 ≥ 118 68 46 36 24 19 23 22 22 21 25 24 30 17 20 24 22 21 22 18 16
31 1121 281 ≥ 122 75 47 37 26 22 23 24 22 25 25 26 22 28 20 30 22 20 19 24 21
32 1189 289 ≥ 138 77 49 38 27 24 24 23 25 24 26 24 27 24 18 20 21 22 24 25 19
33 1259 316 ≥ 141 ≥ 79 50 39 26 25 25 23 27 26 25 25 24 24 29 20 29 29 27 28 18
34 1331 325 ≥ 147 ≥ 81 60 40 34 24 23 24 26 23 27 28 29 27 28 20 21 26 23 26 24
35 1405 352 ≥ 161 ≥ 93 62 45 35 26 25 26 26 27 27 28 28 26 25 34 21 33 30 25 26
36 1481 361 ≥ 165 ≥ 96 63 45 36 24 27 26 27 30 27 24 30 27 29 27 20 22 27 22 27
37 1559 391 ≥ 169 ≥ 98 65 49 37 26 26 26 30 28 25 27 28 31 27 27 36 22 31 26 25
38 1639 401 ≥ 188 ≥ 100 65 48 38 28 28 25 26 27 30 30 29 30 31 32 38 22 23 28 24
39 1721 431 ≥ 193 ≥ 113 77 48 39 35 29 28 28 31 30 29 32 32 31 29 28 32 23 31 31
40 1805 441 ≥ 196 ≥ 116 79 49 39 35 29 25 28 26 31 27 31 32 31 32 32 30 22 24 29

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
k= 1 64 84 87 ≥ 91 ≥ 98 ≥ 102 ≥ 105 ≥ 114 ≥ 118 ≥ 121 ≥ 148 ≥ 152 ≥ 157 ≥ 167 ≥ 171 ≥ 176 ≥ 187

2 36 44 46 48 49 66 68 ≥ 70 ≥ 73 ≥ 77 ≥ 80 ≥ 82 ≥ 84 ≥ 93 ≥ 95 ≥ 98 ≥ 100
3 30 31 33 34 35 37 38 44 45 47 48 49 58 60 61 63 64
4 17 21 22 23 24 25 25 37 38 39 40 42 43 45 46 47 48
5 14 17 15 16 16 21 22 23 23 24 25 25 31 32 33 34 35
6 9 16 13 18 14 15 15 16 17 21 22 22 23 24 24 25 25
7 18 9 16 11 18 19 14 21 22 16 17 18 19 21 22 22 23
8 16 18 9 19 12 17 18 19 20 21 15 23 24 18 19 24 16
9 16 16 18 27 19 16 21 18 19 20 21 22 26 24 16 26 27

