Research

Doing research

My research interests are in the field of harmonic and functional analysis. More specifically, my recent work involves projects in analysis on fractals, and the interaction between operator algebras and irreversile dynamical systems and wavelets.
Some problems I am currently pursuing include the theory and applications of Calderón-Zygmund and pseudodiferrential operators on p.c.f. self-similar fractals, the construction and properties of groupoids associated with dynamical systems and wavelets, and a proof of the generalized Effros-Hahn conjecture for groupoids and Fell bundle over groupoids. You can download below the papers that I pusblished or recently submitted for publication.

Publications and Preprints

  1. Ionescu, Marius; Kumjian, Alex: "Actions of groupoids on fractafolds" (submitted for publication)
  2. Ionescu, Marius; Williams, Dana P.: "Inducing irreducible representations of Fell Bundles", Trans. Amer. Math. Soc., accepted for publication (2013) Link
  3. Ionescu, Marius; Rogers Luke G.: "Complex powers of the Laplacian on PCF Self-Similar Fractals as Calderón-Zygmund Operators", Commun. Pure Appl. Anal., accepted for publication (2013) Link.
  4. Ionescu, Marius; Kumjian, Alex.: ''Hausdorff Measures and KMS States'', Indiana Univ. Math. J., 62 (2013), No. 2, 443-463. (2013) Link
  5. Ionescu, Marius; Rogers, Luke G.; Strichartz, Robert S.: "Pseudodifferential operators on Fractals", Rev. Mat. Iberoam. 29 (2013), no. 4, 1159-1190, Link.
  6. Ionescu, Marius; Rogers, Luke G.; Teplyaev, Alexander: "Derivations and Dirichlet forms on fractals", J. Funct. Anal. 263 (2012), no. 8, 2141-2169. Link.
  7. Ionescu, Marius; Williams, Dana P.: "Remarks on the Ideal Structure of Fell Bundle $ C^{\ast}$-Algebras", Houston J. Math.38(2012), No. 4, 1241-1260 Link
  8. Ionescu, Marius; Muhly, Paul S.; Vega, Victor: "Markov Operators and $ C^{\ast}$-Algebras", Houston J. Math.38(2012), No. 3, 775-798 Link
  9. Ionescu, Marius; Williams, Dana P.: "A Classic Morita Equivalence Result for Fell Bundle $ C^{\ast}$-Algebras", Math Scand, 108 No. 2 (2011), 251-263. Link
  10. Ionescu, Marius; Pearse, Erin, P.J.; Rogers, Luke G.; Ruan, H.; Strichartz, Robert S.: "The Resolvent Kernel for PCF Self-Similar Fractals", Trans. Amer. Math. Soc., 362 (2010), 4451-4479. arXiv:0811.4203.
  11. Ionescu, Marius; Williams, Dana P.: "The Generalized Effros-Hahn Conjecture for Groupoids", Indiana Univ. Math. J., 58 No. 6 (2009), 2489-2508 Link
  12. Ionescu, Marius; Williams, Dana P.: "Irreducible representations of groupoid C*-algebras", Proc. Amer. Math. Soc. 137 (2009), 1323-1332 Link.
  13. Ionescu, Marius; Muhly, Paul S.: "Groupoid Methods in Wavelet Analysis", Group representations, ergodic theory, and mathematical physics: a tribute to George W. Mackey, 193--208, Contemp. Math., 449, Amer. Math. Soc., Providence, RI, 2008., Link
  14. Ionescu, Marius; Watatani, Yasuo: $ C^{\ast}$-algebras associated with Mauldin-Williams graphs'', Can. Math. Bull, 51 (2008), no 4, 545--560. Link.
  15. Ionescu, Marius: "Operator algebras and Mauldin-Williams graphs", Rocky Mountain Journal of Mathematics, 37 (2007), no. 3, 829 -- 849. , Link.
  16. Ionescu, Marius: "Mauldin-Williams graphs, Morita Equivalence and isomorphisms", Proc. Amer. Math. Soc. 134 (2006), no. 4, 1087--1097 , Link.

Marius Ionescu, 05 Nov 2013