10 13 18 17 16 17 19 20 21 17 23 19 20 21 22 23 24 25
11 12 15 12 15 16 17 18 20 20 21 21 19 25 21 22 23 24
12 11 14 13 12 12 20 15 16 16 20 21 20 21 22 20 26 22
13 12 10 20 13 12 12 13 15 16 16 17 18 20 20 21 22 22
14 10 10 10 12 13 15 12 13 17 21 16 20 18 19 19 20 21
15 10 15 13 10 12 14 23 15 14 15 15 28 20 17 19 21 22
16 7 11 9 12 11 14 12 16 15 18 14 16 14 23 18 20 20
17 12 8 13 9 11 12 14 12 18 14 26 17 16 16 17 23 20
18 9 10 7 27 9 16 11 18 13 15 14 16 17 29 12 18 17
19 10 10 10 9 13 13 16 12 17 13 15 14 16 16 29 19 18
20 10 15 9 10 8 13 14 16 12 13 15 20 16 16 16 20 19
21 9 10 9 9 16 12 15 11 17 13 17 18 18 15 16 16 20
22 1 9 8 10 7 10 12 13 11 20 13 12 13 19 15 25 16
23 5 1 9 9 9 7 10 12 13 11 16 17 13 13 17 15 17
24 24 5 1 9 9 10 7 15 14 13 11 14 18 14 15 20 17
25 19 38 5 1 9 10 15 10 12 14 13 15 14 18 20 13 20
26 15 20 26 5 1 9 10 10 10 12 11 14 11 15 17 26 13
27 18 21 22 41 5 1 9 10 10 15 11 13 27 14 16 17 18
28 16 19 16 22 28 5 1 9 10 10 10 21 12 18 13 16 17
29 18 19 20 29 22 44 5 1 9 10 10 12 12 11 16 13 17
30 21 20 20 20 17 23 30 5 1 9 10 11 15 12 11 18 14
31 25 22 19 21 21 23 24 47 5 1 9 10 11 10 11 11 16
32 20 26 18 17 20 20 18 24 32 5 1 9 10 11 13 12 16
33 20 23 21 20 25 22 21 33 26 50 5 1 9 10 10 14 8
34 19 23 18 22 18 21 18 21 19 27 34 5 1 9 10 11 11
35 25 22 22 27 25 23 23 23 25 25 27 53 5 1 9 10 12
36 24 23 21 27 24 23 21 21 22 23 20 27 36 5 1 9 10
37 28 23 22 24 29 25 23 23 22 24 25 37 28 56 5 1 9
38 27 24 26 22 26 24 23 24 21 23 22 25 21 30 38 5 1
39 28 29 33 25 23 22 28 27 25 26 25 25 27 29 30 59 5
40 25 28 24 22 23 28 25 26 24 27 22 28 22 27 22 31 40
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3. Off-diagonal 2-color Rado numbers

In [JS], the 2-color Rado numbers are determined for equations of the form a1x1+· · ·+anxn =
z where one of the ai’s is 1. The case when min(a1, . . . , an) = 2 is done in [HS], while the
general case is settled in [GS].

In this section, we investigate the “off-diagonal” situation. To this end, for r ∈ Z+ define
an off-diagonal Rado number for the equations Ei, 0 ≤ i ≤ r − 1, to be the least integer N
(if it exists) for which any r-coloring of [1, N ] must admit a monochromatic solution to Ei of
color i for some i ∈ [0, r − 1].

Recall that the Ramsey number R(k1, k2, . . . , kn) is the minimum integer that ensures the ad-
mittance of a monochromatic complete graph Ki of color i, meaning that they are themselves
off-diagonal (unless k1 = k2 = · · · = kn, a case that has received particular attention).

In this section, when r = 2 we will prove the existence of such numbers and determine
particular values and lower bounds in several specific cases when the two equations are of
the form a1x1 + · · ·+ anxn = z. For convenience, we restate Rado’s lesser-known theorem.

Theorem 3.1 [Rad]: Let E be a linear homogeneous equation with integer coefficients. Assume
that E has at least 3 variables with both positive and negative coefficients. Then any 2-
coloring of Z+ admits a monochromatic solution to E .

3.1 Existence

Using Rado’s lesser-known theorem, we offer the “off-diagonal” consequence.

Theorem 3.2: Let E0 and E1 be linear homogeneous equations with integer coefficients. As-
sume that E0 and E1 each have at least 3 variables with both positive and negative coefficients.
Then any 2-coloring of Z+ admits either a solution to E0 of the first color or a solution to E1

of the second color.

Proof: Let a0, a1, b0, b1, c ∈ Z+ and denote by Gi the equation aix+ biy = cz for i = 0, 1. Via
the same argument given in the proof to Theorem 3.1, we may consider solutions to G0 and
G1. (The coefficients on z may be taken to be the same in both equations by finding the lcm
of the original coefficients on z and adjusting the other coefficients accordingly.)

Let the colors be red and blue. We want to show that any 2-coloring admits either a red
solution to G0 or a blue solution to G1. From Theorem 3.1, we have monochromatic solutions
to each of these equations. Hence, we assume, for a contradiction, that any monochromatic
solution to G0 is blue and that any monochromatic solution to G1 is red. This gives us that
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for any i ∈ Z+, if ci is blue, then (a1 + b1)i is red (else we have a blue solution to G1).

Now consider monochromatic solutions in cZ+. Via the obvious bijection between colorings
of cZ+ and Z+ and the fact that linear homogeneous equations are unaffected by dilation,
Theorem 0.1 gives us the existence of monochromatic solutions in cZ+. If cx, cy, cz solve
G0 and are the same color, then they must be blue. Hence, x̂ = (a1 + b1)x, ŷ = (a1 + b1)y,
and ẑ = (a1 + b1)z are all red. But, x̂, ŷ, ẑ solve G0. Thus, we have a red solution to G0, a
contradiction. 2

3.2 Two Lower Bounds

Given the results in the previous section, we make a definition, which uses the following
notation.

Notation: For n ∈ Z+ and ~a = (a1, a2, . . . , an) ∈ Zn, denote by En(~a) the linear homogeneous
equation

∑n
i=1 aixi = 0.

Definition: For k, ` ≥ 3,~b ∈ Zk, and ~c ∈ Z`, we let RR(Ek(~b), E`(~c)) be the minimum integer

N , if it exists, such that any 2-coloring of [1, N ] admits either a solution to Ek(~b) of the first
color or a solution to E`(~c) of the second color.

We now develop a general lower bound for certain types of those numbers guaranteed to
exist by Theorem 1.1.

Theorem 3.3: For k, ` ≥ 2, let b1, b2, . . . , bk−1, c1, c2, . . . , c`−1 ∈ Z+. Consider Ek = Ek(b1, b2,
. . . , bk−1,−1) and E` = E`(c1, c2, . . . , c`−1,−1), written so that b1 = min(b1, b2, . . . , bk−1) and
c1 = min(c1, c2, . . . , c`−1). Assume that t = b1 = c1. Let q =

∑k−1
i=2 bi and s =

∑`−1
i=2 ci. Let

(without loss of generality) q ≥ s. Then

RR(Ek, E`) ≥ t(t + q)(t + s) + s.

For a concrete example, consider the equations:

2x + 4y + 7z + 11v = w (E)

2x + 4y + 8z + 12v = w (F)

Then we have t = 2, s = 22, q = 24, and thus RR(E ,F) ≥ 1270.

Proof: Let N = t(t+q)(t+s)+s and consider the 2-coloring of [1, N−1] defined by coloring
[s + t, (q + t)(s + t)− 1] red and its complement blue. We will show that this coloring avoids
red solutions to Ek and blue solutions to E`.
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We first consider any possible red solution to Ek. The value of xk would have to be at least
t(s + t) + q(s + t) = (q + t)(s + t). Thus, there is no suitable red solution. Next, we consider
E`. If {x1, x2, . . . , x`−1} ⊆ [1, s + t− 1], then x` < (q + t)(s + t). Hence, the smallest possible
blue solution to E` has xi ∈ [(q + t)(s + t), N − 1] for some i ∈ [1, `− 1]. However, this gives
x` ≥ t(q + t)(s + t) + s > N − 1. Thus, there is no suitable blue solution. 2

The case when k = ` = 2 in Theorem 3.3 can be improved somewhat in certain cases,
depending upon the relationship between t, q, and s. This result is presented below.

Theorem 3.4: Let t, j ∈ Z+. Let F t
j represent the equation tx + jy = z. Let q, s ∈ Z+ with

q ≥ s ≥ t. Define m = gcd(t,q)
gcd(t,q,s)

. Then

RR(F t
q,F t

s) ≥ t(t + q)(t + s) + ms.

Proof: Let N = t(t + q)(t + s) + ms and consider the 2-coloring χ of [1, N − 1] defined by
coloring

R = [s + t, (q + t)(s + t)− 1] ∪ {t(t + q)(t + s) + is : 1 ≤ i ≤ m− 1}
red and B = [1, N − 1] \ R blue. We will show that this coloring avoids red solutions to F t

q

and blue solutions to F t
s.

We first consider any possible red solution to F t
q. The value of z would have to be at least

t(s+t)+q(s+t) = (q+t)(s+t) and congruent to 0 modulo m. Since t(t+q)(t+s) ≡ 0 (mod m)
but is 6≡ 0 (mod m) for 1 ≤ i ≤ m−1, there is no suitable red solution. Next, we consider F t

s.
If {x, y} ⊆ [1, s+t−1], then s+t ≤ z < (q+t)(s+t). Hence, the smallest possible blue solution
to F t

s has x or y in [(q + t)(s+ t), N − 1]. However, this gives z ≥ t(q + t)(s+ t)+ s > N − 1.
By the definition of the coloring, z must be red. Thus, there is no suitable blue solution to
F t

s. 2

3.3 Some Exact Numbers

In this section, we will determine some of the values of RR1(q, s) = RR(x+ qy = z, x+ sy =
z), where 1 ≤ s ≤ q. The subscript 1 is present to emphasize the fact that we are using t = 1
as defined in Theorem 3.4. In this section we will let RRt(q, s) = RR(tx+qy = z, tx+sy = z)
and we will denote the equation tx + jy = z by F t

j .

Theorem 3.5: Let 1 ≤ s ≤ q. Then

RR1(q, s) =





2q + 2
⌊

q+1
2

⌋
+ 1 for s = 1

(q + 1)(s + 1) + s for s ≥ 2.
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Proof: We start with the case s = 1. Let N = 2q + 2
⌊

q+1
2

⌋
+ 1. We first improve the lower

bound given by Theorem 3.3 for this case.

Let γ be the 2-coloring of [1, N−1] defined as follows. The first 2b q+1
2
c−1 integers alternate

colors with the color of 1 being blue. We then color
[
2b q+1

2
c, 2q + 1

]
red. We color the last

2b q+1
2
c − 1 integers with alternating colors, where the color of 2q + 2 is blue.

First consider possible blue solutions to x + y = z. If x, y ≤ 2b q+1
2
c − 1, then z ≤ 2q. Under

γ, such a z must be red. Now, if exactly one of x and y is greater than 2q + 1, then z is odd
and greater than 2q + 1. Again, such a z must be red. Finally, if both x and y are greater
than 2q + 1, then z is too big. Hence, γ admits no blue solution to x + y = z.

Next, we consider possible red solutions to x + qy = z. If x, y ≤ b q+1
2
c − 1, then z must be

even. Also, since x and y must both be at least 2 under γ, we see that z ≥ 2q + 2. Under γ,
such a z must be blue. If one (or both) of x or y is greater than b q+1

2
c − 1, then z ≥ N − 1,

with equality possible. However, with equality, the color of z is blue. Hence, γ admits no
red solution to x + qy = z.

We move onto the upper bound. Let χ be a 2-coloring of [1, N ] using the colors red and
blue. Assume, for a contradiction, that there is no red solution to F1

q and no blue solution
to F1

1 . We break the argument into 3 cases.

Case 1. 1 is red. Then q + 1 must be blue since otherwise (x, y, z) = (1, 1, q + 1) would
be a red solution to F1

q . Since (q + 1, q + 1, 2q + 2) satisfies F1
1 , we have that 2q + 2 must

be red. Now, since (q + 2, 1, 2q + 2) satisfies F1
q , we see that q + 2 must be blue. Since

(2, q +2, q +4) satisfies F1
1 we have that q +4 must be red. This implies that 4 must be blue

since (4, 1, q + 4) satisfies F1
q . But then (2, 2, 4) is a blue solution to F1

1 , a contradiction.

Case 2. 1 is blue and q is odd. Note that in this case we have N = 3q + 2. Since 1 is blue,
2 must be red, which, in turn, implies that 2q + 2 must be blue. Since (q + 1, q + 1, 2q + 2)
solves F1

1 , we see that q + 1 must be red. Now, since (j, 2q + 2, 2q + j + 2) solves F1
1 and

(j + 2, 2, 2q + j + 2) solves F1
q , we have that for any j ∈ {1, 3, 5, . . . , q}, the color of j is

blue. With 2 and q both red, we have that 3q is blue, which implies that 3q + 1 must be
red. Since (q + 1, 2, 3q + 1) solves F1

q , we see that q + 1 must be blue, and hence q + 2 is red.
Considering (q + 2, 2, 3q + 2), which solves F1

q , and (q, 2q + 2, 3q + 2), which solves F1
1 , we

have an undesired monochromatic solution, a contradiction.

Case 3. 1 is blue and q is even. Note that in this case we have N = 3q + 1. As in Case 2,
we argue that for any j ∈ {1, 3, 5, . . . , q− 1}, the color of j is blue. As in Case 2, both 2 and
q + 1 must be red, so that 3q + 1 must be blue. But (q − 1, 2q + 2, 3q + 1) is then a blue
solution to F1

1 , a contradiction.

Next, consider the cases when s ≥ 2. From Theorem 3.3, we have RR1(q, s) ≥ (q + 1)(s +
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1) + s. We proceed by showing that RR1(q, s) ≤ (q + 1)(s + 1) + s.

In the case when s = 1 we used an obvious “forcing” argument. As such, we have automated
the process in the Maple package SCHAAL, available for download from Aaron Robertson’s
website3. The package is detailed in the next subsection, but first we finish the proof. Using
SCHAAL we find the following (where we use the fact that s ≥ 2):

1) If 1 is red, then the elements in {s, q + s + 1, qs + q + s + 1} must be both red and blue,
a contradiction.

2) If 1 is blue and s − 1 is red, then the elements in {1, 2, 2q − 1, 2s + 1, 2q + 1, 2q + 2s −
1, 2q + 2s + 1} must be both red and blue, a contradiction.

3) If 1 and s− 1 are both blue, the analysis is a bit more involved. First, by assuming s ≥ 2
we find that 2 must be red and s must be blue. Hence, we cannot have s = 2 or s = 3, since
if s = 2 then 2 is both red and blue, and if s = 3 then since s− 1 is blue, we again have that
2 is both red and blue. Thus, we may assume that s ≥ 4. Using SCHAAL with s ≥ 4 now
produces the result that the elements in {4, s + 1, q + 1, 2s − 1, 2s, q + 2s + 1, 3s + 1, 5q +
1, 4q +s+1, 4q +2s−1, 4q +2s, 4q +3s+1, 5q +2s+1, qs−3q +1, qs−3q +2s+1, qs−3q +
s− 1, qs + q + 1, qs + q + s− 1, qs + q + 2s + 1} must be both red and blue, a contradiction.

This completes the proof of the theorem. 2

Using the above theorem, we offer the following corollary.

Corollary 3.6: For k, ` ∈ Z+, let a1, . . . , ak, b1, . . . , b` ∈ Z+. Assume
∑k

i=1 ai ≥
∑`

i=1 bi.
Then

RR1(x+
k∑

i=1

aiyi = z, x+
∑̀
i=1

biyi = z) =





2
k∑

i=1

ai + 2

⌊∑k
i=1 ai + 1

2

⌋
+ 1 for

∑̀
i=1

bi = 1

(
k∑

i=1

ai + 1

)(∑̀
i=1

bi + 1

)
+

∑̀
i=1

bi for
∑̀
i=1

bi ≥ 2.

Proof: We start by proving that the coloring given in the proof of Theorem 3.5 which provides
the lower bound for the case s = 1 also provides (with a slight modification) a lower bound
for the case when

∑`
i=1 bi = 1. In this situation, we must show that the coloring where the

first 2b
Pk

i=1 ai+1

2
c − 1 integers alternate colors with the color of 1 being blue. We then color[

2b
Pk

i=1 ai+1

2
c, 2 ∑k

i=1 ai + 1
]

red. We color the last 2b
Pk

i=1 ai+1

2
c− 1 integers with alternating

colors, where the color of 2
∑k

i=1 ai +2 is blue. An obvious parity argument shows that there

is no blue solution to x + y = z (this is the case when
∑`

i=1 bi = 1) exists, so it remains

3http://math.colgate.edu/∼aaron
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to show that no red solution to x +
∑k

i=1 aiyi = z exists under this coloring. Now, if x

and all the yi’s are less than 2b
Pk

i=1 ai+1

2
c, then z would be even and have value at least

2
∑k

i=1 ai + 2. This is not possible, so at least one of x, y1, . . . , yk must have value at least

2b
Pk

i=1 ai+1

2
c. If x ≥ 2b

Pk
i=1 ai+1

2
c, then z ≥ 2

∑k
i=1 ai + 2

⌊Pk
i=1 ai+1

2

⌋
. Hence, either z is blue

or too big. So, assume, without loss of generality, that y1 ≥ 2b
Pk

i=1 ai+1

2
c. If a1 = 1, then

z = x+y1+
∑k

i=2 aiyi ≥ 2+2b
Pk

i=1 ai+1

2
c+2

∑k
i=2 ai = 2b

Pk
i=1 ai+1

2
c+2

∑k
i=1 ai and again either

z is blue or too big. If a1 ≥ 2 (and we may assume that k ≥ 2 so that
∑k

i=1 ai +1 ≥ 4), then

z = x+a1y1 +
∑k

i=2 aiyi > a1 ·2b
Pk

i=1 ai+1

2
c+2

∑k
i=2 aiyi ≥ 2(a1 +b

Pk
i=1 ai+1

2
c)+2

∑k
i=2 aiyi =

2b
Pk

i=1 ai+1

2
c) + 2

∑k
i=1 aiyi and z is too big.

Next, by coupling the above lower bound with Theorem 2.1 (using t = 1), it remains to
prove that the righthand sides of the theorem’s equations serve as upper bounds for N =
RR1(x+

∑k
i=1 aiyi = z, x+

∑`
i=1 biyi = z). Letting q =

∑k
i=1 ai and s =

∑`
i=1 bi, any solution

to x + qy = z (resp., x + sy = z) is a solution to x +
∑k

i=1 aiyi (resp., x +
∑`

i=1 biyi = z) by
letting all yi’s equal y. Hence, N ≤ RR1(q, s) and we are done. 2

Remark. When ai = 1 for 1 ≤ i ≤ k, ` = 1, and b1 = 1 the numbers in Corollary 3.2 are
called the off-diagonal generalized Schur numbers. In this case, the values of the numbers
have been determined [RS].

3.4 About the Maple Package SCHAAL

This package is used to try to automatically provide an upper bound for the off-diagonal
Rado-type numbers RRt(q, s). The package employs a set of rules to follow, while the overall
approach is an implementation of the above “forcing” argument.

Let t ≥ 2 be given, keep q ≥ s as parameters, and define N = tqs + t2q + (t2 + 1)s + t3.
We let R and B be the set of red, respectively blue, elements in [1, N ]. The package SCHAAL

uses the following rules.

For x, y ∈ R,

R1) if q|(y − tx) and y − tx > 0, then y−tx
q
∈ B;

R2) if t|(y − qx) and y − qx > 0, then y−qx
t
∈ B;

R3) if (q + t)|x then x
q+t

∈ B.

For x, y ∈ B,
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B1) if s|(y − tx) and y − tx > 0, then y−tx
s
∈ R;

B2) if t|(y − sx) and y − sx > 0, then y−sx
t
∈ R;

B3) if (s + t)|x then x
s+t

∈ R.

We must, of course, make sure that the elements whose colors are implied by the above rules
are in [1, N ]. This is done by making sure that the coefficients of qs, q, and s, as well as
the constant term are nonnegative and at most equal to the corresponding coefficients in
tqs + t2q + (t2 + 1)s + t3 (hence the need for t to be an integer and not a parameter). See
the Maple code for more details.

The main program of SCHAAL is dan. The program dan runs until R ∩ B 6= ∅ or until none
of the above rules produce a color for a new element.

3.5 Some Diagonal Results Using SCHAAL

Included in the package SCHAAL is the program diagdan, which is a cleaned-up version of
dan in the case when q = s. Using diagdan we are able to reprove the main results found
in [HS] and [JS]. However, our program is not designed to reproduce the results in [GS],
which keeps t as a parameter and confirms the conjecture of Hopkins and Schaal [HS] that
Rt(q, q) = tq2 + (2t2 + 1)q + t3.

Theorem 3.7: (Jones and Schaal [JS]) R1(q, q) = q2 + 3q + 1

Proof: By running diagdan({1}, {}, 1, q) we find immediately that the elements in {1, 2, q, 2q+
1, q2 + 2q + 1} must be both red and blue, a contradiction. 2

Theorem 3.8: (Hopkins and Schaal [HS]) R2(q, q) = 2q2 + 9q + 8

Proof: By running diagdan({1}, {q}, 2, q) we find immediately that the elements in {q +
2, 2q2 +5q, 1

2
(q2 +3q)} must be both red and blue. We then run diagdan({1, q}, {}, 2, q) and

find that the elements in {2, q + 2, 2q, 6q, q2 + 6q} must be both red and blue. The program
ran for about 10 seconds to obtain this proof. 2
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3.6 Some Values of RRt(q, s)

This section concludes with values of RRt(q, s) for small values of t, q and s.

t q s Value t q s Value
2 3 2 43 3 5 4 172
2 4 2 50 3 6 4 201
2 5 2 58 3 7 4 214
2 6 2 66 3 8 4 235
2 7 2 74 3 9 4 264
2 8 2 82 3 10 4 277
2 9 2 90 3 6 5 231
2 10 2 98 3 7 5 245
2 4 3 66 3 8 5 269
2 5 3 73 3 9 5 303
2 6 3 86 3 10 5 317
2 7 3 93 3 7 6 276
2 8 3 106 3 8 6 303
2 9 3 112 3 9 6 330
2 10 3 126 3 10 6 357
2 5 4 88 3 8 7 337
2 6 4 100 3 9 7 381
2 7 4 112 3 10 7 397
2 8 4 124 3 9 8 420
2 9 4 136 3 10 8 437
2 10 4 148 3 10 9 477
2 6 5 122 4 5 4 292
2 7 5 131 4 6 4 324
2 8 5 150 4 7 4 356
2 9 5 159 4 8 4 388
2 10 5 178 4 9 4 432∗

2 7 6 150 4 10 4 452
2 8 6 166 4 6 5 370
2 9 6 182 4 7 5 401
2 10 6 198 4 8 5 452
2 8 7 194 4 9 5 473
2 9 7 205 4 10 5 514
2 10 7 230 4 7 6 446
2 9 8 228 4 8 6 492
2 10 8 248 4 9 6 526
2 10 9 282 4 10 6 566
3 4 3 129 4 8 7 556
3 5 3 147 4 9 7 579
3 6 3 165 4 10 7 630
3 7 3 192∗ 4 9 8 632
3 8 3 201 4 10 8 680
3 9 3 219 4 10 9 746
3 10 3 237 5 11 5 820∗

Table 2: Small Values of RRt(q, s)
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These values were calculated by matching Theorem 3.4’s lower bound with the Maple package
SCHAAL’s upper bound. We use SCHAAL by letting 1 be red and then letting 1 be blue. In
many cases this is sufficient, however in many of the remaining cases, we must consider
subcases depending upon whether 2 is red or blue. If this is still not sufficient, we consider
subsubcases depending upon whether the value in the table, the integer 3, the integer 4,
or the integer 5, is red or blue. This is sufficient for all values in Table 2, expect for those
marked with an ∗. This is because, except for those three values marked with an ∗, all values
agree with the lower bound given by Theorem 3.4. For these three exceptional values, we
can increase the lower bound given in Theorem 3.4.

Theorem 3.9: Let t ≥ 3. Then Rt(2t + 1, t) ≥ 6t3 + 2t2 + 4t.

Proof: It is easy to check that the 2-coloring of [1, 6t3 + 2t2 + 4t − 1] defined by coloring
{1, 2, 6t} ∪ {6t + 3, . . . , 6t2 + 2t− 1} ∪ {6t2 + 2t ≤ i ≤ 12t2 + 4t : i ≡ 0 (mod t)} red and its
complement blue avoids red solutions to tx+(2t+1)y = z and blue solutions to tx+ ty = z.
(We use t > 2 so that 6t is the minimal red element that is congruent to 0 modulo t.) 2

Remark: The lower bound in Theorem 3.9 is not tight. For example, when t = 6, the
2-coloring of [1, 1392] given by coloring {1, 2, 3, 37, 39, 40, 41, 43, 46, 47, 48, 49, 50, 52, 56} ∪
[58, 228] ∪ {234 ≤ i ≤ 558 : i ≡ 0 (mod 6)} ∪ {570, 576, 594, 606, 612, 648, 684} red and its
complement blue avoids red solutions to 6x + 13y = z and blue solutions to 6x + 6y = z.
Hence, RRt(2t + 1, t) > 6t3 + 2t2 + 4t for t = 6.

We are unable to explain why (b, c) = (2t + 1, t) produces these “anomolous” values while
others, e.g., (b, c) = (2t− 1, t), appear not to do so.
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4. Open problems and concluding remarks

There are a great many open questions in Ramsey theory, some of which stem from this
work specifically. Open questions stemming from our research include:

• What are the precise Rado numbers RR(x+ y +kz = `w)? What relationships, if any,
are there between these numbers for various k, `? In particular, what are the Rado
numbers when ` = 4? Do they depend on k modulo 16, 64, or something else?

• What are the precise Rado numbers for different or more general equations? Of partic-
ular interest are those with more than one negative coefficient, or with a negative coef-
ficient besides 1 or 2. A promising example would be the Sidon equation x+y = w+z,
whose solutions have the helpful property of being translation-invariant.

• What are the precise off-diagonal Rado numbers of the form RR(tx+qy = z, tx+sy =
z)? Why is the lower bound given in theorem 3.4 apparently correct except in the case
q = 2t + 1, s = t?

The scope of existing research is almost exclusively on linear equations, mostly homogeneous
as well. Open questions looking beyond this scope include:

• Does Rado’s lesser-known theorem have a nonhomogeneous counterpart either? What
necessary and/or sufficient conditions might there be for the 2-regularity of c1x1 + · · ·+
cnxn = b? This question has been investigated in [JS2].

• Does Rado’s lesser-known theorem have a version for 3-regularity. How strict are the
conditions on an equation being 3-regular? This question has been investigated in
[RTS].

• Is the equation x2 + y2 = z2 regular, or at least 2-regular? This question is proposed
by Erdős, as relayed by Graham [Gr].

• What other nonlinear diophantine equations can be characterized as regular? What
conditions can we impose on such regularity?

• What can be said of Rado-type results over different additive groups (e.g. Z/nZ)?
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